CHAPTER II

EXPERIMENTAL

2.1 Chemical, apparatus and instruments

2.1.1 Chemicals

The chemicals used in this research project were as listed in Table 2

 Table 2 The chemicals used in this research

Chemical	Molecular	Molecular weight	Grade	Supplier
Acetone*	C ₃ H ₆ O	58.08	commercial	Labscan
Ally amine	C ₃ H ₇ N	57.10	≥99.0 %	Fluka
4-Amino-pyridin	$C_5H_6N_2$	94.12	\geq 98.0 %	Fluka
Benzophenone	$C_{13}H_{10}O$	182.22	\geq 99.0 %	Fluka
2-Bromobenzaldehyde	C7H5OBr	185.03	\geq 97.0 %	Fluka
Calcium hydride	CaH ₂	42.10	$\geq\!97.0~\%$	Fluka
Dichloromethane*	CH_2Cl_2	84.93	commercial	Labscan
Diethyl ether*	$C_4H_{10}O$	74.12	commercial	Labscan
95% Ethanol*	C_2H_6O	46.06	commercial	Labscan
Ethyl acetate*	$C_4H_8O_2$	88.11	\geq 99.0 %	Labscan
Hexane*	C ₆ H ₁₄	86.10	commercial	Labscan
Hydrochloric acid	HCl	36.50	\geq 35.0 %	Merck
Hydroxylamine hydrochloride	NH ₂ OH.HCl	69.49	≥99.0 %	Aldrich
Lithium aluminium hydride	LiAlH ₄	37.95	\geq 97.0 %	Merck
Oxalyl chloride	$C_2O_2Cl_2$	126.93	\geq 99.0 %	Merck
Potassium Hydroxide	КОН	56.10	\geq 85.0 %	Fluka

Table 2 (continued)

Molecular	Molecular weight	Grade	Supplier
NaCl	58.44	-	TRS
NaOH	40.00	\geq 99.0 %	Thasco
Na	22.99	4 -	-
Na ₂ SO ₄	142.04	≥99.0 %	BDH
C ₄ H ₈ O	72.11	≥99.0 %	Fluka
$C_6H_{15}N$	101.19	≥ 99.0 %	Scharlau
		-	Scharlau
	-	-	Fluka
	NaCl NaOH Na Na ₂ SO ₄ C4H ₈ O	Molecular weight NaCl 58.44 NaOH 40.00 Na 22.99 Na2SO4 142.04 C4H8O 72.11	MolecularweightGradeNaCl 58.44 -NaOH 40.00 $\geq 99.0 \%$ Na 22.99 -Na ₂ SO ₄ 142.04 $\geq 99.0 \%$ C ₄ H ₈ O 72.11 $\geq 99.0 \%$

Note *

Simple distillation

Distilled from sodium / benzophenone under nitrogen atmosphere

⁴ Refluxed over CaH₂ for 2 h followed by simple distillation

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

2.1.2 Apparatus and instruments

The apparatus and instruments used were listed in Table 3

Table 3 The apparatus and instruments used in this research

Melting point apparatusSunyoGalle KampNuclear Magnetic Resonance SpectrometerBrukerDRX 400	Apparatus and instruments	Company	Model
Mass spectrometer (HRMS)WatersMicromass Q-Tof-2Melting point apparatusSunyoGalle KampNuclear Magnetic Resonance SpectrometerBrukerDRX 400Rotary evaporatorBüchiR-200UV-lamp254Vilber_	High vacuum pump	Edwards	Edwards 18
Melting point apparatusSunyoGalle KampNuclear Magnetic Resonance SpectrometerBrukerDRX 400Rotary evaporatorBüchiR-200UV-lamp254Vilber_	Infrared Spectrometer (FT-IR)	Bruker	Tensor 27
Nuclear Magnetic Resonance SpectrometerBrukerDRX 400Rotary evaporatorBüchiR-200UV-lamp254Vilber_	Mass spectrometer (HRMS)	Waters	Micromass Q-Tof-2 ^{Tr}
Rotary evaporatorBüchiR-200UV-lamp254Vilber_	Melting point apparatus	Sunyo	Galle Kamp
UV-lamp254 Vilber	Nuclear Magnetic Resonance Spectrometer	Bruker	DRX 400
	Rotary evaporator	Büchi	R-200
Lourmat	UV-lamp254		- 8
Weighing balance (4 positions)ToledoAB204-S	Weighing balance (4 positions)		AB204-S

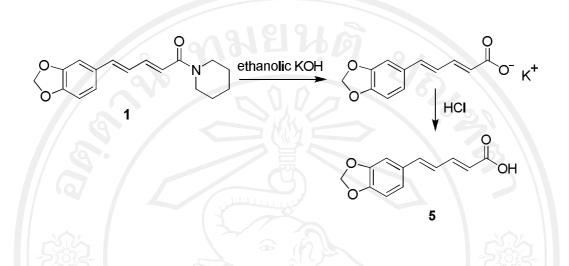
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

2.2 Experimental procedures

2.2.1 Isolation of 5-(3,4-methylenedioxyphenyl)-2E,4E-pentadienoic acid piperidine amide (piperine) (1) from black pepper^{32,33}

Dried fruits of *Piper nigrum* Linn were purchased from the local market in Chiang Mai province. The black pepper dried fruits were collected and air-dried. Then the dried fruits were ground into a powder.

The powder fruits material was extracted with 95 % ethanol and refluxed 24 h, filtered and concentrated by rotary evaporator until obtained a dark brown viscous liquid. Alcoholic potassium hydroxide 10 % was added to precipitate the residue, filtered and the filtrate left for one day to precipitate the crude piperine. The crude piperine was purified by crystallization from dichloromethane: hexane (3:2) to give the pure piperine (1.13 % yield) as yellow crystals from CH_2Cl_2 /hexane, m.p.130.8-132.0 °C.


The structure of piperine was characterized by ¹H NMR and MS spectral data. The conditions for isolation of piperine and the spectroscopic data of piperine were shown in Table 4.

5

Table 4 Data of piperine (1)

Physical properties	NHEHO	
Yellow crystals		
m.p.130.8-13	2.0 °C (CH ₂ Cl ₂ /hexane) (Lit. ³⁴ 131-134 °C)	
R Spectroscopy (KBr-pel	let)	
Frequency (cm ⁻¹)	Type of vibrations	
2930	C-H stretch of CH ₂	
1680	C=O stretch of 3°-amide	
1630	C=C stretch of the conjugated double bonds	
1600	C=C stretch of a benzene ring	
1250	C-N stretch	
1000	C-O stretch	
MR spectroscopy		
	¹ H NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of protons	
1.45-1.74	6H, <i>m</i> , H-3',4',5'	
3.60	4H, <i>br</i> , H-2′,6′	
6.00	2H, <i>s</i> , H-12	
6.51	1H, $d (J = 14.6 \text{ Hz})$, H-2	
6.67-6.80	3H, <i>m</i> , H-5,10, 11	
6.90	1H, $dd (J = 1.5, 8.0 \text{ Hz})$, H-4	
7.00	1H, <i>s</i> , H-7	
7.38-7.41	1H, <i>m</i> , H-3	

ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved 2.2.2 General procedure for preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E -pentadienoic acid (piperic acid) (5) from piperine (1)^{32,33}

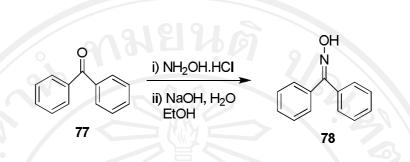
Piperine (2.8536 g, 10 mmol) was refluxed with ethanolic KOH (2 N, 10 ml) for 25 h. Ethanol was removed off by rotary evaporator to obtain the solid potassium salt of piperic acid, then follow by dissolved in hot water 50 ml, acidified with 35 % HCl to give the yellow precipitate and recrystallization with ethanol to obtain piperic acid (5) in 98.98 % yield as yellow needles.

The structure of piperic acid (5) was characterized by ¹H NMR, IR and MS. The reaction conditions for alkaline hydrolysis of piperic acid from piperine and the spectroscopic data of piperic acid were shown in Table 5.

10 11

12

5


 Table 5 Data of piperic acid (5)

Physical properties	Yellow needles
m.p. 217.0-	217.8 °C (EtOH) (Lit. ²⁴ 217.8-218.5 °C)
R Spectroscopy (KBr-pelle	et)
Frequency (cm ⁻¹)	Type of vibrations
3300-2400 (br)	O-H stretch of hydroxyl group
3050, 3100	C-H stretch of benzene ring
2950, 2830	C-H stretch of CH ₂
1690	C=O stretch
1630	C=C stretch of the conjugated double bonds
1600, 1500	C=C stretch of the benzene ring
1050, 1250	C-O stretch
MR spectroscopy	The start of the
1	H NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
5.92	1H, $d (J = 15.1 \text{ Hz})$, H-2
6.05	2H, <i>s</i> , H-12
6.92	1H, $d (J = 8.0 \text{ Hz})$, H-5
6.96	1H, <i>s</i> , H-7
6.97	1H, $d (J = 3.5 \text{ Hz})$, H-11
7.00	1H, $dd (J = 1.5, 8.0 \text{ Hz})$, H-4
7.23	1H, $d (J = 1.5 \text{ Hz})$, H-10
7.25-7.32	1H, <i>m</i> , H-3
12.19	1H, <i>br</i> , OH

ลื่อสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

2.2.3 General procedure for preparation of oxime^{35,36}

2.2.3.1 Preparation of benzophenone oxime (78)

Three conditions were used to study the preparation of benzophenone oxime. A mixture of benzophenone (77), sodium hydroxide and hydroxylamine hydrochloride in EtOH (50 mL) was stirred at reflux for 3-6 h. After cooling, the mixture was neutralized and extracted by CH_2Cl_2 (3x100 mL). The organic layer was dried over Na₂SO₄. The reaction mixture was evaporated under reduced pressure to give the white crude product and then purified by column chromatography (silica gel; ethyl acetate in hexane, 1:9, as eluent) to obtain compound 78 (70.32-99.02 % yield) as white crystals from CH_2Cl_2 /hexane, m.p. 140.8-144.4 °C, 72-100 % conversion from the starting material.

The structure of benzophenone oxime **78** was characterized by ¹H NMR, ¹³C NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 6 and 7.

Entry		Conditions	Time (h)	% yield of 78
	Benzophenon	e (1.0000 g, 5.5 mmol)		
1	NH ₂ OH.HCl	(0.5727 g, 8.2 mmol)	3	70.32 % (0.7611 g)
	NaOH	(0.3283 g, 8.2 mmol)		
	Benzophenon	e (1.0004 g, 5.5 mmol)	\geq $$	3
2	NH ₂ OH.HCl	(1.1445 g, 16.5 mmol)	3	97.65 % (1.0574 g)
	NaOH	(1.3170 g, 32.9 mmol)		
	Benzophenone (1.0000 g, 5.5 mmol)			
3	NH ₂ OH.HCl	(1.1448 g, 16.5 mmol)	6	99.02 % (1.0718 g)
	NaOH	(1.3173 g, 32.9 mmol)		

Table 6 The various reaction conditions used for the preparation of compound 78

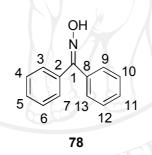


 Table 7 Data of benzophenone oxime (78)

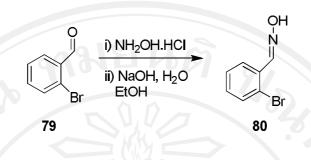

Physical properties	
ovright [©] bv	White crystals
m.p. 140.8-144.4	^o C (CH ₂ Cl ₂ /hexane) (Lit. ³⁷ 139-142 °C)
IR Spectroscopy (Evaporated t	hin film) reserve
Frequency (v, cm^{-1})	Type of vibrations
3430 (br)	O-H stretch of hydroxyl group
1632	C=N stretch
1327	C=C stretch of the benzene ring
1156	C-O stretch

 Table 7 (continued)

Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. mass for C ₁₃ H ₁₁ NO	197.0919 (M) ⁺
Calc. mass for C ₁₃ H ₉ N	$180.7138 (M-H_2O)^+$
Found for C ₁₃ H ₉ N	$180.7152 (M-H_2O)^+$
NMR spectroscopy	
¹ H NMR (400 MHz) in C	CDCl ₃
Chemical shift (δ , ppm)	Type of protons
7.31-7.41	3H, <i>m</i> , H-4,5,6
7.41-7.43	2H, <i>m</i> , H-3,7
7.45-7.50	5H, <i>m</i> , H-9,10,11,12,13
9.10	1H, <i>s</i> , OH
¹³ C NMR (400 MHz) in 0	CDCl ₃
Chemical shift (δ , ppm)	Type of carbons
127.51, 127.84, 128.22, 128.32, 128.87, 129.09, 129.19, 129.21, 129.49, 128.81	CH-3,4,5,6,7,9,10,11,12,13
132.64	Cq-2
136.17	C_q-8
157.93	C=N-1

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

2.2.3.2 Preparation of 2-bromobenzaldehyde oxime (80)

A mixture of 2-bromobenzaldehyde (1.5850 g, 8.6 mmol), sodium hydroxide (1.9869 g, 49.7 mmol) and hydroxylamine hydrochloride (1.8048 g, 26.0 mmol) in EtOH (50 mL) was stirred at reflux for 3 h. After cooling, the mixture was neutralized and extracted by CH_2Cl_2 (3x100 mL). The organic layer was dried over Na₂SO₄. The reaction mixture was evaporated under vacuum pressure to give the light yellow crude product and then purified by column chromatography (silica gel; ethyl acetate in hexane, 1:9, as eluent) to obtain compound **80** (1.4370 g, 83.78 % yield) as white crystals from CH_2Cl_2 /hexane, m.p. 88.8-91.1 °C, 96 % conversion from the starting material.

The structure of 2-bromobenzaldehyde oxime **80** was characterized by ¹H NMR, ¹³C NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 8.

iang

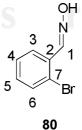
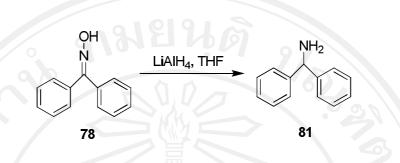
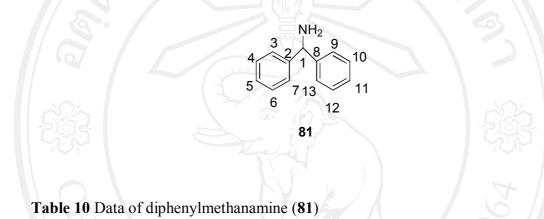



 Table 8 Data of 2-bromobenzaldehyde oxime (80)

Physical properties	
	nite crystals
m.p. 88.8-91.1 °C (CH	I ₂ Cl ₂ /hexane) (Lit. ³⁸ 88-90 °C)
IR Spectroscopy (Evaporated thin film	n)
Frequency (v, cm^{-1})	Type of vibrations
3396 (br)	O-H stretch of hydroxyl group
1642	C=N stretch
748,971	C-Br stretch
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. mass for C ₇ H ₆ BrNO	198.9633 (M) ⁺
Calc. mass for C ₇ H ₇ BrNO	199.9711 (M+H) ⁺
Found for C ₇ H ₇ BrNO	199.9721 (M+H) ⁺
NMR spectroscopy	W / A /
¹ H NMR (4	00 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
7.20-7.25	1H, <i>m</i> , H-5
7.32	1H, $t (J = 7.42 \text{ Hz})$, H-4
7.57	1H, <i>dd</i> (<i>J</i> = 7.98, 1.19 Hz), H-6
7.79	1H, $dd (J = 7.79 \text{ Hz})$, H-3
8.58	1H, <i>s</i> , H-1
10.36	1H, <i>s</i> , OH
¹³ C NMR (4	400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of carbons
123.84	C _q -7
127.46	CH-3
127.60	iang Mai ^{CH-4} versity
	tang mar _{CH-5} iversit
131.36	CH-6
133.17 I S	1
149.82	CH-1

2.2.4 General procedure for preparation of amines³⁵


2.2.4.1 Preparation of diphenylmethanamine (81)

Two conditions were used to study the preparation of diphenylmethanamine. Benzophenone oxime (**78**), in anhydrous THF (10 mL), was added dropwise to LiAlH₄ in anhydrous THF (10 mL). The mixture was stirred under reflux for 3-6 h. After cooling, the mixture was hydrolyzed and extracted by CH_2Cl_2 (3x100 mL). The organic layer was dried over Na₂SO₄. The reaction mixture was evaporated under vacuum pressure to give the brown liquid product and then purified by preparative thin layer column chromatography (silica gel; ethyl acetate in hexane, 2:8, as eluent) to obtain compound **81** (29.33-34.47 % yield) as colorless liquid, 46-52 % conversion from the starting material.

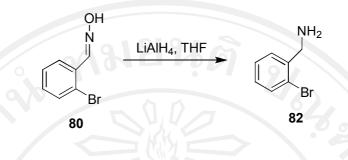
The structure of diphenylmethanamine **81** was characterized by ¹H NMR, ¹³C NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 9 and 10.

Entry	Conditions	Time (h)	% yield of 81
1	Benzophenone oxime (0.8001 g, 4.1 mmol) LiAlH ₄ (0.6177 g, 16.3 mmol)	3	29.33 % (0.2180 g)
2	Benzophenone oxime (0.8000 g, 4.1 mmol) LiAlH ₄ (0.6172 g, 16.3 mmol)	6	34.47 % (0.2562 g)

Physical properties		
	Colorless liquid	
IR Spectroscopy (Evaporated th	hin film)	
Frequency (v, cm^{-1})	Type of vibrations	
3373,3300	N-H stretch of primary amine group	
3026	C-H stretch of CH	
1600, 1492	C=C stretch of the benzene ring	
1027	C-N stretch	

Copyright[©] by Chiang Mai University All rights reserved

35


Table 10 (continued)

Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. mass for C ₁₃ H ₁₃ N	183.1048 (M) ⁺
Calc. mass for C ₁₃ H ₁₃ NNa	206.0946 (M+Na) ⁺
Found for C ₁₃ H ₁₃ NNa	$167.0861 (M-NH_3)^+$
NMR spectroscopy	
¹ H N	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
5.25	1H, s, H-1
7.25-7.28	2H, <i>m</i> , H-5,11
7.32-7.37	4H, <i>m</i> , H-4,6,10,12
7.41-7.47	4H, <i>m</i> , H-3,7,9,13
1.86	2H, s, NH ₂
¹³ C N	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of carbons
59.67	CH-1
126.83	CH-5,11
126.88	CH-4,6,10,12
128.40	CH-3,7,9,13
145.55	C _q -2,8

CAL UNIN P

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

2.2.4.2 Preparation of 2-bromobenzylamine (82)

2-bromobenzaldehyde oxime (0.8000 g, 4.0 mmol) in anhydrous THF (10 mL) was added dropwise to LiAlH₄ (0.6060 g, 16.0 mmol) in anhydrous THF (10 mL). The mixture was stirred under reflux for 6 h. After cooling, the mixture was hydrolyzed and extracted by CH_2Cl_2 (3x100 mL). The organic layer was dried over Na₂SO₄. The reaction mixture was evaporated under vacuum pressure to give the grey liquid product and then purified by preparative thin layer column chromatography (silica gel; ethyl acetate in hexane, 2:8, as eluent) to obtain compound **82** (0.2362 g, 31.74 % yield) as slightly yellow liquid, 48 % conversion from the starting material.

The structure of 2-bromobenzylamine **82** was characterized by ¹H NMR, NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 11.

NH₂

82

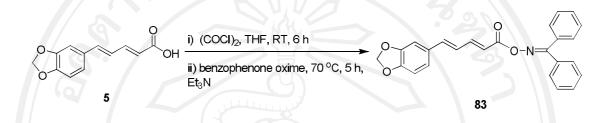
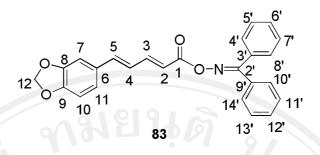

1

Table 11 Data of 2-bromobenzylamine (82)

Physical properties	
Slight	tly yellow liquid
IR Spectroscopy (Evaporated thin fil	m)
Frequency (v,cm ⁻¹)	Type of vibrations
33,623,400	N-H stretch of primary amine group
3030	C-H stretch of CH
1569	C=C stretch of the benzene ring
1324	C-N stretch
698,738	C-Br stretch
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. mass for C ₇ H ₈ BrN	184.9840 (M) ⁺
Calc. mass for C ₇ H ₆ BrNNa	207.9581 (M+Na) ⁺
Found for C ₇ H ₆ BrN	205.9592 (M+Na-H ₂) ⁺
NMR spectroscopy	
¹ H NMR	(400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
5.34	2H, s, H-1
7.25	2H, <i>m</i> , H-3,5
7.37	1H, <i>m</i> , H-4
7.78	1H, <i>m</i> , H-6
2.03	2H, s, NH ₂

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved 2.2.5 General procedure for preparation of amides and oxime-ester derivatives of piperine^{32,33}


2.2.5.1 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-pentadienoic acid benzophenone oxime ester (83)

To a solution of piperic acid (0.5001 g, 2.3 mmol) in dried THF (4 ml) at room temperature under nitrogen atmosphere was added oxalyl chloride (1 ml, 11.5 mmol) and stirred at room temperature for 6 h. The reaction mixture was evaporated to give the crude piperic acid chloride as an orange residue. To the crude piperic acid chloride in dried THF (4 ml), was added the solution of benzophenone oxime (0.4523 g, 2.3 mmol) in dried THF (3 ml) followed by triethylamine (0.48 ml, 3.4 mmol) and stirred at 70 °C for 5 h. The reaction mixture was evaporated to give the yellow crude product and then purified by preparative thin layer column chromatography (silica gel; ethyl acetate in hexane, 1:9, as eluent) to obtain compound **83** (0.2562 g, 28.13 % yield) as yellow crystals from CH₂Cl₂/hexane, m.p. 207.3-208.1 °C, 75 % conversion from the starting material.

The structure of compound **83** was characterized by ¹H NMR, ¹³C NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 12.

39

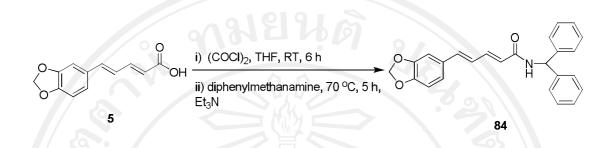
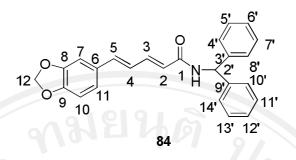


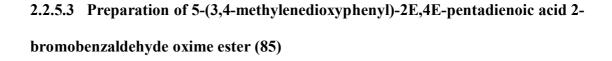
Table 12 Data of compound 83	
Physical properties	
	Yellow crystals
m.p. 207	.3-208.1 °C (CH ₂ Cl ₂ /hexane)
IR Spectroscopy (Evaporated th	in film)
Frequency (v, cm^{-1})	Type of vibrations
3050, 3100	C-H stretch of benzene ring
2950, 2830	C-H stretch of CH ₂
1690	C=O stretch
1600, 1500	C=C stretch of the benzene ring
1325	C-N stretch
1050, 1250	C-O stretch
Mass spectrometry (ESI-MS)	R?'
Molecular weight	m/z
Calc. mass for C ₂₅ H ₁₉ NO ₄	397.1314 (M) ⁺
Calc. mass for C ₂₅ H ₁₉ NO ₄ Na	420.1212 (M+Na) ⁺
Found for C ₂₅ H ₁₉ NO ₄ Na	420.1210 (M+Na) ⁺

Table 12 (continued)


¹ H NN	AR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
5.89	1H, $d (J = 15.26 \text{ Hz})$, H-2
5.97	2H, s, H-12
6.62-6.70	1H, <i>m</i> , H-4
6.73-6.78	2H, <i>m</i> , H-5,10
6.89	1H, <i>dd</i> (<i>J</i> = 8.06, 1.58 Hz), H-11
6.95	1H, <i>d</i> (<i>J</i> = 1.49 Hz), H-7
7.32-7.38, 7.46-7.50, 7.59-7.64	10H, <i>m</i> , H-4′,5′,6′,7′,8′,10′,11′,12′,13′,14′
7.40-7.46	1H, <i>m</i> , H-3
13 C NM	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of carbons
101.35	CH ₂ -12
105.80	CH-7
108.48	CH-10
117.67	CH-2
123.11	CH-11
124.36	CH-4
128.12	CH-5',7'
128.29	CH-11',13'
128.87	CH-4′,8′
129.02	CH-10′,14′
129.49	CH-6'
130.31	Cq-6
130.76	CH-12'
132.72	C _q -3′
134.82	
140.94	niang Ma ^{Cq-9'} niversit
146.15	CH-3
148.24,148.67	$S \cap e \cap C_{q}-8,9 \cap V e$
164.60	C _q -2′
164.68	C=O-1

2.2.5.2 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-pentadienoic acid diphenylmethyl amide (84)

To a solution of piperic acid (0.5001 g, 2.3 mmol) in dried THF (4 ml) at room temperature under nitrogen atmosphere was added oxalyl chloride (1 ml, 11.5 mmol) and stirred at room temperature for 6 h. The reaction mixture was evaporated to give the crude piperic acid chloride as an orange residue. To the crude piperic acid chloride in dried THF (4 ml), was added the solution of diphenylmethanamine (0.4192 g, 2.3 mmol) in dried THF (3 ml) followed by triethylamine (0.48 ml, 3.4 mmol) and stirred at 70 °C for 5 h. The reaction mixture was evaporated to give the yellow crude product and then purified by preparative thin layer column chromatography (silica gel; ethyl acetate in hexane, 2:1, as eluent) to obtain compound **84** (0.3809 g, 43.35 % yield) as light yellow crystals from CH₂Cl₂/hexane, m.p. 156.5-157.1 °C, 83 % conversion from the starting material.


The structure of compound **84** was characterized by ¹H NMR, ¹³C NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 13.

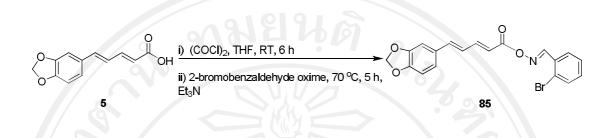
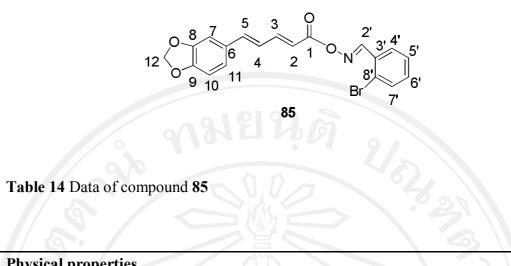


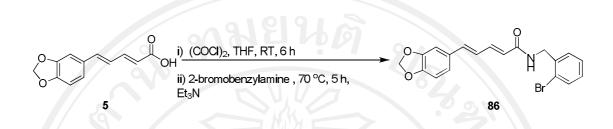
Table 13 Data of compound 84	
Physical properties	
	ght yellow crystals
m.p. 156.5	-157.1 °C (CH ₂ Cl ₂ /hexane)
IR Spectroscopy (Evaporated thin	film)
Frequency (v, cm^{-1})	Type of vibrations
3283	N-H stretch of secondary amine group
2936	C-H stretch of benzene ring
2950, 2830	C-H stretch of CH ₂
1675	C=O stretch of amide group
1600, 1490	C=C stretch of the benzene ring
1396	C-N stretch
1034, 1255	C-O stretch
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. mass for C ₂₅ H ₂₁ NO ₃	383.1521 (M) ⁺
Calc. mass for C ₂₅ H ₂₁ NO ₃ Na	406.1419 (M+Na) ⁺
Found for C ₂₅ H ₂₂ NO ₃	384.1599 (M+H) ⁺

Table 13 (continued)


¹ H NM	AR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
5.32	1H, <i>s</i> , NH
5.99	1H, $d (J = 2.00 \text{ Hz})$, H-2
6.00	2H, s, H-12
6.02	1H, <i>s</i> , H-2′
6.65-6.73	1H, <i>m</i> , H-4
6.79-6.86	2H, <i>m</i> , H-5,10
7.00	1H, $d (J = 1.20 \text{ Hz})$, H-7
6.37-6.39, 7.26-7.31, 7.34-7.40	10H, <i>m</i> , H-4',5',6',7',8',10',11',12',13',14'
7.42	1H, <i>dd</i> (<i>J</i> = 14.81, 10.81 Hz), H-3
¹³ C NN	AR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of carbons
56.60	C _q -2′
100.86	CH ₂ -12
106.32	CH-7
108.19	CH-10
122.02	CH-2
122.20	CH-11
123.99	CH-4
126.98	CH-5′,6′,7′,11′,12′,13′
128.18	CH-4′,8′,10′,14′
130.28	C _q -6
138.85	CH-5
141.00	CH-3 CH-3
144.45	C _q -3',9'
147.72,147.98	hiang C _q -8,9 C=O-1
	C=0-1
164.66	

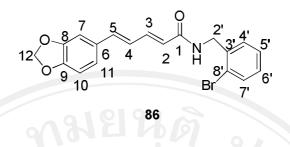
To a solution of piperic acid (0.5002 g, 2.3 mmol) in dried THF (4 ml) at room temperature under nitrogen atmosphere was added oxalyl chloride (1 ml, 11.5 mmol) and stirred at room temperature for 6 h. The reaction mixture was evaporated to give the crude piperic acid chloride as an orange residue. To the crude piperic acid chloride in dried THF (4 ml), was added the solution of 2-bromobenzaldehyde oxime (0.4587 g, 2.3 mmol) in dried THF (3 ml) followed by triethylamine (0.48 ml, 3.4 mmol) and stirred at 70 °C for 5 h. The reaction mixture was evaporated to give the yellow crude product and then purified by preparative thin layer column chromatography (silica gel; ethyl acetate in hexane, 1:9, as eluent) to obtain compound **85** (0.2684 g, 29.27 % yield) as yellow crystals from CH₂Cl₂/hexane, m.p. 175.8-176.4 °C, 76 % conversion from the starting material.

The structure of compound **85** was characterized by ¹H NMR, ¹³C NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 14.



Physical properties	
	Yellow crystals
m.p. 175.8	-176.4 °C (CH ₂ Cl ₂ /hexane)
IR Spectroscopy (Evaporated thin	film)
Frequency (v,cm ⁻¹)	Type of vibrations
3050, 3100	C-H stretch of benzene ring
2950, 2830	C-H stretch of CH ₂
1690	C=O stretch
1630	C=C stretch of the conjugated double bonds
1600, 1500	C=C stretch of the benzene ring
1050, 1250	C-O stretch
698,738	C-Br stretch
Mass spectrometry (ESI-MS)	~25*//
Molecular weight	m/z
Calc. mass for C ₁₉ H ₁₄ BrNO ₄	399.0106 (M) ⁺
Calc. mass for C ₁₉ H ₁₄ NO ₄	321.1001 (M-Br) ⁺
Found for C ₁₉ H ₁₄ NO ₄	321.1004 (M-Br) ⁺

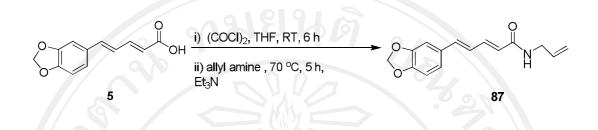
Table 14 (continued)


¹ H NN	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
6.00	2H, s, H-12
6.08	1H, $d (J = 15.21 \text{ Hz})$, H-2
6.76-6.88	3H, <i>m</i> , H-4,5,10
6.90-6.98	1H, <i>m</i> , H-11
7.03	1H, $d (J = 1.60 \text{ Hz})$, H-7
7.32-7.37	3H, <i>m</i> , H-5',6',7'
7.61-7.63	1H, <i>m</i> , H-3
8.09-8.15	1H, m, H-4′
8.84	1H, s, H-2′
¹³ C N	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of carbons
101.2	CH ₂ -12
106.7	CH-7
108.4	CH-10
117.2	CH-2
121.6	CH-8′
122.5	CH-11
125.2	CH-4
127.1	CH-4'
127.8	CH-5′
130.1	CH-6′
130.5	C _q -6
132.8	Ingla SICH-7 SIA
135.3	C _q -3'
138.4	CH-5
147.2	Chiang Ma _{CH-3} niversity
148.0, 148.7	C _q -8, 9
153.8	S $r e CH-2' r V e c$
171.5	C=O-1

2.2.5.4 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-pentadienoic acid 2bromobenzyl amide (86)

To a solution of piperic acid (0.4999 g, 2.3 mmol) in dried THF (4 ml) at room temperature under nitrogen atmosphere was added oxalyl chloride (1 ml, 11.5 mmol) and stirred at room temperature for 6 h. The reaction mixture was evaporated to give the crude piperic acid chloride as an orange residue. To the crude piperic acid chloride in dried THF (4 ml), was added the solution of 2-bromobenzylamine (0.4263 g, 2.3 mmol) in dried THF (3 ml) followed by triethylamine (0.48 ml, 3.4 mol) and stirred at 70 °C for 5 h. The reaction mixture was evaporated to give the yellow crude product and then purified by preparative thin layer column chromatography (silica gel; ethyl acetate in hexane, 2:1, as eluent) to obtain compound **86** (0.3657 g, 41.32 % yield) as yellow crystals from CH₂Cl₂/hexane, m.p. 261.3-263.1 °C, 81 % conversion from the starting material.

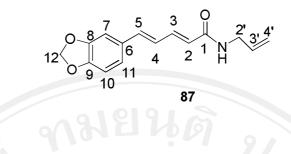
The structure of compound **86** was characterized by ¹H NMR, ¹³C NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 15.



	86
Table 15 Data of compound 86	
Physical properties	$G \qquad \qquad$
	Yellow crystals
	263.1 °C (CH ₂ Cl ₂ /hexane)
IR Spectroscopy (Evaporated thin f	ilm)
Frequency (v, cm^{-1})	Type of vibrations
3263	N-H stretch of secondary amine group
3050, 3100	C-H stretch of benzene ring
1655	C=O stretch of amide group
1600, 1500	C=C stretch of the benzene ring
1050, 1250	C-O stretch
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. mass for C ₁₉ H ₁₆ BrNO ₃	385.0314 (M) ⁺
Calc. mass for C ₁₉ H ₁₆ BrNO ₃ Na	408.0211 (M+Na) ⁺
Found for C ₁₉ H ₁₇ BrNO ₃	386.0392 (M+H) ⁺

Table 15 (continued)

¹ H NM	R (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
3.74	1H, <i>br</i> , NH
4.53	2H, $d (J = 5.60 \text{ Hz})$, H-2'
5.93	1H, $d (J = 14.81 \text{ Hz})$, H-2
5.97	2H, s, H-12
6.63-6.67	1H, <i>m</i> , H-4
6.76-6.79	2H, <i>m</i> , H-5,10
6.88	1H, $d (J = 8.40 \text{ Hz})$, H-11
6.97	1H, s, H-7
7.27-7.34	3H, <i>m</i> , H-4',5',6'
7.35-7.40	1H, <i>m</i> , H-3
7.78	1H, <i>d</i> (<i>J</i> = 6.09 Hz), H-7'
¹³ C NM	IR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of carbons
43.78	CH ₂ -2′
101.32	CH ₂ -12
105.75	CH-7
108.50	CH-10
122.67	CH-2
122.78	C_q-8'
124.61	CH-11
127.53	CH-4
127.91	CIO O CI CH-5' CI O LA
128.73	CH-6' ()
130.07	CH-4′
130.83	hang Marc _q -6 niversit
132.43	CH-7′
138.34	S resch-5 rve
139.13	CH-3
141.52	C _q -3´
148.23, 148.29	C _q -8, 9
166.06	C=O-1


2.2.5.5 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-pentadienoic acid allyl amide (87)

To a solution of piperic acid (0.5002 g, 2.3 mmol) in dried THF (4 ml) at room temperature under nitrogen atmosphere was added oxalyl chloride (1 ml, 11.5 mmol) and stirred at room temperature for 6 h. The reaction mixture was evaporated to give the crude piperic acid chloride as an orange residue. To the crude piperic acid chloride in dried THF (4 ml), was added the solution of allyl amine (0.1308 g, 2.3 mmol) in dried THF (3 ml) followed by triethylamine (0.48 ml, 3.4 mmol) and stirred at 70 °C for 5 h. The reaction mixture was evaporated to give the yellow crude product and then purified by preparative thin layer column chromatography (silica gel; ethyl acetate in hexane, 2:1, as eluent) to obtain compound **87** (0.3473 g, 58.91 % yield) as slightly yellow crystals from CH₂Cl₂/hexane, m.p. 181.8-182.5 °C, 86 % conversion from the starting material.

The structure of compound **87** was characterized by ¹H NMR, ¹³C NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 16.

51

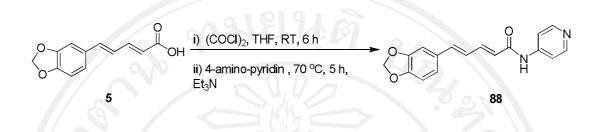
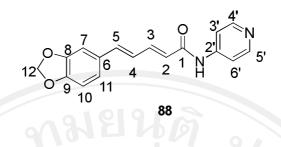


Table 16 Data of compound 87	
Physical properties	
	ghtly yellow crystals 8-182.5 °C (CH ₂ Cl ₂ /hexane)
IR Spectroscopy (Evaporated thin	film)
Frequency (v,cm ⁻¹)	Type of vibrations
3259	N-H stretch of secondary amine group
3067, 2907	C-H stretch of benzene ring
2950, 2830	C-H stretch of CH ₂
1645	C=O stretch of amide group
1038, 1253	C-O stretch
Mass spectrometry (ESI-MS)	LESSEN A
Molecular weight	m/z
Calc. mass for C ₁₅ H ₁₅ NO ₃	257.1130 (M) ⁺
Calc. mass for C ₁₅ H ₁₅ NO ₃ Na	280.0950 (M+Na) ⁺
Found for C ₁₅ H ₁₅ NO ₃ Na	280.0956 (M+Na) ⁺

Table 16 (continued)


1 H N	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
3.98	2H, <i>t</i> (<i>J</i> = 5.76, 1.38 Hz), H-2′
5.14	1H, $dd (J = 8.87, 1.25 \text{ Hz}), \text{H-4'}$
5.21	1H, $dd (J = 17.15, 1.44 \text{ Hz}), \text{H-4}'$
5.82-5.92	2H, <i>m</i> , NH, H-3'
5.95	3H, s, d (J = 10.00 Hz), H-12,2
6.63-6.71	1H, <i>m</i> , H-4
6.74-6.77	2H, <i>m</i> , H-5,10
6.86	1H, $dd (J = 8.05, 1.49 \text{ Hz})$, H-11
6.95	1H, $d (J = 1.49 \text{ Hz})$, H-7
7.36	1H, $dd (J = 15.00, 10.00 \text{ Hz})$, H-3
¹³ C N	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of carbons
42.03	CH ₂ -2′
101.26	CH ₂ -12
105.69	CH-7
108.44	CH-10
116.41	CH-4′
122.57	CH-2
122.87	CH-11
124.58	CH-4
130.77	C _q -6
134.21	CH-3'
138.97	CH-5
141.25	CH-3
148.15, 148.20	$C_q-8, 9$
166.01	C=O-1

2.2.5.6 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-pentadienoic acid 4amino-pyridin amide (88)

To a solution of piperic acid (0.5000 g, 2.3 mmol) in dried THF (4 ml) at room temperature under nitrogen atmosphere was added oxalyl chloride (1 ml, 11.5 mmol) and stirred at room temperature for 6 h. The reaction mixture was evaporated to give the crude piperic acid chloride as an orange residue. To the crude piperic acid chloride in dried THF (4 ml), was added the solution of 4-amino-pyridin (0.1850 g, 2.3 mmol) in dried THF (3 ml) followed by triethylamine (0.48 ml, 3.4 mmol) and stirred at 70 °C for 5 h. The reaction mixture was evaporated to give the yellow crude product and then purified by preparative thin layer column chromatography (silica gel; ethyl acetate in hexane, 2:1, as eluent) to obtain compound **88** (0.4803 g, 53.16 % yield) as yellow crystals from CH₂Cl₂/hexane, m.p. 171.5-172.4 °C, 84 % conversion from the starting material.

The structure of compound **88** was characterized by ¹H NMR, ¹³C NMR, IR and MS and the reaction conditions for the preparation and the spectroscopic data were shown Tables 17.

	88			
Table 17 Data of compound 88				
Physical properties	g)) l			
	Yellow crystals			
IR Spectroscopy (Evaporated thin :	172.4 °C (CH ₂ Cl ₂ /hexane) film)			
Frequency (v,cm ⁻¹)	Type of vibrations			
3440	N-H stretch of secondary amine group			
1692	C=O stretch of amide group			
1599, 1509	C=C stretch of the benzene ring			
1372	C-N stretch			
1039, 1255	C-O stretch			
Mass spectrometry (ESI-MS)				
Molecular weight	m/z			
Calc. mass for C ₁₆ H ₁₉ NO ₃	294.1004 (M) ⁺			
Calc. mass for C ₁₆ H ₁₉ NO ₃ Na	317.0902 (M+Na) ⁺			
Found for C ₁₆ H ₁₉ NO ₃ Na	$317.0907 (M+Na)^+$			

Table 17 (continued)

¹ H NMR	. (400 MHz) in DMSO-d6	
Chemical shift (δ , ppm)	Type of protons	
6.06	1H, s, H-12	
6.28	1H, $d (J = 14.92 \text{ Hz})$, H-2	
6.90-6.95	1H, <i>m</i> , H-4	
6.97-7.16	3H, <i>m</i> , H-5,10,11	
7.31	1H, $d (J = 1.47 \text{ Hz})$, H-7	
7.35-7.41	1H, <i>m</i> , H-3	
7.61-7.69	2H, <i>m</i> , H-3',6'	
8.42	2H, $d (J = 5.27 \text{ Hz})$, H-4',5'	
10.48	1H, s, NH	
¹³ C NMF	R (400 MHz) in DMSo-d6	
Chemical shift (δ , ppm)	Type of carbons	
101.38	CH ₂ -12	
105.81	CH-7	
108.51	CH-6′	
108.96	CH-3	
113.24	CH-10	
123.22	CH-2	
123.32	CH-11	
124.90	CH-4	
130.64	C _q -6	
139.98	CH-5	
142.51	CH-3	
145.93	Cq-2'	
148.02, 148.11	C _q -8, 9	
150.34	Tiang MacH-4',5' Nersit	
164.88	C=O-1	

2.2.6 Bioactivities testing of the piperine derivatives

2.2.6.1 Antibacterial activity^{33,39}

The antibacterial activities of the extracts were determined using the paper disc method. The bacteria used were: *Escherichia coli* ATCC25922, *Staphylococcus aureus* ATCC25923 (Gram positive bacteria), *Pseudomonas aeruginosa* ATCC27553 (Gram negative bacteria) and *Salmonella typhimurium* ATCC13311.

In brief, a loop full of the strain was inoculated in 30 ml of nutrient broth in a conical flask and incubated on a rotary shaker for 24 h to activate the strain. Mueller Hinton Agar was prepared for the study. The media and the test bacterial cultures were poured into Petri dishes (Hi-Media). The test strain (0.2 ml) was inoculated into the media (inoculums size 108 cells/ml) when the temperature reached 40-42 °C. Care was taken to ensure proper homogenization. The experiment was performed under strict aseptic conditions.

The compounds 1, 5, 83, 84, 85, 86, 87 and 88 were weighed and dissolved in dimethylsulfoxide (DMSO) to make a solution of concentration 10, 50, 100 mg/ml. Sterilized filter discs were dipped in these solutions and subsequently dried to remove DMSO. Mueller–Hinton agar was prepared and allowed to solidify. One of these discs was kept free from antibiotic and served as growth control. Five different bacteria were selected and 1 ml of each bacterial culture broth were added in the Mueller–Hinton plates and spread with the help of sterile spreader. The filter paper discs soaked in above-mentioned dilutions of compounds number 1, 5, 83, 84, 85, 86, 87 and 88 were placed aseptically over the inoculated plates using sterile forceps. 0.75 mg/ml of Gentamicin and 20 μ L of 100% DMSO were used as a positive control.

The plates were incubated at 37 °C for 24 h, in upright position. The zone of inhibition was measured.

The result of antibacterial activity of the compounds 1, 5, 83, 84, 85, 86, 87 and 88 were shown in Table 18.

Table 18 The antibacterial activity of the compounds 1, 5, 83, 84, 85, 86, 87 and 88

Compound	Conc.	Size of zone inhibition (cm)				
Compound (ppm)	E.coli	S.aureus	P.aeroginosa	S.typhimurium		
30h	10	<u> </u>		-	302	
	50			-		
	100			0.7	708-	
	10	-	\	-	-	
5	50	- [-)+	/ - /	7-	
	100	-		- /		
	10	-				
83	50	-	1-1-1		-	
	100	0.8	1226	2 -	y // -	
	10		_	0.8	0.8	
84	50	-	-	0.9	0.8	
	100	0.9	IN-IV	1.0	0.8	
	10	-			-	
85	50	-	-	-	-	
	100	-	-		9	
ane	10	GY	nci-a	ACHX	0.9	
86	50	1.0		0.7	1.0	
• • • •	100	1.0	-	0.8	1.1	
yright		y Cr	nang	MarU	niversit	

Table 18 (continued)

Note

Inactive

Compound	Conc.	Size of zone inhibition (cm)			
	(ppm)	E.coli	S.aureus	P.aeroginosa	S.typhimurium
	10	0.8		9-7	-
87	50	1.0	-	0.6	-
	100	1.0	177	0.7	-
	10	0.6		0.6	311-
88	50	0.6		0.6	-
	100	1.0		0.6	0.8
DMSO	-		9)-		-
Gentamycin		2.3	3.2	1.8	2.4

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

2.2.6.2 Antifungal activity³²

Antifungal activity was measured by paper disc method. The fungal used were *Candida albicans* and *Candida krusei* (yeast).

A loop full of the strain was inoculated in 30 ml of nutrient broth in a conical flask and incubated on a rotary shaker for 24 h to activate the strain. The each fungal were incubated in yeast-maltose agar broth for 20 hours at 37 °C at the standing condition. The media and the test fungal cultures were poured into Petri dishes (Hi-Media). The test strain (0.2 ml) was inoculated into the media (inoculums size 108 cells/ml) when the temperature reached 40-42 °C. Care was taken to ensure proper homogenization. The experiment was performed under strict aseptic conditions.

The compounds **1**, **5**, **83**, **84**, **85**, **86**, **87** and **88** were weighed and dissolved in dimethylsulfoxide (DMSO) to make a solution of concentration 10, 50, 100 mg/ml. Sterilized filter discs were dipped in these solutions and subsequently dried to remove DMSO. Yeast-maltose agar was prepared and allowed to solidify. One of these discs was kept free from antibiotic and served as growth control. Two different funguses were selected and 1 ml of each funguses culture broth were added in a plates and spread with the help of sterile spreader. The filter paper discs soaked in above-mentioned dilutions of compounds number 1, 5, 83, 84, 85, 86, 87 and **88** were placed aseptically over the inoculated plates using sterile forceps. 0.75 mg/ml of Gentamicin and 20 μ L of 100% DMSO were used as a positive control. The plates were incubated at 37 °C for 24 h, in upright position. The zone of inhibition was measured.

The result of antifungal of the compounds **1**, **5**, **83**, **84**, **85**, **86**, **87** and **88** were shown in Table 19.

	Cons (mater)	Size of zone inhibition (cm)		
Compound	Conc. (mg/ml)	C.albicans	C.kruse	
	9 0 10 0	2 0-	-	
1	50		-	
	100	-6),	-	
	10	- 00	- 10	
5	50		-	
	100	-	- 3	
	10			
83	50		-	
	100	-	-	
224	10	-	-226-	
84	50	1.0	7295-11	
201-	100	1.1	70F-	
	10	-	-	
85	50			
	100	-		
	10	1.0		
86	50	1.0	- //	
	100	1.0		
	10		-	
87	50	0.7	-	
	100	0.8	-	
	10	-	-	
88	50	1.2	-	
e	100	1.3	0	
DMSO	kačnela	SCITX	19-14	
			JULI	

Table 19 The antifungal activity of the compounds 1, 5, 83, 84, 85, 86, 87 and 88

2.2.6.3 Antioxidant activity⁴⁰

The compounds **1**, **5**, **83**, **84**, **85**, **86**, **87** and **88** were subjected to thin layer chromatography study. The plates were sprayed by 0.2 mM DPPH in methanol solution for 5 seconds and images were observed under visible light at exactly 2 min after spraying. The area of bright yellow bands against the purple background then determined radical scavenging activity

The result of antioxidant of the compounds 1, 5, 83, 84, 85, 86, 87 and 88 were shown in Table 20.

Table 20DPPH radical scavenging activities of compounds 1, 5, 83, 84, 85, 86, 87and 88

Compounds	Color bands	Activity
	purple	Inactive
5	purple	Inactive
83	purple	Inactive
84	purple	Inactive
85	purple	Inactive
86	purple	Inactive
87	purple	Inactive
	purple	Inactive

Copyright[©] by Chiang Mai University All rights reserved