TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (in English)	iv
ABSTRACT (in Thai)	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SCHEMES	xv
ABBREVITIONS AND SYNBOLS	xvii
CHAPTER I INTRODUCTION	
1.1 Pepper	1
1.2 Piperine	3
1.3 Literature review	5
1.4 The research objectives	21
CHAPTER II EXPERIMENTAL	
2.1 Chemicals, apparatus and instruments	SI 22
2.1.1 Chemicals	e 22
2.1.2 Apparatus and instruments	24
2.2 Experimental procedures	25

viii

TABLE OF CONTENTS (CONTINUED)

Page

2.2.1 Isolation of 5-(3,4-methylenedioxyphenyl)-2E,4E-pentadienoic	
acid piperidine amide (piperine) (1) from black pepper	25
2.2.2 General procedure for preparation of 5-(3,4-methylenedioxy	
phenyl)-2E,4E -pentadienoic acid (piperic acid) (5) from	
piperine (1)	27
2.2.3 General procedure for preparation of oxime	
2.2.3.1 Preparation of benzophenone oxime (78)	29
2.2.3.2 Preparation of 2-bromobenzaldehyde oxime (80)	32
2.2.4 General procedure for preparation of amines	
2.2.4.1 Preparation of diphenylmethanamine (81)	34
2.2.4.2 Preparation of 2-bromobenzylamine (82)	37
2.2.5 General procedure for preparation of amides and oxime-ester	
derivatives of piperine	
2.2.5.1 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-	
pentadienoic acid benzophenone oxime ester (83)	39
2.2.5.2 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-	
pentadienoic acid diphenylmethyl amide (84)	42
2.2.5.3 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-	
pentadienoic acid 2-bromobenzaldehyde oxime ester (85)	45
2.2.5.4 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-	
pentadienoic acid 2-bromobenzyl amide (86)	48

TABLE OF CONTENTS (CONTINUED)

2.2.5.5 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-	
pentadienoic acid allyl amide (87)	51
2.2.5.6 Preparation of 5-(3,4-methylenedioxyphenyl)-2E,4E-	
pentadienoic acid 4-amino-pyridin amide (88)	54
2.2.6 Bioactivities testing of the piperine derivatives	
2.2.6.1 Antibacterial activity	57
2.2.6.2 Antifungal activity	60
2.2.6.3 Antioxidant activity	62
CHAPTER III RESULTS AND DISCUSSION	
3.1 Isolation of piperine (1) from black pepper	63
3.2 Preparation of piperic acid (5) from piperine (1)	65
3.3 Standard preparation of oxime	67
3.4 Standard preparation of amine	71
3.5 Preparation of piperic acid chloride (33)	74
3.6 Standard preparation of oxime-ester and amide derivatives of piperine	
(compounds 83, 84, 85, 86, 87 and 88)	76
3.7 Biological activities	85
CHAPTER IV CONCLUSIONS	87
REFERENCES	89
APPENDIX	94

TABLE OF CONTENTS (CONTINUED)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Tab	le	Page
1	Structure of piperine analogues 11-31	7
2	The chemicals used in this research	22
3	The apparatus and instruments used in this research	24
4	Data of piperine (1)	26
5	Data of piperic acid (5)	28
6	The various reaction conditions used for the preparation of compound 78	30
7	Data of benzophenone oxime (78)	30
8	Data of 2-bromobenzaldehyde oxime (80)	33
9	The various reaction conditions used for the preparation of compound 81	35
10	Data of diphenylmethanamine (81)	35
11	Data of 2-bromobenzylamine (82)	38
12	Data of compound 83	40
13	Data of compound 84	43
14	Data of compound 85	46
15	Data of compound 86	49
16	Data of compound 87	52
17	Data of compound 88	55
18	The antibacterial activity of the compounds 1, 5, 83, 84, 85, 86, 87 and 88	58
19	The antifungal activity of the compounds 1 , 5 , 83 , 84 , 85 , 86 , 87 and 88	61
20	DPPH radical scavenging activities of compounds 1, 5, 83, 84, 85, 86,	
	87 and 88	62

LIST OF TABLES (CONTINUED)

Tab	le	Page
21	¹ H-NMR data of compound 1	64
22	¹ H-NMR data of compound 5	66
23	The preparation of compound 78 by vary n equiv NH ₂ OH.HCl and NaOH	
	at reflux condition	68
24	¹ H-NMR data of compound 78	69
25	¹ H-NMR data of compound 80	70
26	The preparation of compound 81 by vary reaction time at reflux condition	72
27	¹ H-NMR data of compound 81	73
28	¹ H-NMR data of compound 82	73
29	¹ H-NMR data of compound 83	80
30	¹ H-NMR data of compound 84	81
31	¹ H-NMR data of compound 85	81
32	¹ H-NMR data of compound 86	82
33	¹ H-NMR data of compound 87	83
34	¹ H-NMR data of compound 88	84
35	The biological activities of compounds 1, 5, 83, 84, 85, 86, 87 and 88	86

LIST OF FIGURES

Figu	re	Page
1	Pepper trees	1
2	black (a), white (b) and green (c) pepper	2
3	Alkaloids found in black pepper	3

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SCHEMES

Sch	eme	Page
1	Preparation of piperine analogues 5-10	6
2	Preparation of piperine analogues 32-40	8
3	Preparation of piperine analogues 41-45	9
4	Preparation of piperine analogues 47-50 from curcumin (46)	10
5	Preparation of piperine analogues 51-52	11
6	Preparation of piperine analogue 53 from 49	12
77	Preparation of piperine analogue 55 from 54	13
8	Preparation of piperine analogues 56-58	15
9	Preparation of piperine analogue 59 from 46	16
10	Preparation of piperine analogues 60-61	17
11	Preparation of 64-66 from 5 , 62-63	18
12	Preparation of 69-72 from 60-61 , 67-68	19
13	Preparation of 75-76 from 73-74	20
14	Preparation of piperine analogues 83 , 84 , 85 , 86 , 87 and 88	21
15	Mechanism of piperic acid (5) from piperine (1)	66
16	Synthetic route for preparation of oximes of aldehyde or ketone	67
17	Mechanism of oximes from aldehyde or ketone	69
18	Synthetic route for preparation of amines from oximes	e 710
19	Mechanism of piperic acid chloride (33)	75

XV

LIST OF SCHEMES (CONTINUED)

Sche	eme	Page
20	Synthetic route for preparation of oxime-ester derivatives of piperine	76
21	Mechanism of oxime-ester derivatives of piperine	77
22	Synthetic route for preparation of amide derivatives of piperine	78
23	Mechanism of amide derivative of piperine	79
24	Oximation reaction and reduction with LiAlH ₄	87

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

cm	=	centimeter
CYP3A4	B	cytochrome P ₄₅₀ 3A4
DCC	=	dicyclohexylcarbodiimide
DCM	=	dichloromethane
DMAP	=	4- (N, N'- dimethylamino) pyridine
DMSO		dimethyl sulphoxide
d	Ę	doublets (spectral)
dd	=	doublets of doublets (spectral)
ESI-MS	=	electrospray ionization mass spectrometry
equiv.	=	equivalent(s)
Et	=	ethyl
Et ₃ N	=	triethylamine
EtOAc	=	ethyl acetate
g	4 (gram
h	=	hour (s)
IR	5	infrared radiation
IC ₅₀		50% inhibitory concentration
m	/= C	meter 8 Mai University
Me	n=t	methyl reserved
MHz	=	megahertz
т	=	multiplet (spectral)

xvii

MIC	=	minimal inhibitory concentration
min	=	minute (s)
ml	=	milliliter
mmol	J€/	milimole
mol	=	mole
m.p.	=	melting point
m/z	=	mass to charge ratio
MS		mass spectrometry
Ν	¥	normality
NMR	-	nuclear magnetic resonance
TLC	=	Thin layer chromatography
ppm	=	part per million (in NMR)
RT	=	room temperature
S	=	singlet (spectral)
THF	=	tetrahydrofuran
t	Į – 1	triplets (spectral)
δ	=	chemical shift (ppm)
°C	6	degree celsius
%		percent
t _v by	y=C	wave number (cm ⁻¹)

xviii