TABLE OF CONTENTS

	Page
ACKNOWLEGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
ABBREVIATIONS AND SYMBOLS	xix
CHAPTER 1 INTRODUCTION	1
1.1 Methods of separation	1
1.1.1 Separation of a Solid-Solid Mixture	4
1.1.1.1 Sublimation	4
1.1.1.2 Magnetic Separation	4
1.1.1.3 Solvent Extraction	5
1.1.2 Separation of a Solid-Liquid Mixture	5
1.1.2.1 Suspension	6
1) Sedimentation or Decantation	6
2) Centrifugation	6
3) Filtration	7

viii

		1.1.2.2 Solution	8
		1) Evaporation	8
		2) Crystallization	9
		3) Simple Distillation	9
		1.1.2.3 Colloid	10
		Chromatography	10
	1.1.3	Separation of a Liquid – Liquid Mixture	11
		1.1.3.1 Fractional distillation	11
		1.1.3.2 Funnel separation	12
1.2	Solver	nt Extraction Method	12
	1.2.1	Heat Reflux Extraction (HRE)	13
	1.2.2	Soxhlet Extraction (SE)	13
	1.2.3	Ultrasound-assisted Extraction (UAE)	14
	1.2.4	Microwave-assisted Extraction (MAE)	15
	1.2.5	Subcritical Water Extraction (SWE)	16
1.3	Purific	cation method	19
	1.3.1	Precipitation	19
	1.3.2	Dialysis	20
1.4	Experi	imental techniques	21
	1.4.1	Ultraviolet and Visible spectrophotometry	21
	1.4.2	Fourier Transform Infrared spectroscopy (FT-IR)	22
1.5	Silks		26
	1.5.1	Composition of raw silk cocoon	29
	1.5.2	Pigments in silk cocoon	31

1.5.2.1 Carotenoids	34
1.5.2.2 Flavonoids	38
1.5.3 Solvent extraction of pigments	41
1.5.4 Techniques for pigment quantification	44
1.5.5 Structure of silk protein	45
1.5.6 Interactions between silk fibroin and silk sericin	46
1.5.7 Amino acid composition of silk proteins	47
1.5.8 Silk sericin	49
1.5.9 Silk fibroin	51
1.6 Research Objectives	53
CHAPTER 2 EXPERIMENTAL	54
2.1 Chemicals, materials and equipment	54
2.1.1 Chemicals	54
2.1.2 Materials	55
2.1.3 Equipment	55
2.2 Preparation of solutions	56
2.3 Procedures	59
2.3.1 Pigment Extraction and Determination of total pigments	59
2.3.1.1 Solvent selection	60
2.3.1.2 Factors affecting pigments extraction	61
1) Effect of methanol and ethanol concentrations	61
2) Effect of temperature and extraction time	62
3) Effect of solvent polarity	62

X

4) Effect of acidity/alkalinity	63
5) Effect of ionic strength	63
2.3.1.3 Determination of the total pigments	64
2.3.2 Extraction and Determination of the sericin protein	64
2.3.3 Extraction and Determination of the fibroin protein	65
2.3.4 Structural characterizations of fibroin sericin and pigment	
powders	65
CHAPTER 3 RESULTS AND DISCUSSION	66
3.1 Pigment Extraction and Determination of total pigments	66
3.1.1 Solvent selection	67
3.1.2 Factors affecting pigment extraction	69
3.1.2.1 Effect of methanol and ethanol concentrations	71
3.1.2.2 Effect of temperature and extraction time	74
3.1.2.3 Effect of solvent polarity	76
3.1.2.4 Effect of acidity/alkalinity	77
3.1.2.5 Effect of ionic strength	79
3.1.3 Determination of total pigments	82
3.2 Extraction and Determination of the sericin and fibroin proteins	86
3.3 Structural determination of sericin fibroin and pigment powders	S 91
CHAPTER 4 CONCLUSION	98
REFERENCES	100
APPENDIX	116

xi

CURRICULM VITAE	121
THE RELEVANCE OF THE RESEARCH WORK TO THAILAND	131

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		
1.1	Common separation methods in chemistry laboratory	3
1.2	Characteristic infrared bands of peptide linkage	23
1.3	The different species of silkworms and the types of leaves	27
1.4	The chemical composition of silk	30
1.5	Amino acid composition of fibroin and sericin	48
3.1	The absorbances of total carotenoid extract in Thai yellow silk cocoon,	
	var. Nangnoi Si Sa Ket (Nan province) in each extracted batch	83
3.2	The weight of total pigment in Thai yellow silk cocoon,	
	var. Nangnoi Si Sa Ket (Nan and Chiang Mai provinces)	85
3.3	Weights and percentages of pigment, sericin and fibroin powder	90
3.4	Frequency ranges of characteristic absorption bands of amides in	
	crystalline state	92
3.5	Comparison of IR absorption bands of fibroin as amide I, amide II and	
	amide III	96
3.6	Comparison of IR absorption bands of sericin as amide I, amide II	96

xiii

LIST OF FIGURES

Figu	re AREHA ?	Page
1.1	Diagram illustrating methods for mixture separation	2
1.2	Sublimation of ammonium chloride	4
1.3	Separation of a magnetic substance by a magnet	5
1.4	Centrifugation method for separating particles;	
	(a) differential centrifugation and (b) rate-zonal centrifugation	7
1.5	Rotary evaporator	8
1.6	Simple distillation	9
1.7	Column chromatography	10
1.8	Fractional distillation	11
1.9	Funnel separation	12
1.10	Heat reflux extraction	13
1.11	Soxhlet extraction	14
1.12	Assemble of ultrasound-assisted soxhlet extraction	15
1.13	The heating principles of classical conduction and the MAE	16
1.14	The phase diagram of water	17
1.15	Schematic representation of hydrophobic, negatively and positively	
	charged areas of general protein	19

1.16	Dialysis	20
1.17	Systematic diagram of UV–Vis instrument	22
1.18	Characteristic amide bands as exhibited by a capillary film of	
	N- methylacetamide	24
1.19	Diagram of the components of infrared spectrophotometer	24
1.20	Source of silk and processes of making silk fiber	28
1.21	SEM images of (a) the structure of a silk cocoon and (b) cross sectional	
	structure of silk fiber showing the fibroin-sericin co-existence	29
1.22	Application of sericin in various industries	30
1.23	Chemical structure of (a) lutein and (b) quercetin	32
1.24	Silk cocoon with different colors (a) pink cocoon; (b) yellow;	
	(c) whitish sasa; (d) deep sasa; (e) golden-yellow; (f) white	33
1.25	Some example of silk cocoons found in Thailand	34
1.26	Basic structure of carotenoid	35
1.27	Chemical structure of some carotenoids	36
1.28	Role of carotenoids in the prevention of chronic diseases	38
1.29	Basic flavonoid structure	39
1.30	Chemical structure of some flavonoids	40
1.31	Common structure of protein	45
1.32	Secondary structure of proteins include random coil (no structure),	
	alpha-helix, the beta-sheet, and the turn	46
1.33	Schematic representation of the intermolecular hydrogen bonding at the	
	boundary of silk fibroin and silk sericin	47

1.34	Photographs of sericin film, gel and sponge comprised of various sericin	
	solutions (SL-1A, SL-1B and SL-1C)	51
2.1	Reflux extraction apparatus	60
2.2	Reflux extraction apparatus by heating in a water bath	62
3.1	Nangnoi Si Sa Ket silk cocoon samples of B. mori silkworms obtained	
	from Nan and Chiang Mai provinces in Thailand	67
3.2	The yellow color of pigment extracted by various solvents	67
3.3	Chemical structures of (a) lutein (carotenoid) and (b) quercetin (flavonoid)	68
3.4	UV-Vis spectrum of pigment extracted from silk cocoon with	
	80% v/v ethanol	69
3.5	(a) UV-Vis spectrum of the purified lutein- binding protein dissolved in	
	20 mM Tris-HCl, pH 7.0 solution, (b) UV-VIS spectrum of lutein	
	dissolved in acetone/methanol	70
3.6	UV-VIS spectrum of the quercetin	71
3.7	Effect of MeOH concentrations on the extraction of pigments	72
3.8	Effect of EtOH concentrations on the extraction of pigments	72
3.9	Absorbances of the extracted pigments in various concentrations of MeOH	
	solution at different wavelengths	73
3.10	Absorbances of the extracted pigments in various concentrations of EtOH	
	solution at different wavelengths	73
3.11	The effect of temperature and extraction time on pigment extraction	75
3.12	Absorbances of the pigment extracted by various polarities solvents	76
3.13	Effect of the % acetic acid added in 80% v/v EtOH solution on pigment	
	extraction	77

3.14	Effect of concentrations of NaOH on pigment extraction	78
3.15	The electrostatic interaction between lutein and silk fiber	79
3.16	The pH value of each salt containing solution	80
3.17	Effect of salt addition on pigment extraction	80
3.18	Effect of CH ₃ COONa concentrations on pigment extraction	81
3.19	Pigment solution obtained in each extraction	82
3.20	Process of pigment extraction: (a) refluxing, (b) extracting, (c) filtering,	
	(d) cocoon residue, (e) pigment solution (f) rotary evaporating and	
	(g) freeze-drying	84
3.21	The freeze-dried pigment powder	84
3.22	The freeze-dried sericin powder	87
3.23	23 Process of sericin extraction: (a) silk cocoon after pigment removal,	
	(b) silk degumming (c) degummed cocoon, (d) degumming solution and	
	precipitated sericin, (e) centrifugation, (f) dialysis and (g) freeze-drying	88
3.24	Processes of preparation of fibroin powder: (a) degummed silk,	
	(b) dissolving, (c) dialysis, (d) freeze-drying	89
3.25	The SF powder prepared by using different temperature in the process of	
	dissolving SF fiber (a) temperature at $110 \pm 5^{\circ}$ C, (b) temperature below	
	105°C	90
3.26	The vibrations responsible for the amide I and amide II bands	92
3.27	FT-IR spectra of fibroin powder (NAN)	93
3.28	FT-IR spectra of fibroin powder (Chiang Mai)	94
3.29	FT-IR spectra of sericin powder (NAN)	95
3.30	FT-IR spectra of sericin powder (Chiang Mai)	95

97

3.32 FT-IR spectra of lutein

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

A	Absorbance
e.g.	for example
FT-IR	Fourier transform infrared spectroscopy
g	gram
h	hour
mg	milligram
mg/mL	milligram per milliliter
М	molarity
min	minute
mm	millimeter
mL	milliliter
nm 41 III	nanometer
v/v	volume by volume
w/v	weight by volume
α	alpha
t ^β by Chia	beta Mai University
°C	degree Celsius
SD 6 1 1 5	standard deviation

xix

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved