CHAPTER 2

EXPERIMENTAL

General Methods

The ¹H and ¹³C NMR spectra were recorded on Bruker DRX 400 MHz and chemical shifts were given in ppm downfield from spectrometers tetramethylsilane (TMS). All NMR spectra were measured in CDCl₃ and chemical shifts were reported as δ -values in parts per million (ppm) relative to residue CHCl₃ as internal reference (¹H: δ 7.26, ¹³C: δ 77.00) and coupling constants (J values) were reported in hertz (Hz). Peak multiplicities are indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), qn (quintet) and m (multiplet). Optical rotations were measured in CHCl₃ on an Atago AP-300 polarimeter. Melting points were determined by using a Gallenkamp Electrothermal apparatus and were uncorrected. Infrared spectra were recorded on a FT-IR model TENSER 27 (Bruker) spectrometer and absorption frequencies were reported in reciprocal centimeters (cm⁻¹). Mass spectra (electrospray ionization mode, ESI-MS) were recorded on a micromass Q-TOF-2Tm (Waters) spectrometer. Flash column chromatography was performed employing Merck silica gel 60 and Merck silica gel 60H. Preparative thin layer chromatography (PLC) plates were carried out using Merck silica gel 60 PF254. All experiments which are sensitive to moisture and air were carried out under nitrogen or argon. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Solvent were dried over CaH₂ and distilled

before used. Tetrahydrofuran (THF) was freshly distilled from sodium and benzophenone ketyl under nitrogen. Diisopropylamine was distilled over CaH_2 and stored under nitrogen. *n*-Butyllithium was purchased from Fluka and Across as solution in hexane and titrated periodically according to the 2,5-dimethoxybenzyl alcohol method. Hexamethylphospharamide (HMPA) was distillated under reduce pressure for later used. Ethyl bromide was dried over CaH_2 and distilled before used. The calculation of % yield of all products was based on the isolated products as pure compounds and ¹H NMR spectroscopy technique.

- 2.1 Resolution of enantiomeric dimethyl itaconate-anthracene adducts (+)-(11S)-66 and (-)-(11R)-66
 - 2.1.1 Synthesis of (±)-11-carbomethoxy-11-carboxylmethyl-9,10-dihydro-9,10-ethanoanthracene [(±)-76]

A mixture of anthracene **74** (173.87 g, 0.9755 mol) and dimethyl itaconate **75** (102.89 g, 0.6504 mol) in dried xylene (800 mL) was heated under reflux for 3 days to obtain dimethyl itaconate–anthracene adduct in racemic form (\pm)-**66**. After that, compound (\pm)-**64** was hydrolyzed by 1.3 equiv NaOH in MeOH:H₂O (2:1) for 2 hours. The crude reaction mixture was adjusted to pH 2-3 by 30% hydrochloric acid solution, then extracted with CH₂Cl₂, dried over MgSO₄, filtered and evaporated to

dryness. The crude product was recrystallized from CH_2Cl_2 /hexane to give (±)monoacid adduct, (±)-11-Carbomethoxy-11-carboxylmethyl-9,10-dihydro-9,10-ethanoanthracene [(±)-**76**] in 58% yield (120.8154 g), and 100% conversion from the starting material.

Cable 16 Data of the monoacid	adduct (±)-76
Physical properties	~. EV 52
white crystal	
melting point (m.p.) 208	3.4–209.7 °C (from CH ₂ Cl ₂ /hexane)
IR spectroscopy (Evaporated	thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrations
3019	C–H stretching of aromatic
3453	–OH stretching of acid
2950, 2853	-CH ₂ , -CH ₃ stretching
1740	C=O stretching of ester
1645	C=C stretching of aromatic
1343, 1434	-CH ₂ , -CH ₃ bending
1115, 1254	C–O stretching of ester
768	C-H bending of aromatic (out of plane)
NMR spectroscopy	nginagiiXgia
¹ H-N	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
1.47, 2.79, 4.31	<i>ABX</i> system, ($J = 13.1, 3.0, 2.4$ Hz), 3H, H _a , H _b H _y
1.97	$d (J = 16.6 \text{ Hz}), 1\text{H}, \text{H}_{c}$

41

Table 16 Data of the monoacid adduct (\pm) -76 (continued)

NMR spectroscopy		
¹ H-NN	MR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)Type of protons		
2.96	$d (J = 16.6 \text{ Hz}), 1\text{H}, \text{H}_{\text{d}}$	
3.45	s, 3H, COOCH ₃ -16	
4.30 <i>s</i> , 1H, H _y		
7.04-7.30	<i>m</i> , 8H, ArH	
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
36.74 (CH ₂ -12), 44.01 (CH-9), 44.66 (CH ₂ -13), 50.01 (C _q -11), 52.23 (CH ₃ -16),		
52.8 1 (CH-10), 123.31, 123.55, 123.84, 124.19, 125.71, 125.74, 125.78, 126.51		
(CH-ArH-1, 2, 3, 4, 5, 6, 7, 8), 139.45, 139.93, 142.76, 143.55 (Cq-ArH-4a, 8a,		
9a, 10a), 174.70 (C _q -15), 176.85	$5 (C_q-14)$	
Mass spectrometry (ESI-MS)		
Molecular weight m/z		
Calc. of $C_{20}H_{18}O_4$ 322.1205 (M ⁺)		
Lock mass of C12H14N4O4SNa	333.0633 (M+Na) ⁺	
Calc. for $C_{20}H_{18}O_4$ Na	345.1103 (M+Na) ⁺	
Found for $C_{20}H_{18}O_4Na$ 345.1103 $(M+Na)^+$		

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

MAI

2.1.2 (-)-11-Carbomethoxy-11-[(-)-menthoxyacetyl]-9,10-dihydro-9,10-

ethanoanthracenes [(-)-(11S)-67 and (-)-(11R)-68]

A mixture of the monoacid adduct (\pm)-**76** (22.25 g, 0.069 mol), DMAP (0.2 equiv, 1.69 g, 13.80 mmol) and (–)-menthol (1.2 equiv, 16.18 g, 103.54 mmol) in dry CH₂Cl₂ were treated with DCC (1.2 equiv, 17.10 g, 82.81 mmol) at 0 °C for 24 h. The mixture was filtered and extracted with CH₂Cl₂. The solution was washed with H₂O and saturated NaCl solution, dried over MgSO₄, filtered and evaporated to dryness. The crude product was recrystallized to obtain monomenthyl adduct in two diastereoisomer forms which are (–)-(11*S*)-**67** in 43% yield (13.6705 g) from CH₂Cl₂/MeOH.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

M	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
	$y = 2 - \frac{1}{1} H_x = \frac{1}{8} - \frac{1}{8}$
Fable 17 Data of monomenthy	d adduct () (115) 67
Table 17 Data of monomentiny	1 adduct (-)-(115)- 0 7
Physical properties	
white powder	
melting point (m.p.) 185	5.3–186.8 °C (from CH ₂ Cl ₂ /hexane)
specific rotation, $[\alpha]_D^{34.3}$	$= -144.93^{\circ}$ (<i>c</i> = 0.109, CHCl ₃)
IR spectroscopy (Evapo	prated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrations
3025	C–H stretching of aromatic
2866, 2950	–CH ₂ , –CH ₃ stretching
1729	C=O stretching of ester
1638	C=C stretching of aromatic
1459, 1371	–CH ₂ , –CH ₃ bending
1196, 1221	C–O stretching of ester
747	C-H bending of aromatic (out of plane)
NMR spectroscopy	25'
¹ H-	NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
0.76-1.96	<i>m</i> , 9H, H-menthyl
0.89	d (J = 7.0 Hz), 3H, H-methyl
1.48, 2.82, 4.32	ABX system, $(J = 13.0, 3.0, 2.4 \text{ Hz})$, 3H, H _a , H _b ,
	H_x
1.94	$d (J = 16.2 \text{ Hz}), 1\text{H}, \text{H}_{c}$
2.92	$d (J = 16.2 \text{ Hz}), 1\text{H}, \text{H}_{d}$
3.47	<i>s</i> , 3H, COOCH ₃ -16
4.35	s, 1H, H _y reserv

Table 17	Data of monomentl	yl adduct (–)	-(11 <i>S</i>)- 67	(continued)
----------	-------------------	---------------	----------------------------	-------------

NMR spectroscopy		
¹ H-1	NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of protons	
2.92	$d (J = 16.2 \text{ Hz}), 1\text{H}, \text{H}_{\text{d}}$	
3.47	<i>s</i> , 3H, COOCH ₃ -16	
4.35	s, 1H, H _y	
4.60	<i>ddd</i> (<i>J</i> = 10.9, 10.9, 4.4 Hz), 1H, CH-1'	
7.03-7.31	m, 8H, ArH	
¹³ C-NM	IR (100 MHz) in CDCl ₃ (ppm)	
16.05, 20.75, 21.93, 23.16, 25.97, 31.31, 34.11, 40.81 (C-menthyl), 36.99 (CH ₂ -12), 44.14 (CH-10), 44.97 (CH ₂ -13), 50.23 (C _q -11), 52.04 (CH ₃ -16), 52.97 (CH-9),		
142.81, 143.69 (CH-ArH-1, 2,	3, 4, 5, 6, 7, 8), 170.63 (C _q -14), 174.74 (C _q -15)	
Mass spectrometry (ESI-MS)		
Molecular weight	m/z	
Calc. of $C_{30}H_{36}O_4$ 460.2614 (M ⁺) Lock mass of $C_{32}H_{41}NO_2$ 472.3215 (M+H) ⁺		
		Calc. for C ₃₀ H ₃₆ O ₄ Na
Found for $C_{30}H_{36}O_4Na$ 483.2511 (M+Na) ⁺		

¹⁰ Me MeOOC Мe (–)**-**(11*R*)**-68**

<u>Jnive</u>rsi

 Table 18 Data of monomenthyl adduct (-)-(11R)-68

Physical	properties

white crystals

46

 Table 18 Data of monomenthyl adduct (-)-(11R)-68 (continued)

specific rotation [a] ²⁹	specific rotation $[\alpha]^{29.2} = 82.23^{\circ}(\alpha = 0.231)$ CHCL)	
specific rotation, $[\alpha]_{D}$	-62.25 (c = 0.251, CHC ₁₃)	
IR spectroscopy (Evaporate		
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrations	
3040	C–H stretching of aromatic	
2953, 2869	-CH ₂ , -CH ₃ stretching	
1727	C=O stretching of ester	
1459, 1308	-CH ₂ , -CH ₃ bending	
1370, 1389	-CH ₃ bending	
1063, 1175	C–O stretching of ester	
766	C-H bending of aromatic (out of plane)	
NMR spectroscopy		
¹ H	I-NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of protons	
0.67	d (J = 7.0 Hz), 3H, H-methyl	
0.67 0.78-1.94	d (J = 7.0 Hz), 3H, H-methyl $m, 9H, H-menthyl$	
0.67 0.78-1.94 0.87	d (J = 7.0 Hz), 3H, H-methyl m, 9H, H-menthyl d (J = 7.0 Hz), 3H, H-methyl	
0.67 0.78-1.94 0.87 0.90	d (J = 7.0 Hz), 3H, H-methyl $m, 9H, H-menthyl$ $d (J = 7.0 Hz), 3H, H-methyl$ $d (J = 6.6 Hz), 3H, H-methyl$	
0.67 0.78-1.94 0.87 0.90 1.45, 2.80, 4.31	$d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $m, 9\text{H}, \text{H-menthyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 6.6 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $ABX \text{ system}, (J = 13.0, 3.1, 2.4 \text{ Hz}), 3\text{H}, \text{H}_{a}, \text{H}_{t}$	
0.67 0.78-1.94 0.87 0.90 1.45, 2.80, 4.31	$d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $m, 9\text{H}, \text{H-menthyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 6.6 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $ABX \text{ system}, (J = 13.0, 3.1, 2.4 \text{ Hz}), 3\text{H}, \text{H}_{a}, \text{H}_{b}$ H_{x}	
0.67 0.78-1.94 0.87 0.90 1.45, 2.80, 4.31 1.96	$d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 6.6 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $ABX \text{ system}, (J = 13.0, 3.1, 2.4 \text{ Hz}), 3\text{H}, \text{H}_{a}, \text{H}_{b}$ H_{x} $d (J = 15.8 \text{ Hz}), 1\text{H}, \text{H}_{c}$	
0.67 0.78-1.94 0.87 0.90 1.45, 2.80, 4.31 1.96 2.95	$d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 6.6 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $ABX \text{ system}, (J = 13.0, 3.1, 2.4 \text{ Hz}), 3\text{H}, \text{H}_{a}, \text{H}_{b}$ H_{x} $d (J = 15.8 \text{ Hz}), 1\text{H}, \text{H}_{c}$ $d (J = 15.8 \text{ Hz}), 1\text{H}, \text{H}_{d}$	
0.67 0.78-1.94 0.87 0.90 1.45, 2.80, 4.31 1.96 2.95 3.47	$d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 6.6 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $ABX \text{ system}, (J = 13.0, 3.1, 2.4 \text{ Hz}), 3\text{H}, \text{H}_{a}, \text{H}_{b}$ H_{x} $d (J = 15.8 \text{ Hz}), 1\text{H}, \text{H}_{c}$ $d (J = 15.8 \text{ Hz}), 1\text{H}, \text{H}_{d}$ $s, 3\text{H}, \text{COOCH}_{3}\text{-}16$	
0.67 0.78-1.94 0.87 0.90 1.45, 2.80, 4.31 1.96 2.95 3.47 4.34	$d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 6.6 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $ABX \text{ system}, (J = 13.0, 3.1, 2.4 \text{ Hz}), 3\text{H}, \text{H}_{a}, \text{H}_{b}$ H_{x} $d (J = 15.8 \text{ Hz}), 1\text{H}, \text{H}_{c}$ $d (J = 15.8 \text{ Hz}), 1\text{H}, \text{H}_{d}$ $s, 3\text{H}, \text{COOCH}_{3}\text{-}16$ $s, 1\text{H}, \text{H}_{y}$	
0.67 0.78-1.94 0.87 0.90 1.45, 2.80, 4.31 1.96 2.95 3.47 4.34 4.58	$d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 7.0 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $d (J = 6.6 \text{ Hz}), 3\text{H}, \text{H-methyl}$ $ABX \text{ system}, (J = 13.0, 3.1, 2.4 \text{ Hz}), 3\text{H}, \text{H}_{a}, \text{H}_{b}$ H_{x} $d (J = 15.8 \text{ Hz}), 1\text{H}, \text{H}_{c}$ $d (J = 15.8 \text{ Hz}), 1\text{H}, \text{H}_{d}$ $s, 3\text{H}, \text{COOCH}_{3}\text{-}16$ $s, 1\text{H}, \text{H}_{y}$ $ddd (J = 10.9, 10.9, 4.4 \text{ Hz}), 1\text{H}, \text{CH-1'}$	

 Table 18 Data of monomenthyl adduct (-)-(11R)-68 (continued)

¹³ C-NMR (100	0 MHz) in CDCl ₃ (ppm)	
15.96, 20.79, 21.96, 23.10, 25.87, 3 12), 40.66 (CH ₂ -13), 44.13 (CH-9), (CH-10), 74.66 (CH-1'), 123.29, 123 139.62, 140.23, 142.80, 143.77 (CH	31.32, 34.13, 44.91 (C-menthyl), 3 , 46.8, 50.43 (C _q -11), 52.02 (CH ₃ 3.59, 124.19, 125.73, 125.78, 126. I-ArH-1, 2, 3, 4, 5, 6, 7, 8), 170.4	6.64 (CH ₂ - -16), 53.01 47, 126.63, 45 (C _q -15),
174.74 (C _q -14)		6
Mass spectrometry (ESI-MS)		
Molecular weight	m/z	
Calc. of $C_{30}H_{36}O_4$	460.2614 (M ⁺)	
Lock mass of C ₃₂ H ₄₁ NO ₂	472.3215 (M+H) ⁺	
Calc. for C ₃₀ H ₃₆ O ₄ Na	$483.2511 (M+Na)^+$	
Found for C20H26O4Na	$483.2511 (M+Na)^{+}$	

2.1.3 Preparation of optically active 11-carbomethoxy-11-methoxyacetyl-

9,10-dihydro-9,10-ethanoanthracene [(+)-(11S)-66]

Typical procedure

To a solution of adduct (–)-(11*S*)-**67** (34.4855 g, 74.87 mmol) in excess anhydrous MeOH (3000 mL) was added conc. H_2SO_4 (40 mL) as catalyst and the mixture was heated to reflux for 7 days. The crude reaction mixture was adjusted by aqueous NaOH solution, then extracted with CH_2Cl_2 , dried over MgSO₄, filtered and evaporated to dryness. The precipitate was recrystallized from CH_2Cl_2 /hexane to give optically active 11-carbomethoxy-11-methoxyacetyl-9,10-dihydro-9,10-

ethanoanthracene [(+)-(11S)-66] in 83% yield (20.9429 g), 100% conversion.

 Table 19 Data of optically active dimethyl itaconate-anthracene adduct (+)-(11S)-66

Physical properties

white crystals

melting point (m.p.) 138.0–140.0°C (CH₂Cl₂/hexane) [lit.²⁵ m.p. 154–155°C CH₂Cl₂/hexane)]

specific rotation, $[\alpha]_{D}^{27.2} = +80.83^{\circ} (c = 0.141, \text{CHCl}_{3})$

IR spectroscopy (Evaporated thin film)

$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrations
3000	C–H stretching of aromatic
2951, 2850	-CH ₂ , -CH ₃ stretching
1740	C=O stretching of ester
1460	C=C stretching of aromatic
1436, 1353	-CH ₂ , -CH ₃ bending
1353	-CH ₃ bending
1196	C–O stretching of ester
767	C-H bending of aromatic (out of plane)
NMR spectroscopy	

	¹ H-NMR (400 MHz) in CDCl ₃		
	Chemical shift (δ , ppm)	Type of protons	
8	1.46, 2.81, 4.31	<i>ABX</i> system, $(J = 13.0, 3.0, 2.6 \text{ Hz})$, 3H, H _a , H _b , H _x	
	1.97	$d (J = 16.1 \text{ Hz}), 1\text{H}, \text{H}_{c}$	

 Table 19 Data of optically active dimethyl itaconate-anthracene adduct (+)-(11S)-66

(continued)

NMR spectroscopy		
¹ H-N	IMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)Type of protons		
2.92	$d (J = 16.1 \text{ Hz}), 1\text{H}, \text{H}_{\text{d}}$	
3.47	s, 3H, COOCH ₃ -17	
3.57	<i>s</i> , 3H, COOCH ₃ -15	
4.36	s, 1H, H _y	
7.03-7.31	m, 8H, ArH	
¹³ C-NM	R (100 MHz) in CDCl ₃ (ppm)	
36.72 (CH ₂ -12), 44.07 (CH-9), 44.33 (CH ₂ -13), 50.30 (C _q -11), 51.59 (CH ₃ -15),		
52.15 (CH ₃ -17), 52.79 (CH-10), 123.28, 123.54, 124.23, 125.72, 126.46, 126.62		
(CH-ArH-1, 2, 3, 4, 5, 6, 7, 8),	139.62, 140.09, 142.83, 143.65 (C _q -ArH-4a, 8a, 9a,	
10a), 171.47 (C _q -14), 174.84 (C	Cq-16)	
Mass spectrometry (ESI-MS)	5	
Molecular weight m/z		
Calc. of $C_{21}H_{20}O_4$ 336.1362 (M ⁺)		
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 (M+Na) ⁺	
Calc. for $C_{21}H_{20}O_4Na$	359.1259 (M+Na) ⁺	
Found for $C_{21}H_{20}O_4Na$ 359.1259 (M+Na) ⁺		

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

2.1.4 Preparation of optically active 11-carbomethoxy-11-methoxyacetyl-

9,10-dihydro-9,10-ethanoanthracene [(-)-(11*R*)-66]

Prepared according to typical procedure 2.1.3, adduct (–)-(11*R*)-**68** (10.55 g, 22.92 mmol) provided optically active adduct [(–)-(11*R*)-**66**] in 80% yield (6.1684 g), 100% conversion as white crystals, m.p. 140.1–143.2°C, ($[\alpha]_{589}^{30.6} = -83.62^{\circ}$ (c = 0.110, CHCl₃)). IR, ¹H, ¹³C NMR and mass spectral data are identical to previously reported data (Table 19).

- 2.2 Syntheses of both enantiomerically pure forms of tetrahydro-4'carbomethoxy-5'-diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10ethanoanthracenes and derivatives [(4'S,11R)-69a, (4'R,11R)-77, (4'R,11S)-69a and (4'S,11S)-77] *Typical procedure*
 - 2.2.1 Synthesis of enantiomeric tetrahydro-4'-carbomethoxy-5'-diphenyl-2'furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes [(4'S,11R)-69a, (4'R,11R)-77]

To a 100 mL round-bottomed flask equipped with a magnetic stirrer bar, fitted with a three-way stopcock and nitrogen inlet. n-Butyllithium (14.0 mL, 18.42 mmol, 1.4 M in hexane) was added to a stirring solution of diisopropylamine (3.1 mL, 22.12 mmol) in dry THF (30 mL) at -78 °C and the reaction mixture was stirred at 0 °C for To the LDA solution at -78 °C, a solution of optically dimethyl 1 hour. itaconate-anthracene adduct (+)-(11S)-66 (5.1633g, 15.35 mmol) in THF (15 mL) was added at -78 °C and left stirring at 0 °C for 2 hours. The solution of benzophenone (3.6646 g, 20.11 mmol) in THF was added to the reaction mixture at -78 °C then stirred for additional 15 mins and continued stirring at 0 °C to room temperature for overnight. The resultant mixture was quenched with 10% hydrochloric acid solution and extraction three times with CH₂Cl₂. The combined organic extracts were washed with H₂O, dried over MgSO₄, filtered and evaporated to dryness. The crude product was purified by flash column chromatography (silica gel, EtOAc : CH_2Cl_2 : hexane = 0.5 : 1 : 8.5 as eluent) and preparative thin layer chromatography (PLC, EtOAc : CH_2Cl_2 : hexane = 0.5 : 1 : 8.5 as developing solvent) afforded two diastereomer spiro-lactones, tetrahydro-4'-carbomethoxy-5'-diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes, (4'S,11R)-69a in 59% yield (4.0498 g) as the major isomer and (4'R,11R)-77 in 10% yield (0.7167 g) as the minor isomer, 93% conversion from the starting material.

2/02/03
 Table 20
 Data of major spiro–lactone diastereomer (4'S,11R)-69a

Physical properties	
white crystals	
melting point (m.p.) 274	4.0–275.1 °C (CH ₂ Cl ₂ /hexane)
specific rotation, $[\alpha]_D^{33.7}$	= +88.87° (<i>c</i> = 0.117, CHCl ₃)
R spectroscopy (Evaporated	thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrationss
3026	C–H stretching of aromatic
2940, 2800	–CH ₂ , –CH ₃ stretching
1785, 1737	C=O stretching of ester
1600	C=C stretching of aromatic
1450, 1345	$-CH_2$, $-CH_3$ bending
1159	C–O stretching of ester
NMR spectroscopy	InTTER
⁻¹ H-	NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
1.41, 1.58, 4.12	ABX system ($J = 13.1, 3.1, 2.6$ Hz), 3H, H _a , H _b ,
	H _x
3.30	<i>s</i> , 3H, COOCH ₃ -7'
3.40	<i>s</i> , 1H, H _c
4.70 NV	s, 1H, H _y
7.00-7.48	<i>m</i> , 18H, ArH

52

 Table 20 Data of major spiro–lactone diastereomer (4'S,11R)-69a (continued)

(z) in CDCl ₃ (ppm)	
-10), 50.76 (C _q -11), 51.63 (CH-4'), 65	.04
125.64, 125.77, 125.86, 126.36, 126.3	52,
29.59 (CH-ArH-1, 2, 3, 4, 5, 6, 7, 8,	2",
, 140.92, 141.60, 143.88, 143.99, 144	.37
C _q -6'), 177.31 (C _q -2')	
m/z	
486.1831 (M ⁺)	
472.3215 (M+H) ⁺	
509.1729 (M+Na) ⁺	
509.1729 (M+Na) ⁺	
	Iz) in CDCl ₃ (ppm) -10), 50.76 (C _q -11), 51.63 (CH-4'), 65 125.64, 125.77, 125.86, 126.36, 126.3 129.59 (CH-ArH-1, 2, 3, 4, 5, 6, 7, 8, 3, 140.92, 141.60, 143.88, 143.99, 144 C _q -6'), 177.31 (C _q -2') m/z 486.1831 (M ⁺) 472.3215 (M+H) ⁺ 509.1729 (M+Na) ⁺ 509.1729 (M+Na) ⁺

(4'R,11R)**-77**

 Table 21
 Data of minor spiro–lactone diastereomer (4'R,11R)-77

Physical properties	
white crystals	
melting point (m.p.)	222.1–224.1°C (CH ₂ Cl ₂ /hexane)
specific rotation, $[\alpha]$	$D_D^{32.2} = +51.61^\circ (c = 0.127, \text{CHCl}_3)$
IR spectroscopy (Evaporat	ed thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrationss
3026	C–H stretching of aromatic
rign	<u>ts reserv</u>

Table 21 Data of minor diastereomer (4'R, 11R)-77 (continued)

IR spectroscopy (Evaporated t	hin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrationss
2950, 2850	-CH ₂ ,-CH ₃ stretching
1785, 1741	C=O stretching of ester
1600	C=C stretching of aromatic
1450, 1342	-CH ₂ , -CH ₃ bending
1219	C–O stretching of ester
767	C-H bending of aromatic (out of plane)
NMR spectroscopy	
¹ H-N	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
1.52, 2.43, 4.29	<i>ABX</i> system ($J = 13.2, 3.5, 2.7$ Hz), 3H, H _a , H _b ,
	H _x
3.07	<i>s</i> , 3H, COOCH ₃ -7'
3.72	<i>s</i> , 1H, H _c
3.92	<i>s</i> , 1H, H _y
6.83-7.84	<i>m</i> , 18H, ArH
¹³ C-NMR	(100 MHz) in CDCl ₃ (ppm)
38.52 (CH ₂ -12), 43.76 (CH-9), 4	48.66 (CH-4'), 51.40 (CH ₃ -7'), 52.86 (C _q -11), 62.35
(CH-10), 86.50 (C _q -5'), 123.15	, 123.81, 124.54, 124.99, 125.22, 125.49, 125.94
126.81, 126.96, 127.39, 128.14,	128.58, 129.28, 130.09 (CH-ArH-1, 2, 3, 4, 5, 6, 7
8, 2", 3", 4", 5", 6", 2"', 3"', 4"	', 5''', 6'''), 138.24,138.78, 142.00, 142.99, 144.12
144.43 (C _q -ArH-4a, 8a, 9a, 10a,	1", 1""), 170.07 (C _q -6'), 175.69 (C _q -2')
Mass spectrometry (ESI-MS)	20000000000
Molecular weight	m/z
Calc. of $C_{33}H_{26}O_4$	486.1831 (M ⁺)
Lock mass of C ₃₂ H ₄₁ NO ₂	472.3215 (M+H) ⁺
Calc. for C ₃₃ H ₂₆ O ₄ Na	509.1729 (M+Na) ⁺
Found for $C_{33}H_{26}O_4Na$ 509.1729 (M+Na) ⁺	

opyri

2.2.2 Synthesis of enantiomeric of tetrahydro-4'-carbomethoxy-5'-

diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-

ethanoanthracenes [(4'R,11S)-69a and (4'S,11S)-77]

Prepared according to typical procedure 2.2.1, adduct (–)-(11*R*)-**66** (4.2815 g, 12.73 mmol), LDA (3.0 mL, 21.41 mmol, 1.2 equiv, 12.0 mL, 15.28 mmol) and benzophenone (3.0166 g, 16.55 mmol, 1.2 equiv). Purification the crude product by flash column chromatography (silica gel, EtOAc : CH_2Cl_2 : hexane = 0.5 : 1 : 8.5 as eluent) and PLC (silica gel, EtOAc : CH_2Cl_2 : hexane = 0.5 : 1 : 8.5 as developing solvent) afforded two diastereomers, *tetrahydro-4'-carbomethoxy-5'-diphenyl-2'- furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes*, (4'*R*,11*S*)-**69a** in 60% yield (3.3938 g) as the major isomer and (4'*S*,11*S*)-**77** in 9% yield (0.5058 g) as the minor isomer, 91% conversion from the starting material.

Compound (4'R,11S)-**69a**: White crystals; m.p. 278.4–279.1 °C (from CH₂Cl₂/hexane); ($[\alpha]_D^{29.4} = -171.51^\circ$ (c = 0.155, CHCl₃)). IR, ¹H, ¹³C NMR and mass spectral data are identical to previously reported data (Table 20).

Compound (4'S,11S)-77: White crystals; m.p. 231.0–231.8 °C (from CH₂Cl₂/hexane); ($[\alpha]_{D}^{25.1} = -2.24^{\circ}$ (c = 1.088, CHCl₃)). IR, ¹H, ¹³C NMR and mass spectral data are identical to previously reported data (Table 21).

2.3 Syntheses of both enantiomerically pure forms of tetrahydro-4'-

carbomethoxy-5'-diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10ethanoanthracenes derivatives [(4'S,11R)-69b, (4'S,11R)-69c, (4'R,11S)-69b and (4'R,11S)-69c]

Typical procedure

2.3.1 Synthesis of enantiomeric of tetrahydro-4'-carbomethoxymethyl-5'-diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-

ethanoanthracenes [(4'S,11R)-69b]

To a 100 mL round-bottomed flask equipped with a magnetic stirrer bar, fitted with a three-way stopcock and nitrogen inlet. *n*-Butyllithium (7.90 mL, 10.41 mmol, 1.4 M in hexane) was added to a stirring solution of diisopropylamine (4.50 mL, 32.11 mmol) in dry THF (20 mL) at -78 °C and the reaction mixture was stirred at 0 °C for 1 hour. To the LDA solution at -78 °C, a solution of optically adduct [(4'*S*,11*R*)-**69a**] (1.6891 g, 3.47 mmol) in THF (15 mL) was added at -78 °C followed by HMPA (1.80 mL, 10.35 mmol) and left stirring at 0 °C for 2 hours. Methyl iodide (2.2 mL, 35.34 mmol, 10.0 equiv) was added to the reaction mixture at -78 °C then stirred for additional 15 mins and continued stirring at 0 °C to room temperature for overnight. The resultant mixture was quenched with 10% hydrochloric acid solution and extraction three times with CH₂Cl₂. The combined organic extracts were washed

with H₂O, dried over MgSO₄, filtered and evaporated to dryness. Purification the crude product by flash column chromatography (silica gel, EtOAc : hexane = 1 : 9 as eluent) afforded *tetrahydro-4'-carbomethoxymethy-5'-diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes,* (4'S,11R)-**69b** in 31% yield (0.5312 g), 99% conversion from the starting material.

Physical properties	
Physical properties	
white crystals	
melting point (m.p.) 19	9.5–200.9 °C (CH ₂ Cl ₂ /hexane)
specific rotation, $[\alpha]_D^{31.5}$	$e^{2} = +179.01^{\circ} (c = 0.105, \text{CHCl}_{3})$
IR spectroscopy (Evapo	orated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrations
3026	C–H stretching of aromatic
2947, 2820	-CH ₂ , -CH ₃ stretching
1727	C=O stretching of ester
1600	C=C stretching of aromatic
1460, 1302	$-CH_2$, $-CH_3$ bending
1223	C–O stretching of ester
766	C–H bending of aromatic (out of plane)
5	emany mar emve rs

Table 22	Data of methyl	spiro-lactone	adduct (4'S,11R)	-69b (continued)
----------	----------------	---------------	------------------	------------------

NMR spectroscopy	
¹ H-1	NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
2.13, 2.89, 4.24	ABX system ($J = 12.6, 3.5, 2.2 \text{ Hz}$), 3H, H _a , H _b , H _x
2.97	s, 3H, CH ₃ -8'
3.17	<i>s</i> , 3H, COOCH ₃ -7'
5.10	s, 1H, H _y
6.92-7.29	<i>m</i> , 18H, ArH
¹³ C-NM	IR (100 MHz) in CDCl ₃ (ppm)
42.40 (CH ₂ -12), 44.37 (CH ₃ - 54.52 (C _q -11), 122.46, 123.8 127.60, 127.82, 127.94, 128.1 6", 2"', 3"', 4"', 5"', 6"'), 137.4 143.16, 144.85, 146.54 (C _q -A	9), 50.84 (CH-10), 51.36 (CH ₃ -8'), 52.19 (CH3-7'), 4, 124.80, 124.85, 125.47, 126.09, 126.38, 127.19, 7, 128.78 (CH-ArH-1, 2, 3, 4, 5, 6, 7, 8, 2", 3", 4", 5", 47 (C _q -11), 137.17, 138.52, 139.39, 140.73, 141.89, rH-4a, 8a, 9a, 10a, 1", 1"'), 168.61 (C _q -6'), 172.43
Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. of C ₃₄ H ₂₈ O ₄ 500.1988 (M+)	
Lock mass of C ₃₂ H ₄₁ NO ₂	472.3215 (M+H)+
Calc. for C ₃₄ H ₂₈ O ₄ Na	523.1886 (M+Na) ⁺
Found for C ₃₄ H ₂₈ O ₄ Na	523.1886 (M+Na) ⁺

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

2.3.2 Synthesis of enantiomeric of tetrahydro-4'-carbomethoxyethyl-5'-

diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-

ethanoanthracenes [(4'S,11R)-69c]

Prepared according to typical procedure 2.3.1, adduct (4'S,11R)-**69a** (1.6717 g, 3.44 mmol) in THF (15 mL), LDA solution (7.80 mL, 10.27 mmol, 3.0 equiv, 4.50 mL, 32.11 mmol), HMPA (1.80 mL, 10.35 mmol) and ethyl bromide (0.80 mL, 10.79 mmol, 3.0 equiv). Purification of the crude product by flash column chromatography (silica gel, EtOAc : hexane = 1 : 9 as eluent) and PLC (silica gel, EtOAc : hexane = 1 : 9 as developing solvent) afforded afforded *tetrahydro-4'-carbomethoxyethy-5'-diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes*, (4'S,11R)-**69c** in 18% yield (0.3215 g), 100% conversion from the starting material

 Table 23
 Data of ethyl spiro–lactone adduct (4'S,11R)-69c

Phy	sical properties	Chiai	ig n	Aat	U	ve	
	white powder	te					
	melting point (m.p.) 1	85.4–186.8 °C (CH ₂ Cl ₂ /hey	(ane)		V	

 Table 23 Data of ethyl spiro–lactone adduct (4'S,11R)-69c (continued)

specific fotation, [4]	$b_{0} = +200.05$ (c = 0.105, circls)
IR spectroscopy (Evaporat	ed thin film)
$v_{\rm max} \ (\rm cm^{-1})$	Type of vibrations
3057	C–H stretching of aromatic
2947, 2890	–CH ₂ , –CH ₃ stretching
1726	C=O stretching of ester
1600	C=C stretching of aromatic
1457, 1365	–CH ₂ , –CH ₃ bending
1228	C–O stretching of ester
NMR spectroscopy	Key St
1.	H-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
0.99	<i>t</i> (<i>J</i> = 7.5 Hz), 3H, CH ₃ -9'
2.11, 2.83, 4.23	ABX system ($J = 12.7, 3.5, 2.3 \text{ Hz}$), 3H, H _a , H _b ,
	H _x
2.99	s, 3H, CH ₃ -7'
3.41-3.53	<i>m</i> , 2H, CH ₂ -8'
5.14	<i>s</i> , 1H, H _y
6.94-7.30	<i>m</i> , 18H, Ar-H
¹³ C-1	NMR (100 MHz) in CDCl ₃ (ppm)
13.72 (CH ₃ -9'), 42.82 (CH	I-12), 44.42 (CH-9), 50.89 (CH-10), 51.28 (CH ₃ -7')
54.47 (C _q -11), 61.14 (CH ₂	-8'), 122.46, 123.68, 124.51, 124.85, 125.30, 126.06
126.32, 127.17, 127.49, 12	7.79, 127.82, 127.98, 128.08, 128.94 (CH-ArH-1, 2, 3
4, 5, 6, 7, 8, 2", 3", 4", 5", 0	$5^{\circ}, 2^{\circ\circ}, 3^{\circ\circ}, 4^{\circ\circ}, 5^{\circ\circ}, 6^{\circ\circ}, 137.47, 138.75, 139.56, 140.67$
142.18, 145.57, 145.19, 14	C_q -AIH-4a, 8a, 9a, 10a, 1, 1), 108.00 (C_q -0)
$172.52(C_{q} 2)$	

60

 Table 23 Data of ethyl spiro–lactone adduct (4'S,11R)-69c (continued)

Mass spectrometry (ESI-MS)	
Molecular weight	m/z
Calc. of C ₃₅ H ₃₀ O ₄	514.2144 (M ⁺)
Lock mass of C ₃₂ H ₄₁ NO ₂	472.3215 (M+H) ⁺
Calc. for C ₃₅ H ₃₀ O ₄ Na	537.2042 (M+Na) ⁺
Found for C ₃₅ H ₃₀ O ₄ Na	537.2042 (M+Na) ⁺

2.3.3 Synthesis of enantiomeric of tetrahydro-4'-carbomethoxymethyl-5'diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracene [(4'R,11S)-69b]

Prepared according to typical procedure 2.3.1, adduct (4'*R*,11*S*)-**69a** (1.5890 g, 3.27 mmol) in THF (15 mL), LDA solution (7.40 mL, 9.75 mmol, 3.0 equiv, 4.50 mL, 32.11 mmol), HMPA (1.70 mL, 9.77 mmol, 3.0 equiv) and methyl iodide (2.10 g, 33.73 mmol, 10.0 equiv). Purification of the crude product by flash column chromatography (silica gel, EtOAc : hexane = 1 : 9 as eluent) and PLC (silica gel, EtOAc : hexane = 1 : 9 as eluent) afforded *tetrahydro-4'-carbomethoxymethy-5'-diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes*, (4'*R*,11*S*)-**69b** in 33% yield (0.5421 g), 99% conversion from the starting material.

Compound (4'R,11S)-**69b**: White crystals; m.p. 198.0–201.0 °C (from CH₂Cl₂/hexane); ($[\alpha]_D^{30.2} = -59.99^\circ$ (c = 0.120, CHCl₃)). IR, ¹H, ¹³C NMR and mass spectral data are identical to previously reported data (Table 22).

30% yield

Prepared according to typical procedure 2.3.1, adduct (4'R,115)-**69a** (2.0203 g, 4.15 mmol) in THF (15 mL), LDA solution (9.50 mL, 12.51 mmol, 3.0 equiv, 5.50 mL, 39.24 mmol), HMPA (2.20 mL, 12.65 mmol, 3.0 equiv) and ethyl bromide (1.00 mL, 13.49 mmol). Purification of the crude product by flash column chromatography (silica gel, EtOAc : hexane = 1 : 9 as eluent) and PLC (silica gel, EtOAc : hexane = 1 : 9 as developing solvent) afforded *tetrahydro-4'-carbomethoxyethy-5'-diphenyl-2'- furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes*, (4'R,115)-**69c** in 18% yield (0.3819 g), 100% conversion from the starting material.

Compound (4'R,11S)-**69c**: White crystals; m.p. 186.1–187.8 °C (from CH₂Cl₂/hexane); ($[\alpha]_{D}^{29.8} = -322.89^{\circ}$ (c = 0.116, CHCl₃)). IR, ¹H, ¹³C NMR and mass spectral data are identical to previously reported data (Table 23).

2.4 Syntheses of both enantiomerically pure forms of 11-hydroxymethylene-11-

(2'-(1',3'-dihydroxy-1',1'-diphenylpropyl))-9,10-dihydro-9,10-ethano

anthracenes [(2'S,11R)-70a and (2'R,11S)-70a]

Typical procedure

2.4.1 Synthesis of optically active of 11-hydroxymethylene-11-(2'-(1',3'-

dihydroxy-1',1'-diphenylpropyl))-9,10-dihydro-9,10-ethano

anthracene [(2'S,11R)-70a]

To a 100 mL two-necked round-bottomed flask equipped with a magnetic stirrer and a septum cap and nitrogen inlet. The solution of major product (4'*R*,11*S*)-69a (2.0598 g, 4.23 mmol) in THF (20 mL) was added to a cooled (-78 °C) solution of LAH (3.3419 g, 84.6 mmol, 20 equiv) in THF (20 mL). The reaction mixture was stirred at room temperature for 3 days and then quenched by dropwise addition of acetone (10 mL). After that, the resulting solution was extracted three times with EtOAc and the combined organic portions were dried, filtered and concentrated *in vacuo*. Purification of the residue by flash column chromatography (EtOAc/hexane = 1 : 9 as eluent) afforded two compounds : (2'*S*,11*R*)-70a in 70% yield (1.3602 g) as the major product and (4'*R*,11*S*)-78 in 9% yield (0.1769 g) as the minor products, 100% conversion from the starting material.

2/02/03
 Table 24
 Data of triol TADDOL-anthracene adduct (2'S,11R)-70a

Physical properties		
white solid		
melting point (m.p.) 202	2.7–204.2 °C (CH ₂ Cl ₂ /hexane)	
specific rotation, $[\alpha]_D^{32.0}$	$=-60.55^{\circ}$ (c = 0.142, CHCl ₃)	
IR spectroscopy (Evaporated	thin film)	
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrations	
3386	O–H stretching of alcohol	
3020	C–H stretching of aromatic	
2948, 2890	-CH ₂ , -CH ₃ stretching	
1600	C=C stretching of aromatic	
1461, 1376	-CH ₂ , -CH ₃ bending	
1034, 1167	C–O stretching of alcohol	
NMR spectroscopy	IntraF	
¹ H-I	NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of protons	
0.52 1.36, 3.91	<i>ABX</i> system ($J = 13.5, 3.0, 2.6$ Hz), 3H, H _a , H _b ,	
2.25	s, 1H, H _c	
2.55, 4.25	d, AB system ($J = 8.7$ Hz), 2H, CH ₂ -2"	
2.60	s, 1H, OH-1"	
3.97, 4.51	d, ($J = 12.9$ Hz), 2H, CH ₂ -3'	
4.69	s, 1H, H _y reserver	

 Table 24
 Data of triol TADDOL-anthracene adduct (2'S,11R)-70a (continued)

	NMR (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of protons		
4.97	s, 1H, OH-4'		
5.69	s, 1H, OH-5'		
7.05-7.36	<i>m</i> , 18H, ArH		
¹³ C-NM	IR (100 MHz) in CDCl ₃ (ppm)		
38.26 (CH ₂ -12), 44.67 (CH-9) (CH ₂ -3'), 66.48 (CH ₂ -2"), 82. 125.43, 125.62, 126.03, 126.09 1, 2, 3, 4, 5, 6, 7, 8, 2"', 3"', 142.64, 144.92, 146.01, 149.62 Mass spectrometry (ESI-MS)	, 48.36 (C_q -11), 49.66 (CH-10), 52.93 (CH-2'), 61.61 34 (C_q -1'), 122.55, 123.26, 123.33, 124.73, 124.79, 9, 126.17, 126.31, 126.54, 127.67, 128.27, (CH-ArH- 4''', 5''', 6''', 2'''', 3'''', 4'''', 5'''', 6''''), 140.48, 141.57, 2 (C_q -ArH-4a, 8a, 9a, 10a, 1''', 1'''')		
Molecular weight	m/z		
Calc. of C ₃₂ H ₃₀ O ₃	462.2195 (M ⁺)		
Lock mass of C ₃₂ H ₄₁ NO ₂	472.3215 (M+H) ⁺		
Calc. for C ₃₂ H ₃₀ O ₃ Na	485.2093 (M+Na) ⁺		
	195,2002 (M + No) ⁺		

 Physical properties

 white crystals

66

Table 25 Data of reduced compound (4'R, 11S)-78 (continued)

melting point (m n) 104	5.9-196.5 °C (CH ₂ Cl ₂ /hexane)
menning point (iii.p.) 19.	
specific rotation, $[\alpha]_D^{32.0}$	$= +200.25^{\circ} (c = 0.097, \text{CHCl}_3)$
IR spectroscopy (Evaporated	thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrations
3484	O–H stretching of alcohol
3019, 3058	C–H stretching of aromatic
2924, 2851	–CH ₂ , –CH ₃ stretching
1767	C=O stretching of ester
1469, 1373	-CH ₂ , -CH ₃ bending
1173	C–O stretching of ester
1030	C–O stretching of alcohol
NMR spectroscopy	
¹ H-	NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of protons
1.16, 2.18, 4.02	ABX system ($J = 13.4, 3.0, 2.4$ Hz), 3H, H _a , H _b ,
	H _x
3.01	s, 1H, alcohol
3.41	s, 1H, H _c
3.67, 3.84	d, AB system ($J = 8.7$ Hz), 2H, H _e , H _d
4.05	<i>s</i> , 1H, H _y
6.58-7.47	<i>m</i> , 18H, ArH
¹³ C-NN	IR (100 MHz) in CDCl ₃ (ppm)
33.74 (CH ₂ -12), 44.06 (CH-9)), 49.05 (C _q -11), 53.41 (CH-10), 57.14 (CH-4'), 76.0
$(CH_2-6'), 80.79 (C_q-1'), 123.$	15, 124.80, 125.18, 125.65, 125.98,126.27, 126.4
126.61, 126.72, 127.04, 127.2	25, 128.09, 128.61 (CH-ArH-1, 2, 3, 4, 5, 6, 7, 8, 2
2" 1" 5" 6" 2" 2" 1" 5"	6"'), 140.00, 140.33, 143.60, 144.08, 144.36, 144.4
5,4,5,0,2,5,4,5,	

 Table 25
 Data of reduced compound (4'R,11S)-78 (continued)

Mass spectrometry (ESI-MS)		
Molecular weight	m/z	
Calc. of C ₃₃ H ₂₈ O ₃	458.1882 (M ⁺)	
Lock mass of C32H26N4O2S	472.3215 (M+H) ⁺	
Calc. for C ₃₂ H ₂₆ O ₃ Na	481.1780 (M+Na) ⁺	
Found for C ₃₂ H ₂₆ O ₃ Na	481.1780 (M+Na) ⁺	

2.4.2 Synthesis of optically active of 11-hydroxymethylene-11-(2'-(1',3'-

dihydroxy-1',1'-diphenylpropyl))-9,10-dihydro-9,10-

ethanoanthracene [(2'R,11S)-70a]

Prepared according to typical procedure 2.4.1, adduct (4'R,11S)-69a (2.3050 g, 4.74 mmol) and LAH (3.7338 g, 98.38 mmol). Usual workup and purification of the crude product by flash column chromatography (silica gel, EtOAc : hexane = 1.0 : 9.0 as eluent) afforded two compounds: (2'R,(11S)-70a in 77% yield (1.6765 g) as the major product and (4'S,11R)-78 in 4% yield (0.0776 g) as the minor products, 100% conversion from the starting material.

Compound (2'R,11S)-70a: White crystals; m.p. 184.0.6–187.0 °C (from CH₂Cl₂/hexane); $[\alpha]_{589}^{30.3} = +310.17^{\circ}$ (c = 0.127, CHCl₃). IR, ¹H, ¹³C NMR and mass spectral data are identical to previously reported data (Table 24).

Compound (4'S,11R)-**78**: White crystals; m.p. 197.0–198.6 °C (from CH₂Cl₂/hexane); $[\alpha]_{D}^{25.3} = -234.92^{\circ}$ (c = 0.249, CHCl₃). IR, ¹H, ¹³C NMR and mass spectral data are identical to previously reported data (Table 25).

2.5 Study the effect of the triol TADDOL–anthracene catalysts (2'S,11R)-70a and (2'R,11S)-70a for reduction reaction of 11-carbomethoxy-11-(1'benzoyl)methoxyacetyl-9,10-dihydro-9,10- ethanoanthracene [(±)-71]

2.5.1 Reduction of β -keto ester (±)-71 in the presence of TADDOL-

anthracene catalyst (2'S,11R)-70a

Typical procedure

2.5.1.1 <u>1 mol% of TADDOL-anthracene catalyst (2'S,11R)-70a</u>

To a 100 mL round-bottomed flask fitted with a three-way stopcock and nitrogen inlet. A cooled (0°C) solution of β -keto ester adduct (±)-**71** (0.1055 g, 0.23 mmol) and compound (2'S,11R)-**70a** (0.0017 g, 2.30 µmol, 1 mol%) in THF (6 mL) was added NaBH₄ (56.00 mg, 1.48 mmol). The reaction mixture was stirred at 0°C to

room temperature for overnight and then quenched by the dropwise addition of acetone (1 mL). The resulting solution was extracted three times with CH_2Cl_2 and the combined organic portions were dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes* (*trans-72* and *cis-73*) in 32% yield (0.0303 g) and 15% yield (0.0139 g) respectively, 99% conversion from the starting material.

Table 26Data of trans-isomer 72

Physical properties		
white crystals	SY	
m.p. 228.9-229.9°C [lit. ²¹	m.p. 220-221°C (CH ₂ Cl ₂ /hexane)]	
IR spectroscopy (Evaporated thin film)		
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrations	
2951, 2870	-CH ₂ , -CH ₃ stretching	
1774	C=O stretching of ester	
1459	–CH ₂ , –CH ₃ bending	
1205	C–O stretching of ester	
nt≌ hv (hiang Mai Unive	

Table 26 Data of trans-isomer 72 (continued)
--

NMR spectroscopy ¹ H-NMR (400 MHz) in CDCl ₃		
2.11, 2.55, 4.38	ABX system ($J = 12.5, 3.0, 2.4 \text{ Hz}$), 3H, H _a , H _b , H _x	
2.96	<i>s</i> , 3H, COOCH ₃ -7'	
3.05	$d (J = 10.2 \text{ Hz}), 1\text{H}, \text{H}_{c}$	
4.66	<i>s</i> , 1H, H _y	
6.05	$d (J = 10.2 \text{ Hz}), 1\text{H}, \text{H}_{\text{d}}$	
7.05-7.44	<i>m</i> , 13H, ArH-1, 2, 3, 4, 5, 6, 7, 8, 2", 3", 4", 5", 6"	
¹³ C-NM	IR (100 MHz) in CDCl ₃ (ppm)	
37.41 (CH ₂ -12), 43.82 (CH- 59.02 (CH-4'), 78.35 (CH-5') 126.60, 126.68, 127.61, 128.64 6"), 137.19, 137.79, 139.89, 175.98 (C _q -6")	9), 46.67 (CH-10), 51.45 (C _q -11), 51.82 (CH ₃ -7')), 123.18, 123.44, 124.79, 125.16, 125.97, 126.32 4, 128.86 (CH-ArH-1, 2, 3, 4, 5, 6, 7, 8, 2", 3", 4", 5' 143.32 (C _q -ArH-4a, 8a, 9a, 10a), 168.11 (C _q -2")	
Mass spectrometry (ESI-MS)	12361 1	
Molecular weight	m/z	
Calc. of C ₂₈ H ₂₄ O ₄	422.1518 (M ⁺)	
Lock mass of C ₃₂ H ₄₁ NO ₂	$472.3215 (M + H)^+$	
Calc. for $C_{56}H_{43}O_8$	843.2985 (M – H) ⁺	
Found for C ₅₆ H ₄₃ O ₈	$843.2943 (M - H)^+$	

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม่ Copyright[©] by Chiang Mai University All rights reserved

Table 27Data of cis-isomer 73

Physical properties		
white crystals		
m.p. 220.0-221.0°C [lit	. ²¹ m.p. 220-221°C (CH ₂ Cl ₂ /hexane)]	
IR spectroscopy (Evaporated thin film)		
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibrations	
2951	-CH ₂ , -CH ₃ stretching	
1795	C=O stretching of ester	
1454	-CH ₂ , -CH ₃ bending	
1143	C–O stretching of ester	
MR spectroscopy		
¹ H-	NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of protons	
2.20, 2.26, 4.49	<i>ABX</i> system ($J = 12.4, 3.1, 2.3$ Hz), 3H, H _a , H _b ,	
	H _x	
2.54	$d (J = 5.6 \text{ Hz}), 1\text{H}, \text{H}_{c}$	
3.28	s, 3H, COOCH ₃ -7'	
4.77	s, 1H, H _y	
5.51	$d (J = 5.6 \text{ Hz}), 1\text{H}, \text{H}_{\text{d}}$	
6.97 – 7.56	<i>m</i> , 13H, ArH-1, 2, 3, 4, 5, 6, 7, 8, 2", 3", 4", 5", 6"	
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
78 (CH ₂ -12), 43.75 (CH-	.9), 46.87 (CH-10), 50.87 (Cq-11), 51.36 (CH ₃ -7'),	
1.03(CH-4'), 76.89 (CH-5')	, 123.96, 124.35, 125.36, 125.97, 125.99, 126.25,	
26.76, 127.46, 128.20, 128.4	6 (CH-ArH-1, 2, 3, 4, 5, 6, 7, 8, 2", 3", 4", 5", 6"),	

 Table 27
 Data of cis-isomer 73 (continued)

¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)			
139.33, 140.65, 142.01, 143.27 (C _q -ArH-4a, 8a, 9a, 10a), 168.28 (C _q -2"), 176.74 (C _q -6")			
Mass spectrometry (ESI-MS)			
Molecular weight	m/z		
Calc. of $C_{28}H_{24}O_4$	422.1518 (M ⁺)		
Lock mass of C ₃₂ H ₄₁ NO ₂	$472.3215 (M + H)^+$		
Calc. for C ₅₆ H ₄₃ O ₈	$843.2985 (M - H)^+$		
Found for C ₅₆ H ₄₃ O ₈	843.2943 (M – H) ⁺		

2.5.1.2 1 mol% of TADDOL-anthracene catalyst (2'S,11R)-70a in

THF:H₂O (4:0.5)

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-71 (0.1027 g, 0.23 mmol), compound (2'*S*,11*R*)-70a (0.0013 g, 2.81 µmol, 1 mol%) in a solution of THF and H₂O (4.5 mL, 4 : 0.5) and NaBH₄ (0.0445 g, 1.18 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9*,10-*dihydro-9*,10-*ethanoanthracenes* (*trans-*72 and *cis-*73) 47% yield (0.0450 g) and 11% yield (0.0105 g) respectively, 100% conversion from the starting material.

2.5.1.3 <u>5 mol% of TADDOL-anthracene catalyst (2'S,11R)-70a</u>

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-**71** (0.1016 g, 0.23 mmol), compound (2'*S*,11*R*)-**70a** (0.0057 g, 0.01 mmol, 5 mol%) in THF (6 mL) and NaBH₄ (0.0429 g, 1.13 mmol). Purification of the crude product by

PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes (trans-***72** and *cis-***73**) in 24% yield (0.0227 g) and 20% yield (0.016 g) respectively, 83% conversion from the starting material.

2.5.1.4 <u>10 mol% of TADDOL-anthracene catalyst (2'S,11R)-70a</u>

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-71 (0.1067 g, 0.24 mmol), compound (2'S,11*R*)-70a (0.0116 g, 0.03 mmol, 10 mol%) in THF (6 mL) and NaBH₄ (0.0631 g, 1.67 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes (trans-*72 and *cis-*73) in 10% yield (0.0096 g) and 25% yield (0.0250 g) respectively, 100% conversion from the starting material.

2.5.1.5 15 mol% of TADDOL-anthracene catalyst (2'S,11R)-70a

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-71 (0.1002 g, 0.23 mmol), compound (2'*S*,11*R*)-**70a** (0.0175 g, 0.04 mmol, 15 mol%) in THF (6 mL) and NaBH₄ (0.0464 g, 1.23 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes* (*trans-***72** and *cis-***73**) in 43% yield (0.0362 g) and 13% yield (0.0106 g) respectively, 89% conversion from the starting material.

2.5.1.6 20 mol% of TADDOL-anthracene catalyst (2'S,11R)-70a

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-71 (0.1013 g, 0.23 mmol), compound (2'*S*,11*R*)-70a (0.0228 g, 0.05 mmol, 20 mol%) in THF (6 mL) and NaBH₄ (0.0545 g, 1.44 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes (trans-*72 and *cis-*73) in 35% yield (0.0299 g) and 13% yield (0.0112 g) respectively, 89% conversion from the starting material.

2.5.2 Reduction of β -keto ester (±)-71 in the presence of TADDOLanthracene catalyst (2'*R*,11*S*)-70a

2.5.2.1 <u>1 mol% of TADDOL-anthracene catalyst (2'R,11S)-70a</u>

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-71 (0.1063 g, 0.24 mmol), compound (2'*R*,11*S*)-70a (0.0016 g, 3.46 µmol, 1 mol%) in THF (6 mL) and NaBH₄ (0.0642 g, 1.70 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes* (*trans-*72 and *cis-*73) in 40% yield (0.0655 g) and 2% yield (0.0022 g) respectively, 100% conversion from the starting material.

2.5.2.2 <u>1 mol% of TADDOL–anthracene catalyst (2'*R*,11*S*)-**70a** in <u>THF:H₂O (4:0.5)</u></u>

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-71 (0.1255 g, 0.28 mmol), compound (2'*R*,11*S*)-70a (0.0015 g, 3.24 µmol, 1 mol%) in a

solution of THF and H₂O (4.5 mL, 4:0.5) and NaBH₄ (0.0458 g, 1.21 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes* (*trans-***72** and *cis-***73**) in 5% yield (0.0062 g) and 7% yield (0.0087 g) respectively, 100% conversion from the starting material.

2.5.2.3 5 mol% of TADDOL-anthracene catalyst (2'R,11S)-70a

Prepared according to typical procedure in 2.3.1.1, β -keto diester adduct (±)-**71** (0.1474 g, 0.33 mmol), compound (2'*R*,115)-**68** (0.0077 g, 0.02 mmol, 5 mol%) in THF (6 mL) and NaBH₄ (0.0687 g, 1.82 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes* (*trans-***72** and *cis-***73**) in 39% yield (0.0530 g) and 16% yield (0.0219 g) respectively, 100% conversion from the starting material.

2.5.2.4 <u>10 mol% of TADDOL-anthracene catalyst (2'R,11S)-70a</u>

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-71 (0.11194 g, 0.27 mmol), compound (2'*R*,11*S*)-**68** (0.0137 g, 0.03 mmol, 10 mol%) in THF (6 mL) and NaBH₄ (0.0746 g, 1.97 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes* (*trans-*72 and *cis-*73) in 40% yield (0.0444 g) and 16% yield (0.0175 g) respectively, 100% conversion from the starting material.

2.5.2.5 <u>15 mol% of TADDOL-anthracene catalyst (2'R,11S)-70a</u>

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-**71** (0.1030 g, 0.23 mmol), compound (2'*R*,11*S*)-**70a** (0.0199 g, 0.04 mmol, 15 mol%) in THF (6 mL) and NaBH₄ (0.0458 g, 1.21 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes (trans-72 and <i>cis-***73**) in 50% yield (0.0475 g) and 16% yield (0.0155 g) respectively, 100% conversion from the starting material.

2.5.2.6 20 mol% of TADDOL-anthracene catalyst (2'R,11S)-70a

Prepared according to typical procedure in 2.5.1.1, β -keto diester adduct (±)-71 (0.1325 g, 0.30 mmol), compound (2'*R*,11*S*)-70a (0.0288 g, 0.06 mmol, 5 mol%) in THF (6 mL) and NaBH₄ (0.0729 g, 1.93 mmol). Purification of the crude product by PLC using EtOAc : hexane = 1 : 9 as developing solvent afforded two diastereomeric spiro–lactones, *tetrahydro-4'-carbomethoxy-5'-phenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes* (*trans-*72 and *cis-*73) in 46% yield (0.0562 g) and 13% yield (0.0157 g) respectively, 100% conversion from the starting material.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved