CHAPTER 2

EXPERIMENTAL

Dichloromethane and amines (piperidine, pyrrolidine, diisopropylamine, dibutylamine and triethylamine) were dried over CaH₂ and distilled before used. Tetrahydrofuran (THF) was freshly distilled from sodium benzophenone ketyl under nitrogen. n-Butyllithium was purchased from Fluka as solution in hexanes, and titrated periodically according to the 2,5-dimethoxybenzyl alcohol method.⁹⁵ Flash column chromatography was performed employing Merck silica gel 60 and Merck silica gel 60H. Preparative thin layer chromatography (PLC) was carried out using Merck silica gel 60 PF₂₅₄. Melting points were determined with a Gallenkamp Electrothermal Melting Point apparatus and are uncorrected. Infrared spectra were recorded on a FT-IR model TENSER 27 (Bruker) spectrometer. Nuclear magnetic resonance spectra (¹H, ¹³C) were recorded on Bruker DRX 400, 500 MHz spectrometers. All NMR spectra were measured in deuterochloroform (CDCl₃) and chemical shifts were reported as parts per million (ppm) relative to an internal CHCl₃. Coupling constants (J values) were measured in hertz (Hz). Splitting patterns were designated as follows: s, singlet; brs, broad singlet; d, doublet; dd, double doublet; ddd, doublet of double doublet; t, triplet; q, quartet; m, multiplet. Mass spectra (electrospray ionization mode, ESI-MS) were recorded on micromass Q-TOF-2Tm (Waters) spectometer.

Copyright[©] by Chiang Mai University All rights reserved

2.1 Extraction of piperine (75) and preparation of piperic acid (105)

2.1.1 Extraction 5-(3,4-methylenedioxy)phenyl-1-(1-piperidinyl)-2*E*,4*E*pentadien-1-one (piperine, 75)

Black piper seeds (*P. nigrum* L.) (10.00 g) cultivated in Thailand were extracted in soxhlet extractor with refluxing EtOH (300 ml) for 1 h. The crude extract was evaporated to dryness and then purified by flash column chromatography on silica gel with elution of EtOAc/CH₂Cl₂/hexane (2.0:0.5:7.5) to afford piperine (**75**) in 1% yield (0.078 g).

Table 2.1 Data of piperine (75)

224	Physical properties
Yellow crystals	
Melting point (m.p.) 13	30.8–132.0 °C (EtOH)
$R_f = 0.27$ (EtOAc/CH ₂ C	Cl ₂ /hexane, 2.0:0.5:7.5)
	NMR spectroscopy
¹ H·	-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
1.54–1.71	m, 6H, CH ₂ -3", 4", 5"
3.53	brs, 2H, CH ₂ -2" or 6"
3.64	brs, 2H, CH ₂ -2" or 6"
5.98	s, 2H, CH ₂ -7′
6.44	d (<i>J</i> = 14.6 Hz), 1H, CH-2
6.89	dd (<i>J</i> = 8.0, 1.1 Hz), 1H, CH-6'
6.98	d (<i>J</i> = 1.0 Hz), 1H, CH-2'
7.40	ddd (<i>J</i> = 14.7, 8.2, 1.6 Hz), 1H, CH-3
6.70–6.83	m, 3H, CH-4, 5, 5'

 Table 2.1 Data of piperine (75) (continued)

NMR spectroscopy			
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)			
24.2(3) (CH ₂ -3", 4", 5"), 43.2, 46.1 (CH ₂ -2", 6"), 100.8 (CH ₂ -7'), 105.2 (CH-2'),			
108.0 (CH-5'), 119.6 (CH-6'), 122.1 (CH-2), 124.9 (CH-4), 130.6 (C _q -1'), 137.8			
(CH-5), 142.1 (CH-3), 147.7, 147.8 (C _q -3' or 4'), 165.0 (C _q -1)			

2.1.2 Preparation of 5-(3,4-methylenedioxy)phenyl-2*E*,4*E*-pentadienoic acid (piperic acid, 105)⁹⁶

Piperine (75, 101.85 g, 356.90 mmol) in a 250 ml round-bottomed flask equipped with a magnetic stirrer, MeOH/H₂O (1:2, 150 ml) were added. It was refluxed with KOH (1.5 equiv., 30.10 g, 535.40 mmol) allowed to 24 h. pH of the crude product was adjusted to 3-4 with 10% hydrochloric acid (HCl) until yellow solid was observed. The yellow solid was filtered and recrystallized with ethanol (EtOH) to give piperic acid (105) (77.89 g), 100% conversion from the starting material.

Table 2.2 Data of piperic acid (105)

pyright b	Physical p	oroperties	al	U		vei	S I	ΓY
Yellow crystals	hts	re	S	е	r	V	е	
Melting point (m.p.) 206.0–208.1°C	C (EtOH)						

	NMR spectroscopy		
¹ H-NMR (400 MHz) in CDCl ₃			
Chemical shift (δ , ppm)	Type of proton		
5.92	d (<i>J</i> = 15.1 Hz), 1H, CH-2		
6.05	s, 2H, CH ₂ -7'		
6.92	d (<i>J</i> = 8.0 Hz), 1H, CH-5		
6.96	s, 1H, CH-2′		
6.97	d (<i>J</i> = 1.5 Hz), 1H, CH-6'		
7.00	dd (<i>J</i> = 8.0, 1.5 Hz), 1H, CH-4		
7.23	d (<i>J</i> = 1.5 Hz), 1H, CH-5'		
7.25–7.32	m, 1H, CH-3		
12.19	brs, 1H, OH		
¹³ C-NN	MR (100 MHz) in CDCl ₃ (ppm)		
107.2 (CH ₂ -7'), 111.3 (CH-2	'), 113.9 (CH-5'), 126.2 (CH-6'), 128.6 (CH-2), 130.4		
(CH-4), 136.5 (C _q -1'), 145.6	5 (CH-5), 150.6 (CH-3), 152.2, 152.5 (C _q -3' or 4'),		
172.6 (C _q -1)			
Ma	ass spectrometry (ESI-MS)		
Molecular weight	m/z.		
Calc. for $C_{12}H_{10}O_4$	218.0579.[M] ⁺		
Lock mass of C7H11N2O2S	215.0602 [M+H] +		
Calc. for $C_{12}H_{11}O_4$	219.0657 [M+H] ⁺		
Found for C ₁₂ H ₁₁ O ₄	219.0657 [M+H] ⁺		

Table 2.2 Data of piperic acid (105) (continued)

2.2 Preparation of pentadiene amide derivatives 112b-d from piperic acid (105)

2.2.1 Preparation of 5-(3,4-methylenedioxy)phenyl-1-(1-pyrrolidinyl)-2*E*,4*E*-pentadien-1-one (112b)

General procedure I

Piperic acid (105) (5.00 g, 22.9 mmol) in a 100 ml round-bottomed flask equipped with a magnetic stirrer, fitted with a three-way stopcock with a septum cap and nitrogen inlet. CH_2Cl_2 20 ml was added. It was treated with oxalyl chloride ((COCl)₂) (1.5 equiv., 2.9 ml, 34.4 mmol) at 0 °C for 15 minutes to room temperature 2 h. After the period, excess oxalyl chloride ((COCl)₂) was removed under reduced pressure. CH_2Cl_2 and NEt₃ (2.0 equiv., 6.4 ml, 45.8 mmol) was added at 0 °C stirred for 15 minutes. Pyrrolidine (109) (2.5 equiv., 4.7 ml, 57.3 mmol) was added at 0 °C to room temperature 2 h. Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (1.0:9.0) affords pentadiene amide 112b in 70% yield (4.34 g), 95% conversion from the starting material.

112b

Physical properties		
White crystals		
Melting point (m.p.) 14	3.8–144.9 °C (CH ₂ Cl ₂ /hexane)	
$R_f = 0.08$ (EtOAc/hexan	e, 1.0:9.0)	
IR spec	troscopy (evaporated thin film)	
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration	
1252	C–N stretching of amide	
1590, 1443	C=C stretching of aromatic	
1635	C=O stretching of amide	
2971, 2875	C-H stretching	
10,6	NMR spectroscopy	
H-	NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton	
1.92	brs, 4H, CH ₂ -3", 4"	
3.56	t (<i>J</i> = 6.8 Hz), 4H, CH ₂ -2", 5"	
5.96	s, 2H, CH ₂ -7'	
6.24	d (<i>J</i> = 14.7 Hz), 1H, CH-2	
6.66–6.84	m, 3H, CH-4, 5, 5'	
6.89	dd (<i>J</i> = 8.0, 1.6 Hz), 1H, CH-6'	
6.97	d (<i>J</i> = 1.6 Hz), 1H, CH-2'	
7.48	dd (<i>J</i> = 14.8, 10.3 Hz), 1H, CH-3	
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
25.14(2) (CH ₂ -3", 4"), 46.34(2) (CH ₂ -2", 5"), 101.25 (CH ₂ -7'), 105.67 (CH-2'),		
108.44 (CH-5'), 120.81 (CH-2), 122.64 (CH-6'), 125.07 (CH-4), 130.88 (C _q -1'),		
139.09 (CH-5), 142.39 (CH-3)), 148.20, 148.16 (C _q -3' or 4'), 165.01 (C _q -1)	

Table 2.3 Data of pentadiene amide 112b (continued)

Mass spectrometry (ESI-MS)			
Molecular weight	m/z.		
Calc. for C ₁₆ H ₁₈ NO ₃	272.1286 [M+H] ⁺		
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 [M+Na] ⁺		
Calc. for C ₁₆ H ₁₇ NO ₃ Na	294.1106 [M+Na] ⁺		
Found for C ₁₆ H ₁₇ NO ₃ Na	294.1109 [M+Na] ⁺		

2.2.2 Preparation of 5-(3,4-methylenedioxy)phenyl-1-(1-*N*,*N*-diisopropyl)-2*E*,4*E*-pentadien-1-one (112c)

According to the *general procedure I* in **2.2.1**, piperic acid (**105**) (1.23 g, 5.6 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 0.7 ml, 8.4 mmol), NEt₃ (2.0 equiv., 1.2 ml, 8.4 mmol), diisopropylamine (**110**) (1.5 equiv., 1.2 ml, 8.4 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (2.0:8.0) affords pentadiene amide **112c** in 82% yield (1.39 g), 99% conversion from the starting material.

IR spectroscopy (evaporated thin film)		
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration	
1252	C–N stretching of amide	
1443, 1589	C=C stretching of aromatic	
1635	C=O stretching of amide	
2968	C–H stretching	
2	NMR spectroscopy	
¹ H-N	IMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton	
1.28	brs, 6H, CH ₃ -3", 4", 6" or 7"	
1.34	brs, 6H, CH ₃ -3", 4", 6" or 7"	
3.81	brs, 1H, CH-2" or 5"	
4.04	brs, 1H, CH-2" or 5"	
5.94	s, 2H, CH ₂ -7'	
6.36	d (<i>J</i> = 14.6 Hz), 1H, CH-2	
6.69–6.73	m, 2H, CH-4, 5′	
6.75	d (<i>J</i> = 8.0 Hz), 1H, CH-5	
6.87	dd (<i>J</i> = 8.1, 1.7 Hz), 1H, CH-6'	
6.97	d (<i>J</i> = 1.6 Hz), 1H, CH-2′	
7.42	ddd (<i>J</i> = 14.6, 6.2, 4.1 Hz), 1H, CH-3	
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
20.68(2), 20.47(2) (CH ₃ -3", 4", 6", 7"), 45.72, 47.81 (CH-2" or 5"), 101.17 (CH ₂ -		
7'), 105.58 (CH-2'), 108.37 (CH-5'), 122.33 (CH-2), 122.85 (CH-6'), 125.43 (CH-		
4), 131.02 (C _q -1'), 137.77 (CH-5), 141.31 (CH-3), 147.96, 148.10 (C _q -3' or 4'),		
166.21 (C_q -1)		

Table 2.4 Data of pentadiene amide 112c (continued)

Table 2.4 Data of pentadiene amide 112c (continued)

Mass spectrometry (ESI-MS)			
Molecular weight	m/z.		
Calc. for C ₁₈ H ₂₄ NO ₃	302.1756 [M+H] ⁺		
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 [M+Na] ⁺		
Calc. for C ₁₈ H ₂₃ NO ₃ Na	324.1576 [M+Na] ⁺		
Found for C ₁₈ H ₂₃ NO ₃ Na	324.1575 [M+Na] ⁺		

2.2.3 Preparation of 5-(3,4-methylenedioxy)phenyl-1-(1-N,N-dibutyl)-

According to the *general procedure I* in **2.2.1**, piperic acid (**105**) (3.10 g, 14.2 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 1.8 ml, 21.3 mmol), NEt₃ (1.5 equiv., 3.0 ml, 21.3 mmol), dibutylamine (**111**) (1.5 equiv., 3.6 ml, 21.3 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (2.0:8.0) as eluent, affords pentadiene amide **112d** in 86% yield (3.97 g), 98% conversion from the starting material.

IR spectroscopy (evaporated thin film)		
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration	
1196	C–N stretching of amide	
1447, 1594	C=C stretching of aromatic, double bond	
1642	C=O stretching of amide	
2874, 2932, 2960	C–H stretching	
5.	NMR spectroscopy	
¹ H-N	IMR (400 MHz) in CDCl ₃	
Chemical shift (<i>b</i> , ppm)	Type of proton	
0.85–1.02	m, 6H, CH ₃ -5", 9"	
1.26–1.41	m, 4H, CH ₂ -4", 8"	
1.43–1.66	m, 4H, CH ₂ -3", 7"	
3.30	t ($J = 7.1$ Hz), 2H, CH ₂ -2" or 6"	
3.37	t ($J = 7.1$ Hz), 2H, CH ₂ -2" or 6"	
5.94	s, 2H, CH ₂ -7'	
6.33	d (<i>J</i> = 14.6 Hz), 1H, CH-2	
6.66–6.80	m, 3H, CH-4, 5, 5'	
6.87	dd (<i>J</i> = 8.1, 1.7 Hz), 1H, CH-6'	
6.97	d (<i>J</i> = 1.6 Hz), 1H, CH-2'	
7.42	ddd (<i>J</i> = 14.6, 6.5, 3.8 Hz), 1H, CH-3	
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
3.79(2) (CH ₃ -5", 9"), 20.06, 20.18 (CH ₂ -4" or 8"), 30.03, 31.84 (CH ₂ -3" or 7"),		
6.54, 47.85 (CH ₂ -2" or 6"), 101.18 (CH ₂ -7"), 105.67 (CH-2"), 108.37 (CH-5"),		
20.13 (CH-2), 122.43 (CH-6'), 125.29 (CH-4), 130.94 (C _q -1'), 138.34 (CH-5),		
42.41 (CH-3), 148.08, 148.11 (C _q -3' or 4'), 166.09 (C _q -1)		

Table 2.5 Data of pentadiene amide 112d (continued)

Table 2.5 Data of pentadiene amide 112d (continued)

Mass spectrometry (ESI-MS)			
Molecular weight	m/z.		
Calc. for C ₂₀ H ₂₈ NO ₃	330.2069 [M+H] ⁺		
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 [M+Na] ⁺		
Calc. for C ₂₀ H ₂₇ NO ₃ Na	352.1889 [M+Na] ⁺		
Found for $C_{20}H_{27}NO_3Na$ 352.1888 $[M+Na]^+$			

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

2.3.1 Preparation of 3-(3,4-methylenedioxy)phenyl-1-(1-piperidinyl)-2E-

According to the *general procedure I* in **2.2.1**, 3,4-methylenedioxy cinnamic acid (**106**) (1.50 g, 7.8 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 1.0 ml, 11.7 mmol), NEt₃ (2.0 equiv., 2.2 ml, 15.6 mmol), piperidine (**108**) (2.5 equiv., 1.9 ml, 19.5 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (2.0:8.0) as eluent, affords α,β -unsaturated amide **113a** in 96% yield (1.4896 g), 76% conversion from the starting material.

Table 2.6 Data of α,β -unsaturated amide 113aPhysical propertiesWhite crystalsMelting point (m.p.) 89.0–89.9 °C (CH₂Cl₂/hexane) $R_f = 0.30$ (EtOAc/hexane, 2.0:8.0)

IR spectr	oscopy (evaporated thin film)		
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration		
1249	C–N stretching of amide		
1490, 1597	C=C stretching of aromatic		
1644	C=O stretching of amide		
2856, 2936	C–H stretching		
8.	NMR spectroscopy		
¹ H-N	MR (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton		
1.54–1.73	m, 6H, CH ₂ -3'', 4'', 5''		
3.50-3.70	m, 4H, CH ₂ -2'', 6"		
5.98	s, 2H, CH ₂ -7'		
6.73	d (<i>J</i> = 15.3 Hz), 1H, CH-2		
6.79	d (<i>J</i> = 8.0 Hz), 1H, CH-5'		
6.99	dd (<i>J</i> = 8.1, 1.7 Hz), 1H, CH-6'		
7.03	d (<i>J</i> = 1.7 Hz), 1H, CH-2'		
7.57	d (<i>J</i> = 15.3 Hz), 1H, CH-3		
¹³ C-NMF	R (100 MHz) in CDCl ₃ (ppm)		
24.53, 26.15(2) (CH ₂ -3", 4", 5"	"), 45.48(2) (CH ₂ -2", 6"), 101.41 (CH ₂ -7'), 106.37		
(CH-2'), 108.50 (CH-5'), 114.6	59 (CH-6'), 123.95 (CH-2), 129.68 (C _q -1'), 143.14		
(CH-3), 148.21, 148.99 (C _q -3' o	r 4'), 165.73 (C _q -1)		
Mass	spectrometry (ESI-MS)		
Molecular weight	s re ^{<i>m/z</i>} erve		
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 [M+Na] ⁺		
Calc. for C ₁₅ H ₁₇ NO ₃ Na	282.1106 [M+Na] ⁺		
Found for C ₁₅ H ₁₇ NO ₃ Na	282.1106 [M+Na] ⁺		

Table 2.6 Data of α , β -unsaturated amide **113a** (continued)

According to the *general procedure I* in **2.2.1**, 3,4-methylenedioxy cinnamic acid (**106**) (1.00 g, 5.2 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 0.7 ml, 7.8 mmol), NEt₃ (2.0 equiv., 1.4 ml, 10.4 mmol), pyrrolidine (**109**) (2.5 equiv., 1.1 ml, 13.0 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (1.0:9.0) as eluent, affords α,β -unsaturated amide **113b** in 83% yield (1.0552 g), 100% conversion from the starting material.

Table 2.7 Data of α , β -unsaturated amide **113b**

	Physical properties
White crystals	TER?
Melting point (m.p.)	151.9–152.3 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.10$ (EtOAc/hex	cane, 1.0:9.0)
IR sj	pectroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1254	C–N stretching of amide
1491, 1596	C=C stretching of aromatic
1648	C=O stretching of amide
2875, 2971	C–H stretching

		TWIK Spectroscopy
	¹ H-N	IMR (400 MHz) in CDCl ₃
Cher	nical shift (<i>δ</i> , ppm)	Type of proton
	1.93	brs, 4H, CH ₂ -3", 4"
	3.58	t (<i>J</i> = 6.7 Hz), 4H, CH ₂ -2", 5"
	5.97	s, 2H, CH ₂ -7′
	6.54	d (<i>J</i> = 15.4 Hz), 1H, CH-2
	6.78	d (<i>J</i> = 8.0 Hz), 1H, CH-5'
	6.99	dd (<i>J</i> = 8.0, 1.6 Hz), 1H, CH-6'
	7.02	d (<i>J</i> = 1.6 Hz), 1H, CH-2'
	7.61	d (J = 15.4 HZ), 1H, CH-3
24.48, 2 2'), 108.	7.61 ¹³ C-NM 5.67 (CH ₂ -3" or 4"), 4 43 (CH-5'), 116.67 (CH	R (100 MHz) in CDCl ₃ (ppm) 6.26(2) (CH ₂ -2", 5"), 101.35 (CH ₂ -7'), 10 1-6'), 123.84 (CH-2), 129.67 (C _q -1'), 141.5
24.48, 2 2'), 108. 148.13,	7.61 ¹³ C-NM 5.67 (CH ₂ -3'' or 4''), 4 43 (CH-5'), 116.67 (CH 148.91 (C _q -3' or 4'), 16 Mas	a (J = 15.4 HZ), 1H, CH-5 R (100 MHz) in CDCl ₃ (ppm) 6.26(2) (CH ₂ -2", 5"), 101.35 (CH ₂ -7'), 10 H-6'), 123.84 (CH-2), 129.67 (C _q -1'), 141.5 4.82 (C _q -1) 5 spectrometry (ESI-MS)
24.48, 2 2'), 108. 148.13, N	7.61 ¹³ C-NM 5.67 (CH ₂ -3" or 4"), 4 43 (CH-5'), 116.67 (CH 148.91 (C _q -3' or 4'), 16 Mas Iolecular weight	a (J = 15.4 Hz), 1H, CH-5 R (100 MHz) in CDCl ₃ (ppm) 6.26(2) (CH ₂ -2", 5"), 101.35 (CH ₂ -7'), 10 I-6'), 123.84 (CH-2), 129.67 (C _q -1'), 141.5 4.82 (C _q -1) s spectrometry (ESI-MS)
24.48, 2 2'), 108. 148.13, W Calc. for	7.61 ¹³ C-NM 5.67 (CH ₂ -3" or 4"), 4 43 (CH-5'), 116.67 (CH 148.91 (C _q -3' or 4'), 16 Mase Iolecular weight $C_{14}H_{16}NO_{3}$	a (J = 15.4 HZ), 1H, CH-5 R (100 MHz) in CDCl ₃ (ppm) 6.26(2) (CH ₂ -2", 5"), 101.35 (CH ₂ -7'), 10 H-6'), 123.84 (CH-2), 129.67 (C _q -1'), 141.5 4.82 (C _q -1) s spectrometry (ESI-MS) m/z 245.1052 [M+H] ⁺
24.48, 2 2'), 108. 148.13, M Calc. for Lock ma	7.61 ¹³ C-NM 5.67 (CH ₂ -3" or 4"), 4 43 (CH-5'), 116.67 (CH 148.91 (C _q -3' or 4'), 16 Mass Iolecular weight $C_{14}H_{16}NO_3$ ass of $C_{12}H_{14}N_4O_4SNa$	a (J = 15.4 Hz), 1H, CH-5 R (100 MHz) in CDCl ₃ (ppm) 6.26(2) (CH ₂ -2", 5"), 101.35 (CH ₂ -7'), 10 1-6'), 123.84 (CH-2), 129.67 (C _q -1'), 141.5 4.82 (C _q -1) s spectrometry (ESI-MS) m/z 245.1052 [M+H] ⁺ 333.0633 [M+Na] ⁺
24.48, 2 2'), 108. 148.13, M Calc. for Lock ma Calc. for	7.61 $^{13}C-NM$ 5.67 (CH ₂ -3" or 4"), 4 43 (CH-5'), 116.67 (CH 148.91 (C _q -3' or 4'), 16 Mass Iolecular weight $^{12}C_{14}H_{16}NO_{3}$ ass of C ₁₂ H ₁₄ N ₄ O ₄ SNa $^{13}C-NM$	a (J = 15.4 Hz), 1H, CH-3 R (100 MHz) in CDCl ₃ (ppm) 6.26(2) (CH ₂ -2", 5"), 101.35 (CH ₂ -7'), 10 H-6'), 123.84 (CH-2), 129.67 (C _q -1'), 141.4 4.82 (C _q -1) s spectrometry (ESI-MS) m/z 245.1052 [M+H] ⁺ 333.0633 [M+Na] ⁺ 268.0950 [M+Na] ⁺

Table 2.7 Data of α , β -unsaturated amide **113b** (continued)

According to the *general procedure I* in **2.2.1**, 3,4-methylenedioxy cinnamic acid (**106**) (2.00 g, 10.4 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 1.3 ml, 15.6 mmol), NEt₃ (1.5 equiv., 2.2 ml, 15.6 mmol), diisopropylamine (**110**) (1.5 equiv., 2.2 ml, 15.6 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (2.0:8.0) as eluent, affords α,β -unsaturated amide **113c** in 76% yield (2.10 g), 96% conversion from the starting material.

Table 2.8 Data of α , β -unsaturated amide **113c**

	Physical properties
Yellow liquid	LINUTER
$R_f = 0.41$ (EtOAc/hexa	ane, 2.0:8.0)
IR sp	ectroscopy (evaporated thin film)
$v_{\rm max} ({\rm cm}^{-1})$	Type of vibration
1250	C–N stretching of amide
1489, 1607	C=C stretching of aromatic
1645	C=O stretching of amide
2871, 2958	C–H stretching

	NMR spectroscopy
¹ H-	NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
1.35	brs, 12H, CH ₃ -3", 4", 6", 7"
3.86	brs, 1H, CH-2" or 5"
4.09	brs, 1H, CH-2" or 5"
5.99	s, 2H, CH ₂ -7'
6.67	d (<i>J</i> = 15.3 Hz), 1H, CH-2
6.79	d (<i>J</i> = 8.0 Hz), 1H, CH-5'
6.98	dd (<i>J</i> = 8.0, 1.6 Hz), 1H, CH-6'
7.02	d (<i>J</i> = 1.6 Hz), 1H, CH-2'
7.51	d (<i>J</i> = 15.3 Hz), 1H, CH-3
¹³ C-NM	IR (100 MHz) in CDCl ₃ (ppm)
20.65(2), 21.66(2) (CH ₃ -3", 4	", 6", 7"), 45.84, 47.84 (CH ₂ -2" or 5"), 101.32 (CH
7'), 106.26 (CH-2'), 108.45 (CH-5'), 115.63 (CH-6'), 123.35 (CH-2), 130.12 (C
1'), 140.68 (CH-3), 148.12, 14	8.64 (C _q -3' or 4'), 166.20 (C _q -1)
Ma	ss spectrometry (ESI-MS)
Molecular weight	m/z
Calc. for C ₁₆ H ₂₂ NO ₃	276.1599 [M+H] ⁺
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 [M+Na] ⁺
Calc. for C ₁₆ H ₂₁ NO ₃ Na	298.1419 [M+Na] ⁺
Found for C ₁₆ H ₂₁ NO ₃ Na	298.1420 [M+Na] ⁺

Table 2.8 Data of α , β -unsaturated amide **113c** (continued)

According to the *general procedure I* in **2.2.1**, 3,4-methylenedioxy cinnamic acid (**106**) (2.01 g, 10.4 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 1.3 ml, 15.7 mmol), NEt₃ (1.5 equiv., 2.2 ml, 15.7 mmol), dibutylamine (**111**) (1.5 equiv., 2.6 ml, 15.7 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (2.0:8.0) as eluent, affords α,β -unsaturated amide **113d** in 73% yield (2.31 g), 99% conversion from the starting material.

Table 2.9 Data of α , β -unsaturated amide **113d**

	Physical properties
White crystals	TIMUVER
Melting point, 137.1-	-141.3 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.43$ (EtOAc/hexa	ane, 2.0:8.0)
IR sp	ectroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1254	C–N stretching of amide
1492, 1588	C=C stretching of aromatic
1641	C=O stretching of amide
2907, 2964	C-H stretching

	NMR spectroscopy
¹ H-N	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
0.91–1.01	m, 6H, CH ₃ -5", 9"
1.30–1.44	m, 4H, CH ₂ -4'', 8''
1.51–1.68	m, 4H, CH ₂ -3", 7"
3.32–3.46	m, 4H, CH ₂ -2", 6"
5.99	s, 2H, CH ₂ -7′
6.66	d (<i>J</i> = 15.4 Hz), 1H, CH-2
6.80	d (<i>J</i> = 8.0 Hz), 1H, CH-5'
6.95–7.04	m, 2H, CH-2', 6'
7.61	d (<i>J</i> = 15.3 Hz), 1H, CH-3
¹³ C-NM	R (100 MHz) in CDCl ₃ (ppm)
13.80, 13.86 (CH ₃ -5" or 9"), 2	0.07, 20.26 (CH ₂ -4" or 8"), 30.06, 31.92 (CH ₂ -3" or
7"), 46.64, 47.88 (CH ₂ -2" or 6	"), 101.33 (CH ₂ -7'), 106.27 (CH-2'), 108.46 (CH-5')
115.80 (CH-6'), 123.62 (CH-2)	, 129.92 (C _q -1′), 141.86 (СН-3), 148.12, 148.78 (С _q -
3' or 4'), 166.06 (C _q -1)	
Mas	s spectrometry (ESI-MS)
Molecular weight	m/z
Calc. for C ₁₆ H ₂₂ NO ₃	304.1912 [M+H] ⁺
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 [M+Na] ⁺
Calc. for C ₁₆ H ₂₁ NO ₃ Na	326.1732 [M+Na] ⁺
Found for C ₁₆ H ₂₁ NO ₃ Na	$326.1732 [M+Na]^+$

Table 2.9 Data	of α , β -unsaturated	amide 113d	(continued)

According to the *general procedure I* in **2.2.1**, cinnamic acid (**107**) (1.50 g, 10.1 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 1.3 ml, 15.2 mmol), NEt₃ (2.0 equiv., 2.8 ml, 20.2 mmol), piperidine (**108**) (2.5 equiv., 2.5 ml, 25.3 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (2.0:8.0) as eluent, affords α,β -unsaturated amide **114a** in 84% yield (1.71 g), 93% conversion from the starting material.

Table 2.10 Data of α , β -unsaturated amide **114a**

IR spectr	coscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1248	C–N stretching of amide
1498, 1586	C=C stretching of aromatic, double bond
1643	C=O stretching of amide
2862, 2934	C–H stretching
18.	NMR spectroscopy
¹ H-N	MR (400 MHz) in CDCl ₃
Chemical shift (δ, ppm)	Type of proton
1.56–1.72	m, 6H, CH ₂ -3'', 4'', 5''
3.59–3.67	m, 4H, CH ₂ -2'', 6''
6.90	d (<i>J</i> = 15.5 Hz), 1H, CH-2
7.30–7.40	m, 3H, CH-3', 4', 5'
7.49–7.55	m, 2H, CH-2', 6'
7.65	d (<i>J</i> = 15.5 Hz), 1H, CH-3
¹³ C-NMI	R (100 MHz) in CDCl ₃ (ppm)
24.55(2), 26.13 (CH ₂ -3", 4", 5"), 45.25(2) (CH ₂ -2", 6"), 117.38 (CH-2), 127.67(2),
128.71(2), 129.43 (CH-2', 3', 4'	, 5', 6'), 135.38 (C _q -1'), 142.51 (CH-3), 165.42 (C _q -
1)	
Mass	s spectrometry (ESI-MS)
Molecular weight	m/z
Calc. for C ₁₄ H ₁₈ NO	216.1388 [M+H] ⁺
Lock mass of C ₁₂ H ₁₄ N ₄ O ₄ SNa	333.0633 [M+Na] ⁺
Calc. for C ₁₄ H ₁₇ NONa	238.1208 [M+Na] ⁺
Found for C ₁₄ H ₁₇ NONa	238.1209 [M+Na] ⁺

Table 2.10 Data of α,β -unsaturated amide **114a** (continued)

According to the general procedure I in 2.2.1, cinnamic acid (107) (3.20 g, 21.9 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 2.8 ml, 32.9 mmol), NEt₃ (2.0 equiv., 6.1 ml, 43.9 mmol), pyrrolidine (109) (2.5 equiv., 4.5 ml, 54.8 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (0.5:9.5) as eluent, affords α,β -unsaturated amide 114b in 70% yield (3.10 g), 85% conversion from the starting material.

Table 2.11 Data of α , β -unsaturated amide **114b**

	Physical properties
White crystals	
Melting point (m.p.) 1	01.2–102.3 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.18$ (EtOAc/hexa	nne, 0.5:9.5)
IR sp	ectroscopy (evaporated thin film)
$v_{\rm max} ({\rm cm}^{-1})$	Type of vibration
1196	C–N stretching of amide
1447, 1598	C=C stretching of aromatic
1656	C=O stretching of amide
2876, 2973	C–H stretching

	NMR spectroscopy
¹ H-N	MR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
1.89	p ($J = 6.6$ Hz), 2H, CH ₂ -3'' or 4''
2.00	p (<i>J</i> = 6.6 Hz), 2H, CH ₂ -3'' or 4''
3.54–3.66	m, 4H, CH ₂ -2", 5"
6.74	d (<i>J</i> = 15.5 Hz), 1H, CH-2
7.30–7.41	m, 3H, CH-3', 4', 5'
7.53	d (<i>J</i> = 7.2 Hz), 2H, CH-2', 6'
7.70	d (<i>J</i> = 15.5 Hz), 1H, CH-3
¹³ C-NMI	R (100 MHz) in CDCl ₃ (ppm)
24.33, 26.14 (CH ₂ -3" or 4")	, 46.02, 46.56 (CH ₂ -2" or 5"), 118.88 (CH-2),
127.81(2), 128.74(2), 129.48 (0	CH-2', 3', 4', 5', 6'), 135.38 (C _q -1'), 141.67 (CH-3),
164.69 (C _q -1)	
Mass	s spectrometry (ESI-MS)
Molecular weight	m/z
Calc. for C ₁₃ H ₁₆ NO	202.1232 [M+H] ⁺
Lock mass of C12H14N4O4SNa	333.0633 [M+Na] ⁺
Calc. for C ₁₃ H ₁₅ NONa	224.1051 [M+Na] ⁺
Found for C ₁₃ H ₁₅ NONa	224.1052 [M+Na] ⁺

Table 2.11 Data of α,β -unsaturated amide **114b** (continued)

Copyright[©] by Chiang Mai University All rights reserved

2.4.3 Preparation of 3-phenyl-1-(1-*N*,*N*-diisopropyl)-2*E*-propen-1-one (114c)

According to the general procedure I in 2.2.1, cinnamic acid (107) (2.00 g, 13.5 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 1.7 ml, 20.2 mmol), NEt₃ (1.5 equiv., 2.8 ml, 20.2 mmol), diisopropylamine (110) (1.5 equiv., 2.8 ml, 20.2 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (2.0:8.0) as eluent, affords α,β -unsaturated amide 114c in 87% yield (2.56 g), 98% conversion from the starting material.

Table 2.12 Data of α , β -unsaturated amide 114c

	Physical properties
Colorless liquid	THITER
$R_f = 0.58$ (EtOAc/hexane	, 2.0:8.0)
IR spect	roscopy (evaporated thin film)
$v_{\rm max} ({\rm cm}^{-1})$	$v_{\rm max}~({\rm cm}^{-1})$
1208	C–N stretching of amide
1454, 1606	C=C stretching of aromatic
1650	C=O stretching of amide
2872, 2958	C–H stretching

		scopy
	¹ H-NMR (400 MHz	in CDCl ₃
Chemical shift (δ ,	ppm)	Type of proton
1.33	brs, 6H, CH ₃	-3", 4", 6" or 7"
1.39	brs, 6H, CH ₃	-3'', 4'', 6'' or 7''
3.86	brs, 1H, CH-	2" or 5"
4.11	brs, 1H, CH-	2" or 5"
6.84	d (<i>J</i> = 15.4 H	Iz), 1H, CH-2
7.29–7.40	m, 3H, CH-3	', 4', 5'
7.50	dt ($J = 3.8, 2$.1 Hz), 2H, CH-2', 6'
7 95	d (<i>J</i> = 15.5 H	Iz), 1H, CH-3
1.75		
20.60(2), 21.58(2) (C	¹³ C-NMR (100 MHz) in H ₃ -3'', 4'', 6'', 7''), 45.83	n CDCl ₃ (ppm) 6, 47.91 (CH ₂ -2" or 5"), 12
20.60(2), 21.58(2) (C 2), 127.50(2), 128.66(3), 166.10 (C _q -1)	¹³ C-NMR (100 MHz) in H ₃ -3'', 4'', 6'', 7''), 45.83 2), 129.14 (CH-2', 3', 4	n CDCl ₃ (ppm) 8, 47.91 (CH ₂ -2" or 5"), 12 7, 5', 6'), 135.66 (C _q -1'), 14
20.60(2), 21.58(2) (C 2), 127.50(2), 128.66(3), 166.10 (C _q -1)	¹³ C-NMR (100 MHz) in H ₃ -3'', 4'', 6'', 7''), 45.83 2), 129.14 (CH-2', 3', 4 Mass spectrometry	n CDCl ₃ (ppm) 3, 47.91 (CH ₂ -2" or 5"), 12 7, 5', 6'), 135.66 (C _q -1'), 14 7 (ESI-MS)
20.60(2), 21.58(2) (C 2), 127.50(2), 128.66(3), 166.10 (C _q -1) Molecular weig	¹³ C-NMR (100 MHz) in H ₃ -3'', 4'', 6'', 7''), 45.83 2), 129.14 (CH-2', 3', 4 Mass spectrometry	n CDCl ₃ (ppm) 6, 47.91 (CH ₂ -2" or 5"), 12 7, 5', 6'), 135.66 (C _q -1'), 14 7 (ESI-MS) <i>m</i> / <i>z</i>
20.60(2), 21.58(2) (C 2), 127.50(2), 128.66(3), 166.10 (C_q -1) Molecular weig Calc. for $C_{15}H_{22}NO$	¹³ C-NMR (100 MHz) in H ₃ -3'', 4'', 6'', 7''), 45.83 2), 129.14 (CH-2', 3', 4 Mass spectrometry ht	n CDCl ₃ (ppm) 5, 47.91 (CH ₂ -2" or 5"), 12 7, 5', 6'), 135.66 (C _q -1'), 14 7 (ESI-MS) <i>m/z</i> 232.1701 [M+H] ⁺
20.60(2), 21.58(2) (C 2), 127.50(2), 128.660 3), 166.10 (C_q -1) Molecular weig Calc. for $C_{15}H_{22}NO$ Lock mass of $C_{12}H_{14}N$	¹³ C-NMR (100 MHz) in H ₃ -3'', 4'', 6'', 7''), 45.83 2), 129.14 (CH-2', 3', 4 Mass spectrometry ht	n CDCl ₃ (ppm) 5, 47.91 (CH ₂ -2" or 5"), 12 7, 5', 6'), 135.66 (C _q -1'), 14 7 (ESI-MS) <i>m/z</i> 232.1701 [M+H] ⁺ 333.0633 [M+Na] ⁺
20.60(2), 21.58(2) (C 2), 127.50(2), 128.66(3), 166.10 (C _q -1) Molecular weig Calc. for $C_{15}H_{22}NO$ Lock mass of $C_{12}H_{14}N$ Calc. for $C_{15}H_{21}NONa$	¹³ C-NMR (100 MHz) in H ₃ -3", 4", 6", 7"), 45.83 2), 129.14 (CH-2', 3', 4 Mass spectrometry tht H ₄ O ₄ SNa	$m \text{CDCl}_{3} \text{ (ppm)}$ $m \text{CDCl}_{4} $

Table 2.12 Data of α,β -unsaturated amide **114c** (continued)

According to the *general procedure I* in **2.2.1**, cinnamic acid (**107**) (2.15 g, 14.5 mmol), oxalyl chloride ((COCl)₂) (1.5 equiv., 1.9 ml, 21.7 mmol), NEt₃ (1.5 equiv., 3.0 ml, 21.7 mmol), dibutylamine (**111**) (1.5 equiv., 3.7 ml, 21.7 mmol). Purification of the crude product by column chromatography (silica gel) using EtOAc/hexane (2.0:8.0) as eluent, affords α,β -unsaturated amide **114d** in 91% yield (3.19 g), 93% conversion from the starting material.

Table 2.13 Data of α , β -unsaturated amide **114d**

	Physical properties
Colorless liquid	THER?
$R_f = 0.58$ (EtOAc/hexa	ne, 2.0:8.0)
IR spe	ectroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1127	C–N stretching of amide
1440, 1599	C=C stretching of aromatic
1642	C=O stretching of amide
2929, 2965	C–H stretching

		NMR spectroscopy
	¹ H-N	MR (400 MHz) in CDCl ₃
Chemical shift	(<i>б</i> , ppm)	Type of proton
0.96	0	dt (<i>J</i> = 9.5, 7.4 Hz), 6H, CH ₃ -5", 9"
1.30-1.4	43	m, 4H, CH ₂ -4'', 8''
1.53-1.	57	m, 4H, CH ₂ -3", 7"
3.36–3.	47	m, 4H, CH ₂ -2", 6"
6.84		d (<i>J</i> = 15.4 Hz), 1H, CH-2
7.30–7.	40	m, 3H, CH-3', 4', 5'
7.51		d (<i>J</i> = 7.9, 1.5 Hz), 2H, CH-2', 6'
7.70		d (<i>J</i> = 15.4 Hz), 1H, CH-3
G	¹³ C-NMI	R (100 MHz) in CDCl ₃ (ppm)
13.72, 13.79 (CH ₃	-5" or 9"), 19	9.98, 20.19 (CH ₂ -4" or 8"), 29.98, 31.85
7"), 46.56, 47.82	(CH ₂ -2" or	6"), 117.75 (CH-2), 127.59(2), 128.64
(CH-2', 3', 4', 5', 6	'), 135.45 (C _c	₁ -1'), 142.03 (CH-3), 165.88 (C _q -1)
(CH-2', 3', 4', 5', 6	'), 135.45 (C _c Mass	_q -1'), 142.03 (CH-3), 165.88 (C _q -1) s spectrometry (ESI-MS)
(CH-2', 3', 4', 5', 6 Molecular v	'), 135.45 (C _c Mass veight	s spectrometry (ESI-MS) <i>m/z</i>
(CH-2', 3', 4', 5', 6 Molecular v Calc. for C ₁₇ H ₂₆ Ne	'), 135.45 (C _c Mass veight	m/z 260. 2014 [M+H] ⁺
(CH-2', 3', 4', 5', 6 Molecular v Calc. for $C_{17}H_{26}N_{12}$ Lock mass of $C_{12}H_{12}$	'), 135.45 (C Mass veight O H ₁₄ N ₄ O ₄ SNa	m/z 260. 2014 [M+H] ⁺ 333.0633 [M+Na] ⁺
(CH-2', 3', 4', 5', 6 Molecular v Calc. for $C_{17}H_{26}N_{12}$ Lock mass of $C_{12}H_{25}N_{12}$	'), 135.45 (C Mass veight O I ₁₄ N ₄ O ₄ SNa ONa	a-1'), 142.03 (CH-3), 165.88 (Cq-1) s spectrometry (ESI-MS) <i>m/z</i> 260. 2014 [M+H] ⁺ 333.0633 [M+Na] ⁺ 282.1834 [M+Na] ⁺

Table 2.13 Data of α,β -unsaturated amide **114d** (continued)

2.5 Preparation of 11-methoxyacetyl-11-methoxycarbonyl-9,10-dihydro-9,10-ethanoanthracene ((±)-74)⁶⁴

A mixture of anthracene (77) (205.10 g, 1.1508 mol) and dimethyl itaconate (78) (140.00 g, 0.8852 mol) in dried xylene (1500 ml) was heated to reflux for 48 h. The crude reaction mixture was evaporated to dryness and purified on a silica gel column. The column was eluted with hexane until no anthracene was detected. Then, it was stripped with 30% dichloromethane in hexane. Solvent was removed under reduced pressure and the almost pure product was crystallized from a mixture of CH_2Cl_2 /hexane to give dimethyl itaconate–anthracene adduct ((±)-74) in 98% yield (290.85 g), 100% conversion from the starting material.

Table 2.14 Data of dimethyl itaconate–anthracene adduct $((\pm)-74)$

	Physical properties
White crystals	
Melting point (m.p.) 154	.0–155.0 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.61$ (EtOAc/hexane	, 2.0:8.0)
IR spect	roscopy (evaporated thin film)
$V_{\rm max} (\rm cm^{-1})$	Type of vibration
1060, 1170, 1255	C–O stretching of ester
1360	C–H bending of CH ₃
1438	C–H bending of CH ₂ , CH ₃
1740, 1718	C=O stretching of carbonyl

NMR spectroscopy		
¹ H-NMR (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton	
1.50, 2.85, 4.35	ABX system ($J = 13.1, 3.0, 2.4 \text{ Hz}$), 3H, H _a , H _b , H _x	
2.01	d (<i>J</i> = 16.1 Hz), 1H, H _c	
2.96	d (<i>J</i> = 16.1 Hz), 1H, H _d	
3.51	s, 3H, COOMe-6'	
3.60	s, 3H, COOMe-5'	
4.41	s, 1H, H _y	
7.05–7.08	m, 8H, Ar-H	
¹³ C-NMI	R (100 MHz) in CDCl ₃ (ppm)	
37.2 (CH ₂ -12), 44.5 (CH-9), 44	.8 (CH ₂ -3'), 50.8 (C _q -11), 52.0 (CH ₃ -6'), 52.6 (CH ₃ -	
5'), 53.2 (CH-10), 123.7, 124.0	, 126.09, 126.12, 126.2, 126.9, 127.1, 140.1, 140.6,	
143.3, 144.1 (CH, C _q -aromatic),	171.9 (C _q -1'), 175.3 (C _q -4')	
Mass spectrometry (EI-MS)		
Molecular weight <i>m/z</i>		
Calc. for $C_{21}H_{20}O_4$	336 [M] ⁺	
Found for C ₂₁ H ₂₀ O ₄	336 [M] ⁺	

Table 2.14 Data of dimethyl itaconate–anthracene adduct ((\pm)-74) (continued)

ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

2.6 Syntheses of racemic spirocyclopentanone–anthracene adduct derivatives (±)-115b-i, -ii – (±)-115d-i, -ii

2.6.1 Syntheses of 3'-methoxycarbonyl-4'-(2-(3,4-methylenedioxy)phenyl) vinyl-5'-pyrrolidinecarbonyl-1'-cyclopentanone-2'-spiro-11-9,10-dihydro-9,10ethanoanthracenes ((±)-115b-*i* and (±)-115b-*ii*)

General procedure II

A 100 ml round-bottomed flask equipped with a magnetic stirrer was fitted with a three-way stopcock with a septum cap and nitrogen inlet. THF (5.0 ml) and anhydrous diisopropylamine (1.9 equiv., 0.4 ml, 2.8 mmol) were added *via* syringes. The mixture was cooled down to -78 °C, *n*-butyllithium (1.6 equiv., 1.7 ml, 1.4 N in hexane, 2.4 mmol) was added. Then, the reaction mixture was left stirring at 0 °C for 1 h. A solution of dimethyl itaconate–anthracene adduct ((±)-**74**) (1.0 equiv., 0.50 g, 1.5 mmol) in THF (10 ml) was introduced to the LDA solution at -78 °C and the reaction mixture was left stirring at 0 °C for 2 h. The reaction mixture was then cooled down to -78 °C and a solution of pentadiene amide **112b** (1.2 equiv., 0.48 g, 1.8 mmol) in THF (10 ml) was added. The reaction mixture was stirred at 0 °C for 15 minute and left stirring at room temperature for 3 days. The reaction mixture was quenched with 30% hydrochloric acid solution at 0 °C followed by extraction three

times with CH_2Cl_2 . The combined organic extracts were washed with H_2O , dried over MgSO₄, filtered and evaporated to dryness.

The crude product was purified by flash column chromatography on silica gel using EtOAc/CH₂Cl₂/hexane (1.5:0.5:8.0) as eluent, to afford diastereomeric spirocyclopentanone–anthracene adducts (\pm)-**115b**-*i* in 12% yield (0.056 g) and (\pm)-**115b**-*ii* in 9% yield (0.074 g), 70% conversion from the starting material.

	Physical properties
White crystals	
Melting point (m.p.) 1	21.1–125.4 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.29$ (EtOAc/CH ₂	Cl ₂ /hexane, 1.5:0.5:8.0)
IR spe	ctroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1109, 1253	C–O stretching of ester
1491, 1504	C=C aromatic of benzene
1635, 1745	C=O stretching of carbonyl
2882, 2954	C–H stretching
rig ¹ H	-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
1.76–1.99	m, 4H, CH ₂ -3''''', 4'''''
1.30, 2.21, 4.30	ABX system ($J = 12.7, 2.8, 2.5 \text{ Hz}$), 3H, H _a , H _b , H _s

2.78	
	$a (J = 7.0 \text{ Hz}), 1\text{H}, \text{H}_{c}$
3.38–3.47, 3.88–4.00	m, 2H, CH ₂ -2"" or 5""
3.48–3.61	m, 2H, CH ₂ -2"" or 5""
3.53	s, 3H, COOMe-2''
3.72	d (<i>J</i> = 10.1 Hz), 1H, H _e
4.33–4.41	m, 1H, H _d
4.92	s, 1H, H _y
5.79	dd (<i>J</i> = 15.7, 8.1 Hz), 1H, H _f
5.93	s, 2H, CH ₂ -7''''
6.53	d (<i>J</i> = 15.6 Hz), 1H, H _g
6.74	d (<i>J</i> = 1.6 Hz), 2H, ArH-5'''', 6''''
6.83	s, 1H, ArH-2''''
6.99–7.42	m, 8H, ArH–anthracene
¹³ C-N	IMR (100 MHz) in CDCl ₃ (ppm)
24.38, 25.76 (CH ₂ -3"" or	4'''''), 36.10 (CH ₂ -12), 41.89 (CH-4'), 44.19 (CH-9
46.31, 47.10 (CH ₂ -2"" or	5'''''), 46.58 (CH-10), 51.49 (CH ₃ -2''), 55.87 (CH-5'
56.03 (CH-3'), 60.36 (C _q -2'), 101.09 (CH ₂ -7""), 105.47, 108.28, 121.12 (CH-2"
5'''' or 6''''), 122.69, 123.71	, 125.53, 125.59, 125.78, 125.98, 126.45, 126.70 (CH
aromatic-anthracene), 125.0	04 (CH-1'''), 132.79 (CH-2'''), 131.06, 138.61, 139.44
143.51, 144.09, 147.34, 14	8.02 (C _q -aromatic), 165.99 (C _q -1"), 173.75 (C _q -1"""
208.13 (C _q -1')	

Table 2.15 Data of spirocyclopentanone–anthracene adduct (±)-115b-*i* (continued)

Table 2.15 Data of spirocyclopentanone–anthracene adduct (\pm)-115b-i (continued)

Mass spectrometry (ESI-MS)		
Molecular weight	m/z.	
Calc. for C ₃₆ H ₃₄ NO ₆	576.2386 [M+H] ⁺	
Lock mass of C ₂₈ H ₃₇ N ₅ O ₇	578.2591 [M+H] ⁺	
Calc. for C ₃₆ H ₃₃ NO ₆ Na	598.2206 [M+Na] ⁺	
Found for C ₃₆ H ₃₃ NO ₆ Na	$598.2202 [M+Na]^+$	

 Table 2.16 Data of spirocyclopentanone–anthracene adduct (±)-115b-ii

	Physical properties
White crystals	1 B RSY
Melting point (m.p.	.) 226.5–230.1 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.17$ (EtOAc/C	CH ₂ Cl ₂ /hexane, 1.5:0.5:8.0)
IR	spectroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1101, 1253	C–O stretching of ester
1491, 1504	C=C aromatic of benzene
1638, 1746	C=O stretching of carbonyl
2881, 2953	C–H stretching

NMR spectroscopy	
1H-NMR (400 MHz) in CDC13	
Chemical shift (δ , ppm)	Type of proton
1.68–1.85	m, 4H, CH ₂ -3''''', 4'''''
1.90, 2.10, 4.36	ABX system ($J = 12.8, 3.3, 2.4 \text{ Hz}$), 3H, H _a , H _b , H _x
2.31	d ($J = 6.6$ Hz), 1H, H _c
3.27–3.46	m, 2H, CH ₂ -2'''' or 5''''
3.92-4.00	m, 2H, CH ₂ -2'''' or 5''''
3.77	s, 3H, COOMe-2''
3.80	d (<i>J</i> = 11.3 Hz), 1H, H _e
3.86-3.92	m, 1H, H _d
4.41	s, 1H, H _y
5.69	dd (<i>J</i> = 15.7, 7.8 Hz), 1H, H _f
5.91	s, 2H, CH ₂ -7''''
6.34	d (<i>J</i> = 15.7 Hz), 1H, H _g
6.62–6.74	m, 2H, ArH-5'''', 6''''
6.77	d (<i>J</i> = 1.4 Hz), 1H, ArH-2''''
6.99–7.45	m, 8H, ArH-anthracene
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)	
24.23, 25.69 (CH ₂ -3"" or 4""), 40.90 (CH ₂ -12), 41.25 (CH-4'), 44.09 (CH-9),	
46.02, 46.81 (CH ₂ -2"" or 5""), 47.69 (CH-10), 51.38 (CH ₃ -2"), 56.51 (CH-5'),	
57.89 (C _q -2'), 57.95 (CH-3'), 101.00 (CH ₂ -7''''), 105.35, 108.18, 120.99 (CH-2'''',	
5'''' or 6''''), 122.56, 123.72, 124.04, 125.41, 125.53, 125.81, 126.37, 126.66 (CH-	
aromatic-anthracene), 124.23 (CH-1"), 132.52 (CH-2"), 130.97, 140.51, 141.22,	

Table 2.16 Data of spirocyclopentanone–anthracene adduct (±)-115b-ii (continued)

142.95, 143.34, 147.21, 147.90 (C_q -aromatic), 165.32 (C_q -1"), 173.87 (C_q -1""), 210.88 (C_q-1')

Mass spectrometry (ESI-MS)		
Molecular weight	m/z.	
Calc. for C ₃₆ H ₃₄ NO ₆	576.2386 [M+H] ⁺	
Lock mass of C33H40N2O9	609.2812 [M+H] ⁺	
Calc. for C ₃₆ H ₃₃ NO ₆ Na	598.2206 [M+Na] ⁺	
Found for C ₃₆ H ₃₃ NO ₆ Na	598.2204 [M+Na] ⁺	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved 2.6.2 Syntheses 5'-(N,N-diisopropylcarboxamid-1-yl)-3'-methoxycarbonyl-4'-(2-(3,4-methylenedioxy)phenyl)vinyl-1'-cyclopentanone-2'-spiro-11-9,10dihydro-9,10-ethanoanthracenes ((±)-115c-*i* and (±)-115c-*ii*)

According to general procedure II in 2.6.1, anhydrous diisopropylamine (1.68 equiv., 0.95 ml, 6.74 mmol), *n*-butyllithium (1.4 equiv., 4.19 ml, 1.34 N in hexane, 5.62 mmol), dimethyl itaconate–anthracene adduct ((\pm)-74) (1.0 equiv., 1.35 g, 4.01 mmol), pentadiene amide 112c (1.2 equiv., 1.45 g, 4.82 mmol). Purification by preparative thin layer chromatography (PLC) using EtOAc/CH₂Cl₂/ hexane (1.5:0.5:8.0) as eluent, affords diastereomeric spirocyclopentanone–anthracene adducts (\pm)-115c-*i* in 8% yield (0.056 g) and (\pm)-115c-*ii* in 4% yield (0.074 g), 56% conversion from the starting material.

 $\frac{2 \int_{H_{\chi}} Ba}{H_{\chi}} \int_{Ba} S \int_{\pi} T$ (±)-115c-*i* **Table 2.17** Data of spirocyclopentanone–anthracene adduct (±)-115c-*i* **Physical properties** White crystals Melting point (m.p.) 118.5–121.5 °C (CH₂Cl₂/hexane) $R_f = 0.32$ (EtOAc/CH₂Cl₂/hexane, 1.5:0.5:8.0)

MeOOC
IR spe	ectroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1040, 1252	C–O stretching of ester
1443, 1490	C=C aromatic of benzene
1631, 1744	C=O stretching of carbonyl
2932, 2966	C–H stretching
8	NMR spectroscopy
I E	I-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
795 1.13 e	d (<i>J</i> = 6.7 Hz), 3H, CH ₃ -3''''', 4''''', 6''''' or 7'''''
1.20	d (<i>J</i> = 6.5 Hz), 3H, CH ₃ -3''''', 4''''', 6''''' or 7'''''
1.44	d (<i>J</i> = 6.7 Hz), 3H, CH ₃ -3''''', 4''''', 6''''' or 7'''''
1.50	d (<i>J</i> = 6.7 Hz), 3H, CH ₃ -3''''', 4''''', 6''''' or 7'''''
1.29, 2.22, 4.30	ABX system ($J = 12.7, 2.8, 2.6 \text{ Hz}$), 3H, H _a , H _b , H _x
2.81	d ($J = 7.1$ Hz), 1H, H _c
3.37–3.60	m, 1H, CH-2"" or 5""
4.38-4.47	m, 1H, CH-2"" or 5""
3.53	s, 3H, COOMe-2"
3.81	d (<i>J</i> = 9.9 Hz), 1H, H _e
4.49-4.55	m, 1H, H _d
4.87	s, 1H, H _y of Mail University
5.83	dd (<i>J</i> = 15.7, 7.5 Hz), 1H, H _f
5.93	s, 2H, CH ₂ -7''' eserve
6.48	d (<i>J</i> = 15.6 Hz), 1H, H _g
6.72	d (<i>J</i> = 1.4 Hz), 2H, ArH-5'''', 6''''
6.81	s, 1H, ArH-2''''

Table 2.17 Data of spirocyclopentanone–anthracene adduct (\pm)-115c-*i* (continued)

NMR spectroscopy		
¹ H-NMR (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton	
6.96–7.45	m, 8H, ArH–anthracene	
¹³ C-NN	MR (100 MHz) in CDCl ₃ (ppm)	
20.38, 20.77, 20.89, 21.10 ((CH-4'), 44.19 (CH-9), 46.44 2"), 54.62 (CH-5'), 55.55 (CH 120.95 (CH-2"", 5"" or 6" 126.49, 126.67 (CH-aromat 131.24, 138.67, 139.53, 143.4 1"), 173.93 (Cq-1""), 207.42	CH ₃ -3'''', 4''''', 6''''' or 7''''), 35.90 (CH ₂ -12), 41.63 (CH-10), 46.57, 49.23 (CH-2'''') or 5'''''), 51.49 (CH ₃ - I-3'), 60.45 (C _q -2'), 101.07 (CH ₂ -7'''), 105.41, 108.28, '), 122.83, 123.62, 125.40, 125.55, 125.62, 125.97, ic–anthracene), 125.36 (CH-1'''), 132.24 (CH-2'''), 40, 144.17, 147.25, 147.99 (C _q -aromatic), 165.62 (C _q - (C_q-1'))	
Mass spectrometry (ESI-MS)		
Molecular weight	m/z.	
Calc. for C ₃₈ H ₄₀ NO ₆	606.2856 [M+H] ⁺	
Lock mass of C ₃₃ H ₄₀ N ₂ O ₉	609.2812 [M+H] ⁺	
Calc. for C ₃₈ H ₃₉ NO ₆ Na	628.2675 [M+Na] ⁺	
Found for C ₃₈ H ₃₉ NO ₆ Na	628.2677 [M+Na] ⁺	

Table 2.17 Data of spirocyclopentanone–anthracene adduct (±)-115c-i (continued)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

 Table 2.18 Data of spirocyclopentanone–anthracene adduct (±)-115c-ii

	Physical properties
White crystals	
Melting point (m.p.) 145.4–	148.5 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.20$ (EtOAc/CH ₂ Cl ₂ /he	xane, 1.5:0.5:8.0)
IR spe	ectroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1038, 1250	C–O stretching of ester
1442, 1489	C=C aromatic of benzene
1633, 1743	C=O stretching of carbonyl
2931, 2964	C–H stretching
A A	NMR spectroscopy
¹ H	I-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
1.11	d (<i>J</i> = 6.7 Hz), 3H, CH ₃ -3'''' or 4'''' or 6'''' or 7''''
1.20–1.30	m, 9H, CH ₃ -3''''', 4''''', 6''''' or 7'''''
1.88, 2.12, 4.35	ABX system ($J = 12.8, 3.1, 2.4$ Hz), 3H, H _a , H _b , H _b
2.30	d ($J = 6.2$ Hz), 1H, H _c
3.33–3.48	m, 1H, CH-2'''' or 5''''
4.16–4.30	m, 1H, CH-2'''' or 5''''
3.74	s, 3H, COOMe-2''

	NMR spectroscopy
¹ H	-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
3.91	d ($J = 11.4$ Hz), 1H, H _e
3.80-3.91	m, 1H, H _d
4.43	s, 1H, H _y
5.72	dd (<i>J</i> = 15.7, 7.0 Hz), 1H, H _f
5.91	s, 2H, CH ₂ -7''''
6.29	d (<i>J</i> = 15.7 Hz), 1H, H _g
6.62	dd (<i>J</i> = 8.0, 1.5 Hz), 1H, ArH-5'''' or 6''''
6.69	d (<i>J</i> = 8.0 Hz), 1H, ArH-5'''' or 6''''
6.71–6.76	m, 1H, ArH-2''''
6.95–7.45	m, 8H, ArH–anthracene
¹³ C-N	MR (100 MHz) in CDCl ₃ (ppm)
20.49, 20.53, 21.21, 21.27 (CH ₃ -3"", 4"", 6"" or 7""), 41.17 (CH ₂ -12), 42.28
(CH-4'), 44.16 (CH-9), 46.14	(CH-10), 47.82, 48.89 (CH-2''''' or 5'''''), 51.32 (CH ₃ -
2"), 55.70 (CH-5'), 57.69	(C_q-2') , 57.95 (CH-3'), 101.03 (CH ₂ -7'''), 105.24,
108.24, 120.79 (CH-2"", 5"	"" or 6"""), 122.48, 123.80, 124.01, 125.45, 125.48,
125.73, 126.34, 126.76 (CH	-aromatic-anthracene), 124.36 (CH-1"'), 132.06 (CH-
2'''), 131.13, 140.52, 141.56,	143.00, 143.63, 147.21, 147.94 (C _q -aromatic), 166.39
(C_q-1'') , 173.92 (C_q-1''''') , 21	$0.74 (C_q-1')$
vright ^C b ^M	ass spectrometry (ESI-MS)
Molecular weight	m/z.
Calc. for C ₃₈ H ₄₀ NO ₆	606.2856 [M+H] ⁺
Lock mass of C33H40N2O9	609.2812 [M+H] ⁺
Calc. for C ₃₈ H ₃₉ NO ₆ Na	628.2675 [M+Na] ⁺
Found for C38H39NO6Na	628.2675 [M+Na] ⁺

Table 2.18 Data of spirocyclopentanone–anthracene adduct (\pm)-115c-ii (continued)

2.6.3 Syntheses of 5'-(N,N-dibutylcarboxamid-1-yl)-3'-methoxycarbonyl-4'-(2-(3,4-methylenedioxy)phenyl)vinyl-1'-cyclopentanone-2'-spiro-11-9,10dihydro-9,10-ethanoanthracenes ((\pm)-115d-i and (\pm)-115d-ii)

According to general procedure II in 2.6.1, anhydrous diisopropylamine (1.68 equiv., 0.71 ml, 4.99 mmol), *n*-butyllithium (1.4 equiv., 3.16 ml, 1.32 N in hexane, 4.16 mmol), dimethyl itaconate–anthracene adduct ((\pm)-74) (1.0 equiv., 1.00 g, 2.97 mmol), pentadiene amide 112d (1.2 equiv., 1.18 g, 3.57 mmol). Purification by preparative thin layer chromatography (PLC) using EtOAc/CH₂Cl₂/ hexane (1.0:0.5:8.5) as eluent, affords diastereomeric spirocyclopentanone–anthracene adducts (\pm)-115d-*i* in 7% yield (0.078 g) and (\pm)-115d-*ii* in 2% yield (0.018 g), 62% conversion from the starting material.

 Table 2.19 Data of spirocyclopentanone–anthracene adduct (±)-115d-i

ľ	Physical properties
	White crystals
	Melting point (m.p.) 79.5–81.4 °C (CH ₂ Cl ₂ /hexane)
	$R_f = 0.38$ (EtOAc/CH ₂ Cl ₂ /hexane, 1.0:0.5:8.5)

	IR spectroscopy (evaporated thin film)	
	$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
	1038, 1251	C–O stretching of ester
	1490, 1502	C=C aromatic of benzene
	1634, 1744	C=O stretching of carbonyl
	2872, 2956	C–H stretching
		NMR spectroscopy
	¹ H	-NMR (400 MHz) in CDCl ₃
	Chemical shift (δ , ppm)	Type of proton
	0.86	t (<i>J</i> = 7.3 Hz), 3H, CH ₃ -5''''' or 9'''''
	0.96	t (<i>J</i> = 7.3 Hz), 3H, CH ₃ -5''''' or 9'''''
	1.20–1.59	m, 8H, CH ₂ -3''''', 4''''', 7''''', 8'''''
	1.30, 2.20, 4.30	ABX system ($J = 12.7, 2.6, 2.5 \text{ Hz}$), 3H, H _a , H _b , H _x
	2.80	d (<i>J</i> = 6.9 Hz), 1H, H _c
	3.03-3.16	m, 2H, CH ₂ -2'''' or 6''''
	3.65-3.79	m, 2H, CH ₂ -2'''' or 6''''
	3.54	s, 3H, COOMe-2''
	3.82	d (<i>J</i> = 10.1 Hz), 1H, H _e
	4.35-4.44	m, 1H, H _d
JC	4.90	s, 1H, H _y
۱n	5.76	dd (<i>J</i> = 15.7, 8.2 Hz), 1H, H _f
	5.94	s, 2H, CH ₂ -7''''
ч	6.54	d ($J = 15.6$ Hz), 1H, H _g
	6.73	d (<i>J</i> = 0.9 Hz), 2H, ArH-5'''', 6''''
	6.81	s, 1H, ArH-2''''
	6.97–7.45	m, 8H, ArH–anthracene

Table 2.19 Data of spirocyclopentanone–anthracene adduct (\pm)-115d-i (continued)

Table 2.19 Data of spirocyclopentanone–anthracene adduct (\pm)-115d-*i* (continued)

¹³ C-NMR (10	00 MHz) in CDCl ₃ (ppm)
13.78, 14.02 (CH ₃ -5"" or 9""), 1	19.97, 20.07 (CH ₂ -4''''' or 8'''''), 29.89, 31.38
(CH ₂ -3''''' or 7''''), 36.11 (CH ₂ -12), 42.37 (CH-4'), 44.17 (CH-9), 46.42, 47.59
(CH ₂ -2''''' or 6'''''), 46.69 (CH-10),	51.50 (CH ₃ -2"), 53.91 (CH-5'), 55.84 (CH-3'),
60.35 (C _q -2'), 101.07 (CH ₂ -7''''), 1	105.39, 108.26, 121.04 (CH-2"", 5"" or 6""),
122.72, 123.69, 125.58(3), 125.97	7, 126.48, 126.69 (CH-aromatic-anthracene),
124.86 (CH-1'''), 132.95 (CH-2'''), 1	131.08, 138.56, 139.45, 143.45, 144.08, 147.30,
147.99 (C _q -aromatic), 167.16 (C _q -1"	'), 173.79 (C _q -1''''), 207.79 (C _q -1')
Mass spe	ctrometry (ESI-MS)
Molecular weight	m/z.
Calc. for C ₄₀ H ₄₄ NO ₆	634.3169 [M+H] ⁺
Lock mass of C33H40N2O9	609.2812 [M+H] ⁺
Calc. for C ₄₀ H ₄₃ NO ₆ Na	656.2988 [M+Na] ⁺
Found for C ₄₀ H ₄₃ NO ₆ Na	656.2990 [M+Na] ⁺

(±)-**115d**-ii

Table 2.20 Data of spirocyclopentanone–anthracene adduct (±)-115d-iiPhysical propertiesWhite crystalsMelting point (m.p.) 69.8-72.1 °C (CH₂Cl₂/hexane) $R_f = 0.33$ (EtOAc/CH₂Cl₂/hexane, 1.0:0.5:8.5)

IR spectroscopy (evaporated thin film)	
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1037, 1250	C–O stretching of ester
1489, 1503	C=C aromatic of benzene
1635, 1739	C=O stretching of carbonyl
2855, 2926	C–H stretching
	NMR spectroscopy
¹ H	I-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
0.82	t (<i>J</i> = 7.3 Hz), 3H, CH ₃ -5''''' or 9'''''
0.97	t (<i>J</i> = 7.3 Hz), 3H, CH ₃ -5''''' or 9'''''
1.17–1.58	m, 8H, CH ₂ -3''''', 4''''', 7''''', 8'''''
2.12, 2.29, 4.30	ABX system ($J = 12.2, 3.0, 2.4 \text{ Hz}$), 3H, H _a , H _b , H _x
2.65	d (<i>J</i> = 12.2 Hz), 1H, H _c
2.94	s, 3H, COOMe-2''
2.99–3.13	m, 2H, CH ₂ -2'''' or 6''''
3.50-3.77	m, 2H, CH ₂ -2'''' or 6'''''
3.36	d ($J = 9.6$ Hz), 1H, H _e
4.51-4.59	m, 1H, H _d
5.03	s, 1H, H _y
5.77	dd (<i>J</i> = 15.6, 8.2 Hz), 1H, H _f
5.92	d (<i>J</i> = 0.8 Hz), 2H, CH ₂ -7''''
6.57	d ($J = 15.6 \text{ Hz}$), 1H, H _g
6.69–6.78	m, 2H, ArH-5'''', 6''''
6.83	d (<i>J</i> = 0.9 Hz), 1H, ArH-2''''
6.90–7.33	m, 8H, ArH

Table 2.20 Data of spirocyclopentanone–anthracene adduct (\pm)-115d-ii (continued)

Table 2.20 Data of spirocyclopentanone-anthracene adduct (±)-115d-ii (continued)

z) in CDCl ₃ (ppm)
20.12 (CH ₂ -4"" or 8""), 29.94, 31.52
5 (CH-4'), 44.29 (CH-9), 44.86 (CH-10)
CH ₃ -2"), 54.30 (CH-3'), 56.02 (CH-5')
, 108.26, 120.99 (CH-2"", 5"" or 6"")
5.38, 126.13, 126.24, 128.44 (CH
32.66 (CH-2""), 131.30, 137.89, 140.58
natic), 166.49 (C _q -1"), 169.49 (C _q -1"")
etry (ESI-MS)
m/z.
634.3169 [M+H] ⁺
609.2812 [M+H] ⁺
656.2988 [M+Na] ⁺
656 2096 FM No1 ⁺

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

2.7 Syntheses of racemic spirocyclopentanone–anthracene adduct derivatives (±)-116a-i, -ii – (±)-116d-i, -ii

2.7.1 Syntheses of 3'-methoxycarbonyl-4'-(3,4-methylenedioxy)phenyl-5'piperidinecarbonyl-1'-cyclopentanone-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes ((±)-116a-*i* and (±)-116a-*ii*)

According to general procedure II in 2.6.1, anhydrous diisopropylamine (1.9 equiv., 0.8 ml, 5.7 mmol), *n*-butyllithium (1.6 equiv., 3.4 ml, 1.4 N in hexane, 4.7 mmol), dimethyl itaconate–anthracene adduct ((\pm)-74) (1.0 equiv., 1.00 g, 3.0 mmol), α,β -unsaturated amide 113a (1.2 equiv., 0.92 g, 3.6 mmol). Purification by preparative thin layer chromatography (PLC) using EtOAc/CH₂Cl₂/hexane (1.5:0.5:8.0) as eluent, affords diastereomeric spirocyclopentanone–anthracene adduct (\pm)-116a-*i* in 9% yield (0.094 g) and (\pm)-116a-*ii* in 10% yield (0.112 g), 65% conversion from starting material.

(±)-**116a**-*i*

Table 2.21 Data of spirocyclopentanone–anthracene adduct (±)-116a-i

	Physical properties
White crystals	
Melting point (m.p.)	95.2–98.5 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.48$ (EtOAc/CH	H ₂ Cl ₂ /hexane, 1.5:0.5:8.0)
IR sp	ectroscopy (evaporated thin film)
$\nu_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1110, 1243	C–O stretching of ester
1490, 1631	C=C aromatic of benzene
1744	C=O stretching of carbonyl
2854, 2927	C–H stretching
000	NMR spectroscopy
II II	H-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
1.38–1.72	m, 6H, CH ₂ -3'''', 4'''', 5''''
1.29, 2.25, 4.30	ABX system ($J = 12.7, 2.8, 2.5 \text{ Hz}$), 3H, H _a , H _b , H _x
2.92	d ($J = 7.0 \text{ Hz}$), 1H, H _c
3.37–3.51	m, 2H, CH ₂ -2'''' or 6''''
3.78–3.91	m, 2H, CH ₂ -2'''' or 6''''
3.30	s, 3H, COOMe-2''
4.24	d (<i>J</i> = 10.7 Hz), 1H, H _e
4.93	dd (<i>J</i> =10.8, 7.1 Hz), 1H, H _d
4.90	s, 1H, H _y
5.92	s, 2H, CH ₂ -7''' e s e e e
6.64	dd (<i>J</i> = 8.1, 1.7 Hz), 1H, ArH-5''' or 6'''
6.67	d (<i>J</i> = 1.6 Hz), 1H, ArH-2'''
6.72	d (<i>J</i> = 8.0 Hz), 1H, ArH-5''' or 6'''

NMR spectroscopy	
1]	H-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
7.00–7.49	m, 8H, ArH–anthracene
¹³ C-N	MR (100 MHz) in CDCl ₃ (ppm)
24.59, 25.82, 26.55 (CH ₂ -3	"", 4"" or 5""), 36.23 (CH ₂ -12), 43.61 (CH-4'), 44.08,
47.52 (CH ₂ -2"" or 6""), 44.	20 (CH-9), 46.92 (CH-10), 51.38 (CH ₃ -2"), 52.40 (CH-
5'), 57.39 (CH-3'), 60.89 (C _q -2'), 101.06 (CH ₂ -7'''), 107.82, 108.33, 120.23 (CH-
2", 5" or 6"), 122.83, 12	3.76, 125.38, 125.46, 125.72, 126.07, 126.55, 126.77
(CH-aromatic-anthracene),	131.97, 138.57, 139.42, 143.46, 144.08, 146.72, 147.92
(C _q -aromatic), 165.38 (C _q -1	''), 173.49 (C _q -1''''), 207.23 (C _q -1')
N	fass spectrometry (ESI-MS)
Molecular weight	m/z.
Calc. for C ₃₅ H ₃₄ NO ₆	564.2386 [M+H] ⁺
Lock mass of C ₂₈ H ₃₇ N ₅ O ₇	556.2771 [M+H] ⁺
Found for C ₃₅ H ₃₄ NO ₆	564.2386 [M+H] ⁺
MA	LINIVER

 Table 2.21 Data of spirocyclopentanone–anthracene adduct (±)-116a-i (continued)

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

	Physical properties
White crystals	
Melting point (m.p.)	264.5–266.1 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.35$ (EtOAc/CH	₂ Cl ₂ /hexane, 1.5:0.5:8.0)
IR sp	ectroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1106, 1238	C–O stretching of ester
1490, 1631	C=C aromatic of benzene
1721, 1745	C=O stretching of carbonyl
2855, 2941	C–H stretching
- MA	NMR spectroscopy
1	H-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
1.31–1.74	m, 6H, CH ₂ -3'''', 4'''', 5''''
1.95, 2.10, 4.35	ABX system ($J = 12.8, 3.0, 2.3 \text{ Hz}$), 3H, H _a , H _b , H _x
2.38	d ($J = 6.2$ Hz), 1H, H _c
3.23–3.33, 3.63–3.71	m, 2H, CH ₂ -2''' or 6''''
3.51-3.62	m, 2H, CH ₂ -2'''' or 6''''
3.47	s, 3H, COOMe-2''
4.28-4.41	m, 2H, H _d , H _e

NMR spectroscopy ¹H-NMR (400 MHz) in CDCl₃ Chemical shift (δ , ppm) Type of proton 4.44 s, 1H, H_y s, 2H, CH₂-7''' 5.87 6.53 dd (*J* = 8.1, 1.6 Hz), 1H, ArH-5''' or 6''' 6.57 d (J = 1.6 Hz), 1H, ArH-2''' d (*J* = 8.0 Hz), 1H, ArH-5" or 6" 6.66 6.93-7.44 m, 8H, ArH-anthracene ¹³C-NMR (100 MHz) in CDCl₃ (ppm) 24.47, 25.43, 26.61 (CH₂-3"", 4"" or 5""), 41.44 (CH₂-12), 43.36 (CH-4'), 43.51, 47.41 (CH₂-2"" or 6""), 44.15 (CH-9), 47.82 (CH-10), 51.22 (CH₃-2"), 53.06 (CH-5'), 58.30 (Cq-2'), 59.78 (CH-3'), 100.97 (CH₂-7'''), 107.72, 108.19, 119.94 (CH-2", 5" or 6"), 122.50, 123.78, 124.10, 125.50, 125.53, 125.58, 126.40, 126.76 (CH-aromatic-anthracene), 131.05, 140.52, 141.22, 142.93, 143.37, 146.71, 147.79 (C_q-aromatic), 164.98 (C_q-1"), 173.61 (C_q-1""), 210.33 (C_q-1') Mass spectrometry (ESI-MS) Molecular weight m/z564.2386 [M+H]⁺ Calc. for C₃₅H₃₄NO₆ Lock mass of C33H40N2O9 609.2812 [M+H]+ 586.2206 [M+Na] Calc. for C₃₅H₃₃NO₆Na Found for C₃₅H₃₃NO₆Na 586.2203 [M+Na]⁺

Table 2.22 Data of spirocyclopentanone-anthracene adduct (±)-116a-ii (continued)

2.7.2 Syntheses 3'-methoxycarbonyl-4'-(3,4-methylenedioxy)phenyl-5'pyrrolidinecarbonyl-1'-cyclopentanone-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes ((±)-116b-*i* and (±)-116b-*ii*)

According to general procedure II in 2.6.1 anhydrous diisopropylamine (1.92 equiv., 0.42 ml, 2.97 mmol), n-butyllithium (1.6 equiv., 1.77 ml, 1.40 N in hexane, 2.47 mmol), dimethyl itaconate-anthracene adduct ((±)-74) (1.0 equiv., 0.52 g, 1.55 mmol), α,β -unsaturated amide **113b** (1.2 equiv., 0.46 g, 1.86 mmol). Purification preparative thin layer chromatography (PLC) by using EtOAc/CH₂Cl₂/hexane (1.5:0.5:8.0)eluent. affords diastereomeric as spirocyclopentanone-anthracene adducts (\pm) -116b-i in 23% yield (0.094 g) and (\pm) -116b-ii in 57% yield (0.231 g), 47% conversion from the starting material.

(±)-116b-i

Table 2.23 Data of spirocyclopentanone-anthracene adduct (±)-116b-i

Physical properties

White crystals Melting point (m.p.) 203.8–205.2 °C (CH₂Cl₂/hexane) $R_f = 0.26$ (EtOAc/CH₂Cl₂/hexane, 1.5:0.5:8.0)

IR spectroscopy (evaporated thin film)			
$v_{\rm max}~({\rm cm}^{-1})$	$v_{\rm max} ({\rm cm}^{-1})$ Type of vibration		
1037, 1244	C–O stretching of ester		
1489, 1504	C=C aromatic of benzene		
1635, 1743	C=O stretching of carbonyl		
2880, 2952	C–H stretching		
S	NMR spectroscopy		
¹ H-1	¹ H-NMR (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton		
1.72–2.00	m, 4H, CH ₂ -3'''', 4''''		
1.30, 2.25, 4.30	ABX system ($J = 12.7, 2.8, 2.6 \text{ Hz}$), 3H, H _a , H _b , H _x		
2.90	d ($J = 7.0$ Hz), 1H, H _c		
3.29	s, 3H, COOMe-2"		
3.38–3.48, 3.96–4.06	m, 2H, CH ₂ -2'''' or 5''''		
3.48–3.58	m, 2H, CH ₂ -2'''' or 5''''		
4.10	d (<i>J</i> = 10.9 Hz), 1H, H _e		
4.84	dd (<i>J</i> = 10.2, 7.1 Hz), 1H, H _d		
4.99	s, 1H, H _y		
5.92	s, 2H, CH ₂ -7'''		
6.66	d (<i>J</i> = 8.1 Hz), 1H, ArH-5''' or 6'''		
6.68	s, 1H, ArH-2'''		
6.73	d (<i>J</i> = 7.9 Hz), 1H, ArH-5''' or 6'''		
7.00–7.50	m, 8H, ArH–anthracene		

Table 2.23 Data of spirocyclopentanone–anthracene adduct (\pm)-116b-i (continued)

Table 2.23 Data of spirocyclopentanone–anthracene adduct (±)-116b-i (continued)

NMR spectroscopy			
¹³ C-NMI	¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
24.35, 25.75 (CH ₂ -3"" or 4""	'), 36.46 (CH ₂ -12), 43.56 (CH-4'), 44.16 (CH-9),		
46.31, 47.07 (CH ₂ -2"" or 5""), 46.69 (CH-10), 51.36 (CH ₃ -2"), 54.85 (CH-5'),			
57.76 (CH-3'), 60.77 (Cq-2'), 101.07 (CH2-7"), 107.82, 108.33, 120.28 (CH-2",			
5"" or 6""), 122.67, 123.79, 12	5.40, 125.59, 125.79, 126.05, 126.47, 126.72 (CH-		
aromatic-anthracene), 131.73,	138.50, 139.51, 143.53, 144.02, 146.76, 147.90 (C_q -		
aromatic), 166.03 (C _q -1"), 173.41 (C _q -1""), 208.00 (C _q -1')			
Mas	s spectrometry (ESI-MS)		
Molecular weight <i>m/z</i>			
Calc. for C ₃₄ H ₃₂ NO ₆	550.2229 [M+H] ⁺		
Lock mass of C ₂₈ H ₃₇ N ₅ O ₇ Na	578.2591 [M+Na] ⁺		
Calc. for C ₃₄ H ₃₁ NO ₆ Na	572.2049 [M+Na] ⁺		
Found for C ₃₄ H ₃₁ NO ₆ Na	572.2051 [M+Na] ⁺		

 Table 2.24 Data of spirocyclopentanone–anthracene adduct (±)-116b-ii

Physical properties

White crystals

Melting point (m.p.) 254.4–256.3 °C (CH₂Cl₂/hexane)

 $R_f = 0.15$ (EtOAc/CH₂Cl₂/hexane, 1.5:0.5:8.0)

	IR spectroscopy (evaporated thin film)	
	$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
	1038, 1255	C–O stretching of ester
	1435, 1490	C=C aromatic of benzene
	1640, 1744	C=O stretching of carbonyl
	2879, 2950	C–H stretching
		NMR spectroscopy
	¹ H-NMR (400 MHz) in CDCl ₃	
	Chemical shift (δ , ppm)	Type of proton
	1.64–1.96	m, 4H, CH ₂ -3'''', 4''''
	1.99, 2.19, 4.40	ABX system ($J = 12.8, 3.0, 2.3 \text{ Hz}$), 3H, H _a , H _b , H _x
	2.41	d ($J = 6.7$ Hz), 1H, H _c
	3.25-3.39	m, 2H, CH ₂ -2'''' or 5''''
	3.39-3.49, 3.94-4.09	m, 2H, CH ₂ -2'''' or 5''''
	3.51	s, 3H, COOMe-2''
	4.20	d ($J = 12.0 \text{ Hz}$), 1H, H _e
	4.35	dd ($J = 12.0, 6.6 \text{ Hz}$), 1H, H _d
	4.48	s, 1H, H _y
62	5.88	s, 2H, CH ₂ -7'''
QΟ	6.58	dd (<i>J</i> = 8.1, 1.6 Hz), 1H, ArH-5''' or 6'''
	6.62	d (<i>J</i> = 1.6 Hz), 1H, ArH-2'''
	6.69	d (<i>J</i> = 8.0 Hz), 1H, ArH-5''' or 6'''
	6.94–7.51	m, 8H, ArH–anthracene

Table 2.24 Data of spirocyclopentanone–anthracene adduct (\pm)-116b-ii (continued)

Table 2.24 Data of spirocyclopentanone-anthracene adduct (±)-116b-ii (continued)

¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)			
24.12, 25.60 (CH ₂ -3"" or 4""), 41.19 (CH ₂ -12), 42.96 (CH-4'), 44.03 (CH-9),			
45.95, 46.72 (CH ₂ -2"" or 5""),	47.68 (CH-10), 51.14 (CH ₃ -2"), 55.64 (CH-5"),		
58.38 (Cq-2'), 59.78 (CH-3'), 100.9	58.38 (C _q -2'), 59.78 (CH-3'), 100.90 (CH ₂ -7'''), 107.64, 108.11, 120.11 (CH-2''', 5'''		
or 6""), 122.49, 123.66, 123.99, 125.36, 125.46, 125.75, 126.30, 126.59 (CH-			
aromatic-anthracene), 130.87, 140.48, 141.04, 142.88, 143.25, 146.66, 147.69 (C _q -			
aromatic), 165.24 (C _q -1"), 173.42 (C _q -1""), 210.77 (C _q -1')			
Mass spectrometry (ESI-MS)			
Molecular weight	m/z.		
Calc. for C ₃₄ H ₃₂ NO ₆	550.2229 [M+H] ⁺		
Lock mass of C ₃₃ H ₄₀ N ₂ O ₉	609.2812 [M+H] ⁺		
Calc. for C ₃₄ H ₃₁ NO ₆ Na	572.2049 [M+Na] ⁺		
Found for C ₃₄ H ₃₁ NO ₆ Na	572.2048 [M+Na] ⁺		

ລິບສິກຣົ້ນหາວົກຍາລັຍເຮີຍວໃหม Copyright[©] by Chiang Mai University All rights reserved 2.7.3 Syntheses of 5'-(N,N-diisopropylcarboxamid-1-yl)-3'-methoxycarbonyl-4'-(3,4-methylenedioxy)phenyl-1'-cyclopentanone-2'-spiro-11-9,10-dihydro -9,10-ethanoanthracenes ((\pm)-116c-i and (\pm)-116c-ii)

According to general procedure II in 2.6.1 anhydrous diisopropyl-amine (1.68 equiv., 1.06 ml, 7.49 mmol), n-butyllithium (1.4 equiv., 4.66 ml, 1.34 N in hexane, 6.24 mmol), dimethyl itaconate-anthracene adduct ((±)-74) (1.0 equiv., 1.50 g, 4.46 mmol), α , β -unsaturated amide **113c** (1.2 equiv., 1.47 g, 5.35 mmol). Purification by preparative thin layer chromatography (PLC) using EtOAc/CH₂Cl₂/hexane (1.0:0.5:8.5)affords as eluent, diastereomeric spirocyclopentanone-anthracene adducts (\pm)-116c-i in 3% yield (0.044 g) and (\pm)-116c-ii in 2% yield (0.036 g), 59% conversion from the starting material.

77

IR spe	ctroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1039, 1235	C–O stretching of ester
1441, 1489	C=C aromatic of benzene
1635, 1739	C=O stretching of carbonyl
2932, 2965	C–H stretching
	NMR spectroscopy
H	I-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
1.14	d ($J = 6.7$ Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.23	d ($J = 6.4$ Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.40	d ($J = 6.7$ Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.50	d ($J = 6.7$ Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.29, 2.23, 4.30	ABX system ($J = 12.8, 2.5, 2.4 \text{ Hz}$), 3H, H _a , H _b , H _x
2.94	d ($J = 7.0$ Hz), 1H, H _c
3.30	s, 3H, COOMe-2"
3.49	hept ($J = 6.5$ Hz), 1H, CH-2'''' or 5''''
4.54	hept ($J = 6.5$ Hz), 1H, CH-2'''' or 5''''
4.20	d ($J = 10.5$ Hz), 1H, H _e
4.94	s, 1H, H _y
4.98	dd (<i>J</i> = 10.5, 7.0 Hz), 1H, H _d
5.92	s, 2H, CH ₂ -7'''
6.63	d (<i>J</i> = 8.1 Hz), 1H, ArH-5''' or 6'''
6.66	s, 1H, ArH-2'''
6.72	d ($J = 8.0$ Hz), 1H, ArH-5''' or 6'''
6.96–7.50	m, 8H, ArH-anthracene

Table 2.25 Data of spirocyclopentanone–anthracene adduct (\pm)-116c-*i* (continued)

Table 2.25 Data of spirocyclopentanone–anthracene adduct (±)-116c-*i* (continued)

NMR	spectroscopy	
¹³ C-NMR (100	MHz) in CDCl ₃ (ppm)	
20.35, 20.75, 20.81, 21.03 (CH ₃ -3"",	4'''', 6'''' or 7''''), 36.06 (CH ₂ -12), 43.20 (CH-	
4'), 44.20 (CH-9), 46.47, 46.75 (CH-2"" or 5""), 49.45 (CH-10), 51.37 (CH ₃ -2"),		
53.81 (CH-5'), 56.97 (CH-3'), 60.93 (Cq-2'), 101.03 (CH ₂ -7'''), 107.67, 108.25,		
119.82 (CH-2", 5" or 6"), 122.83, 123.72, 125.45, 125.48, 125.57, 126.06, 126.53,		
126.72 (CH-aromatic-anthracene), 132.44, 138.61, 139.45, 143.45, 144.13, 146.57,		
147.92 (C _q -aromatic), 165.66 (C _q -1"), 173.69 (C _q -1""), 207.28 (C _q -1')		
Mass spectrometry (ESI-MS)		
Molecular weight	m/z.	
Calc. for C ₃₆ H ₃₈ NO ₆	580.2699 [M+H] ⁺	
Lock mass of C33H40N2O9	$609.2812 [M+H]^+$	
Calc. for C ₃₆ H ₃₇ NO ₆ Na	602.2519 [M+Na] ⁺	
Found for C ₃₆ H ₃₇ NO ₆ Na	602.2518 [M+Na] ⁺	

(±)-**116c**-*ii*

Table 2.26 Data of spirocyclopentanone-anthracene adduct (±)-116c-ii

Physical properties

Melting point (m.p.) 170.1–173.9 °C (CH₂Cl₂/hexane)

 $R_f = 0.30$ (EtOAc/CH₂Cl₂/hexane, 1.0:0.5:8.5)

White crystals

IR spectroscopy (evaporated thin film)	
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1041, 1247	C–O stretching of ester
1442, 1492	C=C aromatic of benzene
1633, 1746	C=O stretching of carbonyl
2930, 2967	C–H stretching
	NMR spectroscopy
- IO II	I-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
0.89	d (<i>J</i> = 6.8Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.05	d ($J = 6.5$ Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.43	d ($J = 6.7$ Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.50	d ($J = 6.8$ Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
2.14, 2.35, 4.32	ABX system ($J = 12.3, 3.1, 2.5 \text{ Hz}$), 3H, H _a , H _b , H _x
2.89	s, 3H, COOMe-2''
2.93	d (<i>J</i> = 12.7 Hz), 1H, H _c
3.39-3.52	m, 1H, CH-2'''' or 5''''
4.08–4.21	m, 1H, CH-2"" or 5""
3.43	d (<i>J</i> = 9.7 Hz), 1H, H _e
5.02-5.10	m, 1H, H _d
5.08	s, 1H, H _y
5.91	s, 2H, CH ₂ -7'''
6.71–6.75	m, 3H, ArH-2''', 5''', 6''' Se Constant
6.92–7.33	m, 8H, ArH-anthracene

Table 2.26 Data of spirocyclopentanone–anthracene adduct (\pm)-116c-ii (continued)

Table 2.26 Data of spirocyclopentanone-anthracene adduct (±)-116c-ii (continued)

¹³ C-NMR (100	0 MHz) in CDCl ₃ (ppm)	
20.56, 20.68, 20.71, 20.74 (CH ₃ -3"",	, 4"", 6"" or 7""), 35.51 (CH ₂ -12), 43.09 (CH-	
4'), 44.30 (CH-9), 44.77 (CH-10), 4	6.54, 49.17 (CH-2'''' or 5''''), 51.37 (CH ₃ -2''),	
54.03 (CH-3'), 59.45 (Cq-2'), 59.83 (CH-5'), 100.97 (CH ₂ -7""), 107.58, 108.47,		
120.29 (CH-2", 5" or 6"), 122.70, 123.11 124.89, 124.93, 125.34, 126.20, 126.25,		
128.41 (CH-aromatic-anthracene), 135.36, 137.88, 140.68, 143.80, 145.98, 146.45,		
147.89 (C _q -aromatic), 165.17 (C _q -1"), 169.46 (C _q -1""), 208.43 (C _q -1')		
Mass spectrometry (ESI-MS)		
Molecular weight	m/z	
Calc. for C ₃₆ H ₃₈ NO ₆	580.2699 [M+H] ⁺	
Lock mass of C ₃₃ H ₄₀ N ₂ O ₉	609.2812 [M+H] ⁺	
Calc. for C ₃₆ H ₃₇ NO ₆ Na	602.2519 [M+Na] ⁺	
Found for C ₃₆ H ₃₇ NO ₆ Na	602.2519 [M+Na] ⁺	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

The MAI

2.7.4 Syntheses of 5'-(N,N-dibutylcarboxamid-1-yl)-3'-methoxycarbonyl-4'-(3,4-methylenedioxy)phenyl-1'-cyclopentanone-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes ((±)-116d-i and (±)-116d-ii)

According to general procedure II in 2.6.1, anhydrous diisopropylamine (1.68 equiv., 1.06 ml, 7.49 mmol), n-butyllithium (1.4 equiv., 4.74 ml, 1.32 N in hexane, 6.24 mmol), dimethyl itaconate-anthracene adduct ((±)-74) (1.0 equiv., 1.50 g, 4.46 mmol), α,β -unsaturated amide **113d** (1.2 equiv., 1.62 g, 5.35 mmol). Purification by preparative thin layer chromatography (PLC) using EtOAc/CH₂Cl₂/hexane (0.5:0.5:9.0)affords as eluent, diastereomeric spirocyclopentanone-anthracene adducts (\pm) -116d-i in 4% yield (0.061 g) and (\pm) -116d-ii in 4% yield (0.056 g), 55% conversion from the starting material.

(±)-116d-i

Table 2.27 Data of spirocyclopentanone-anthracene adduct (±)-116d-i

Physical properties

White crystals

Melting point (m.p.) 82.5-85.1 °C (CH₂Cl₂/hexane)

 $R_f = 0.41$ (EtOAc/CH₂Cl₂/hexane, 0.5:0.5:9.0)

IR spectroscopy (evaporated thin film)	
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1038, 1244	C–O stretching of ester
1489	C=C aromatic of benzene
1634, 1744	C=O stretching of carbonyl
2872, 2956	C–H stretching
	NMR spectroscopy
¹ H-NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
0.89	t (<i>J</i> = 7.3 Hz), 3H, CH ₃ -5'''' or 9''''
0.96	t (<i>J</i> = 7.3 Hz), 3H, CH ₃ -5'''' or 9''''
1.18–1.65	m, 8H, CH ₂ -3'''', 4'''', 7'''', 8''''
1.31, 2.25, 4.30	ABX system ($J = 12.7, 2.5, 2.4 \text{ Hz}$), 3H, H _a , H _b , H _x
2.90	d ($J = 6.9$ Hz), 1H, H _c
3.32	s, 3H, COOMe-2''
2.93-3.03, 3.69-3.80	m, 2H, CH ₂ -2'''' or 6''''
3.04-3.15, 3.79-3.90	m, 2H, CH ₂ -2''' or 6''''
4.18	d (<i>J</i> = 10.8 Hz), 1H, H _e
4.87	dd (<i>J</i> = 10.8, 6.9 Hz), 1H, H _d
4.96	s, 1H, H _y
5.91	d (<i>J</i> = 1.6 Hz), 2H, CH ₂ -7'''
6.67	dd (<i>J</i> = 8.1, 1.2 Hz), 1H, ArH-5''' or 6'''
6.70	d (<i>J</i> = 1.6 Hz), 1H, ArH-2'''
6.72	d ($J = 8.0$ Hz), 1H, ArH-5''' or 6'''
6.96–7.49	m, 8H, ArH-anthracene

Table 2.27 Data of spirocyclopentanone–anthracene adduct (\pm)-116c-*i* (continued)

Table 2.27 Data of spirocyclopentanone–anthracene adduct (±)-116c-*i* (continued)

¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)			
13.80, 14.05 (CH ₃ -5"" or 9"	13.80, 14.05 (CH ₃ -5"" or 9""), 20.09, 20.13 (CH ₂ -4"" or 8""), 29.87, 31.40 (CH ₂ -		
3"" or 7""), 36.56 (CH ₂ -12), 44.05 (CH-4'), 44.21 (CH-9), 46.52, 47.64 (CH ₂ -2""			
or 6''''), 46.90 (CH-10), 51.42 (CH ₃ -2''), 53.14 (CH-5'), 57.69 (CH-3'), 60.83 (C _q -			
2'), 101.11 (CH ₂ -7""), 108.02, 108.30, 120.45 (CH-2"", 5"" or 6""), 122.77, 123.81,			
125.44, 125.61(2), 126.09, 126.58, 126.76 (CH-aromatic-anthracene), 131.86,			
138.52, 139.52, 143.55, 144.08, 146.84, 147.96 (C_q -aromatic), 167.05 (C_q -1"),			
173.66 (C_q -1''''), 207.66 (C_q -1')			
Mass spectrometry (ESI-MS)			
Molecular weight	m/z.	No.	
Calc. for C ₃₈ H ₄₂ NO ₆	608.3012 [M+H] ⁺	735	
Lock mass of C33H40N2O9	609.2812 [M+H] ⁺		
Calc. for C ₃₈ H ₄₁ NO ₆ Na	630.2832 [M+Na] ⁺		

630.2832 [M+Na]⁺

630.2832 [M+Na]⁺

Table 2.28 Data of spirocyclopentanone-anthracene adduct (±)-116d-ii

Physical properties

White crystals

Found for C38H41NO6Na

Melting point (m.p.) 172.3–173.7 °C (CH₂Cl₂/hexane)

 $R_f = 0.35$ (EtOAc/CH₂Cl₂/hexane, 0.5:0.5:9.0)

IR sp	IR spectroscopy (evaporated thin film)	
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration	
1037, 1251	C–O stretching of ester	
1443, 1489	C=C aromatic of benzene	
1637, 1739	C=O stretching of carbonyl	
2872, 2956	C–H stretching	
8.	NMR spectroscopy	
¹ H-NMR (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton	
0.71	t (<i>J</i> = 7.1 Hz), 3H, CH ₃ -5'''' or 9''''	
0.96	t ($J = 7.3$ Hz), 3H, CH ₃ -5'''' or 9''''	
0.92–1.51	m, 8H, CH ₂ -3'''', 4'''', 7'''', 8''''	
2.16, 2.35, 4.32	ABX system ($J = 12.2, 3.0, 2.5 \text{ Hz}$), 3H, H _a , H _b , H _x	
2.86	s, 3H, COOMe-2''	
2.95	d (<i>J</i> = 12.6 Hz), 1H, H _c	
2.79–2.91, 3.34–3.49	m, 2H, CH ₂ -2'''' or 6''''	
2.98-3.08, 3.57-3.71	m, 2H, CH ₂ -2'''' or 6''''	
3.44	d ($J = 10.1$ Hz), 1H, H _e	
4.88	dd (<i>J</i> = 12.6, 10.1 Hz), 1H, H _d	
5.12	s, 1H, H _y	
5.90	s, 2H, CH ₂ -7''	
6.71	d (<i>J</i> = 8.4 Hz), 1H, ArH-5''' or 6'''	
6.73–6.79	m, 2H, ArH-2''', 5''' or 6'''	
6.92–7.35	m, 8H, ArH–anthracene	

Table 2.28 Data of spirocyclopentanone–anthracene adduct (\pm)-116d-ii (continued)

Table 2.28 Data of spirocyclopentanone-anthracene adduct (±)-116d-ii (continued)

NMR spectroscopy		
¹³ C-NMR (10	00 MHz) in CDCl ₃ (ppm)	
13.70, 14.02 (CH ₃ -5"" or 9""), 19.82, 20.07 (CH ₂ -4"" or 8""), 29.95, 31.39 (CH ₂ -		
3"" or 7""), 35.96 (CH ₂ -12), 43.98 (CH-4'), 44.30 (CH-9), 44.78 (CH-10), 46.61,		
47.81 (CH ₂ -2"" or 6""), 51.38 (CH ₃ -2"), 54.87 (CH-3'), 58.75 (CH-5'), 59.13 (C _q -		
2'), 101.01 (CH ₂ -7'''), 107.80, 108.4	46, 120.62 (CH-2", 5" or 6"), 122.77, 122.94,	
124.92, 125.10, 125.39, 126.14, 126.25, 128.40 (CH-aromatic-anthracene), 134.73,		
137.90, 140.56, 143.89, 145.93, 1	46.59, 147.88 (C _q -aromatic), 166.74 (C _q -1"),	
169.36 (C_q -1'''), 208.76 (C_q -1')		
Mass spectrometry (ESI-MS)		
Molecular weight <i>m/z</i>		
Calc. for C ₃₈ H ₄₂ NO ₆	608.3012 [M+H] ⁺	
Lock mass of C33H40N2O9	609.2812 [M+H] ⁺	
Calc. for C ₃₈ H ₄₁ NO ₆ Na	630.2832 [M+Na] ⁺	
Found for C ₃₈ H ₄₁ NO ₆ Na	$630.2832 [M+Na]^+$	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

GMAI

2.8 Syntheses of racemic spirocyclopentanone–anthracene adduct derivatives (±)-117a-*i*, -*ii* – (±)-117d-*i*, -*ii*

2.8.1 Syntheses of 3'-methoxycarbonyl-4'-phenyl-5'-piperidinecarbonyl-1'-cyclopentanone-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes ((\pm)-117a-*i* and (\pm)-117a-*ii*)

According to general procedure II in 2.6.1 anhydrous diisopropyl-amine (1.9 equiv., 0.8 ml, 5.7 mmol), *n*-butyllithium (1.6 equiv., 3.4 ml, 1.4 N in hexane, 4.7 mmol), dimethyl itaconate–anthracene adduct ((\pm)-74) (1.0 equiv., 1.00 g, 3.0 mmol), α,β -unsaturated amide 114a (1.2 equiv., 0.77 g, 3.6 mmol). Purification by preparative thin layer chromatography (PLC) using EtOAc/CH₂Cl₂/hexane (1.5:0.5:8.0) as eluent, affords diastereomeric spirocyclopentanone–anthracene adducts (\pm)-117a-*i* in 10% yield (0.109 g) and (\pm)-117a-*ii* in 3% yield (0.031 g), 68% conversion from the starting material.

(±)-117a-*i*

Table 2.29 Data of spirocyclopentanone–anthracene adduct (±)-117a-i

	Physical properties	
White crystals		
Melting point (m.p.) 206.5-	-209.4 °C (CH ₂ Cl ₂ /hexane)	
$R_f = 0.62$ (EtOAc/CH ₂ Cl ₂ /he	exane, 1.5:0.5:8.0)	
IR spectroscopy (evaporated thin film)		
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration	
1130, 1265	C–O stretching of ester	
1439, 1631	C=C aromatic of benzene	
1745	C=O stretching of carbonyl	
2856, 2938	C–H stretching	
	NMR spectroscopy	
¹ H	H-NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton	
1.48–1.76	m, 6H, CH ₂ -3'''', 4'''', 5''''	
1.31, 2.26, 4.31	ABX system ($J = 12.8, 2.8, 2.5 \text{ Hz}$), 3H, H _a , H _b , H _x	
2.99	d (<i>J</i> = 7.1 Hz), 1H, H _c	
3.21	s, 3H, COOMe-2''	
3.37–3.52	m, 2H, CH ₂ -2'''' or 6''''	
3.77–3.89	m, 2H, CH ₂ -2'''' or 6''''	
4.35	d ($J = 10.6$ Hz), 1H, H _e	
4.96	s, 1H, H _y ang Mai Universit	
5.03	dd (<i>J</i> = 10.5, 7.1 Hz), 1H, H _d	
6.97–7.53	m, 13H, ArH	

Table 2.29 Data of spirocyclopentanone–anthracene adduct (±)-117a-i (continued)

¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)	
24.53, 25.77, 26.48 (CH ₂ -3"", 4"" or 5""), 36.18 (CH ₂ -12), 43.83 (CH-4'), 44.00,	
47.47 (CH ₂ -2"" or 6""), 44.15 (CH-9), 46.83 (CH-10), 51.21 (CH ₃ -2"), 51.85 (CH-	
5'), 57.27 (CH-3'), 60.80 (Cq-2'), 122.79, 123.72, 125.35, 125.43, 125.67, 126.01,	
126.49, 126.71, 127.15(2), 127.26, 128.58(2) (CH-aromatic), 138.11, 138.56,	
139.42, 143.43, 144.07 (C _q -aromatic), 165.45 (C _q -1"), 173.43 (C _q -1""), 207.31 (C _q -	
Mass spectrometry (ESI-MS)	
Molecular weight m/z	

Molecular weight	m/z.
Calc. for C ₃₄ H ₃₄ NO ₄	520.2488 [M+H] ⁺
Lock mass of C ₂₈ H ₃₇ N ₅ O ₇	556.2771 [M+H] ⁺
Calc. for C ₃₄ H ₃₃ NO ₄ Na	542.2307 [M+Na] ⁺
Found for C ₃₄ H ₃₃ NO ₄ Na	542.2305 [M+Na] ⁺

IR spectroscopy (evaporated thin film)		
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration	
1132, 1267	C–O stretching of ester	
1362	C–H bending of CH ₃	
1441, 1633	C=C aromatic of benzene	
1747	C=O stretching of carbonyl	
2858, 2940	C–H stretching	
NMR spectroscopy		
¹ H-NMR (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton	
1.28–1.77	m, 6H, CH ₂ -4'''', 5'''', 6''''	
1.99, 2.14, 4.38	ABX system ($J = 12.8, 3.1, 2.5 \text{ Hz}$), 3H, H _a , H _b , H _x	
2.44	d (<i>J</i> = 6.3 Hz), 1H, H _c	
3.21–3.31, 3.65–3.75	m, 2H, CH ₂ -2'''' or 6''''	
3.52–3.63	m, 2H, CH ₂ -2'''' or 6''''	
3.38	s, 3H, COOMe-2"	
4.42	dd ($J = 6.3, 12.0 \text{ Hz}$), 1H, H _d	
4.46	s, 1H, H _y	
4.48	d (<i>J</i> = 12.0 Hz), 1H, H _e	
6.91–7.45	m, 13H, Ar-H	
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
24.49, 25.45, 26.62 (CH ₂ -4'''', 5'''' or 6''''), 41.43 (CH ₂ -12), 43.51, 47.45 (CH ₂ -3''''		
or 7''''), 43.63 (CH-4'), 44.20 (CH-9), 47.83 (CH-10), 51.06 (CH ₃ -2''), 52.61 (CH-		
5'), 58.32 (C _q -2'), 59.77 (CH-3'), 122.52, 123.79, 124.11, 125.51, 125.55, 125.82,		
126.39, 126.79, 127.04(2), 127.32, 128.48(2) (CH-aromatic), 137.23, 140.56,		
141.27, 142.99, 143.41 (C _q -aromatic), 165.13 (C _q -1"), 173.58 (C _q -1""), 210.49 (C _q -		
1')		

Table 2.30 Data of spirocyclopentanone–anthracene adduct (\pm)-117a-ii (continued)

Table 2.30 Data of	spirocyclopentanone	-anthracene adduct	(±)-117a-ii (continu	ued)
--------------------	---------------------	--------------------	----------------------	------

Mass spectrometry (ESI-MS)		
Molecular weight	m/z	
Calc. for C ₃₄ H ₃₄ NO ₄	520.2488 [M+H] ⁺	
Lock mass of C ₂₈ H ₃₇ N ₅ O ₇	578.2591 [M+Na] ⁺	
Calc. for C ₃₄ H ₃₃ NO ₄ Na	542.2307 [M+Na] ⁺	
Found for C ₃₄ H ₃₃ NO ₄ Na	542.2305 [M+Na] ⁺	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved 2.8.2 Syntheses of 3'-methoxycarbonyl-4'-phenyl-5'-pyrrolidinecarbonyl-1'-cyclo-pentanone-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes ((\pm)-117b-*i* and (\pm)-117b-*ii*)

According to general procedure II in 2.6.1 anhydrous diisopropylamine (1.92 equiv., 0.40 ml, 2.85 mmol), n-butyllithium (1.6 equiv., 1.70 ml, 1.40 N in hexane, 2.38 mmol), dimethyl itaconate-anthracene adduct ((±)-74) (1.0 equiv., 0.50 g, 1.49 mmol), α,β-unsaturated amide **114b** (1.2 equiv., 0.36 g, 1.78 mmol). Purification by preparative / thin layer chromatography (PLC) using EtOAc/CH₂Cl₂/hexane (1.5:0.5:8.0)eluent, affords as diastereomeric spirocyclopentanone-anthracene adducts (\pm)-117b-*i* in 15% yield (0.090 g) and (\pm)-117b-ii in 15% yield (0.090 g), 79% conversion from the starting material.

Table 2.31 Data of spirocyclopentanone-anthracene adduct (±)-117b-i

Physical properties
White crystals
Melting point (m.p.) 204.4–205.7 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.39$ (EtOAc/CH ₂ Cl ₂ /hexane, 1.5:0.5:8.0)

IR spectroscopy (evaporated thin film)		
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration	
1176	C–O stretching of ester	
1434, 1497	C=C aromatic of benzene	
1636, 1744	C=O stretching of carbonyl	
2878, 2952	C–H stretching	
	NMR spectroscopy	
¹ H-NMR (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton	
1.65–2.06	m, 4H, CH ₂ -3'''', 4''''	
1.31, 2.26, 4.30	ABX system ($J = 12.8, 2.8, 2.3 \text{ Hz}$), 3H, H _a , H _b , H _x	
2.96	d ($J = 7.0$ Hz), 1H, H _c	
3.40-3.47, 3.98-4.08	m, 2H, CH ₂ -2'''' or 5''''	
3.47–3.53	m, 2H, CH ₂ -2'''' or 5''''	
3.20	s, 3H, COOMe-2''	
4.21	d (<i>J</i> = 10.8 Hz), 1H, H _e	
4.93	dd (<i>J</i> = 10.7, 7.0 Hz), 1H, H _d	
5.05	s, 1H, H _y	
7.00–7.54	m, 13H, ArH	
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
24.34, 25.74 (CH ₂ -3"" or 4""), 36.44 (CH ₂ -12), 43.80 (CH-4'), 44.17 (CH-9),		
46.28, 47.05 (CH ₂ -2"" or 5""), 46.64 (CH-10), 51.20 (CH ₃ -2"), 54.32 (CH-5'),		
57.69 (CH-3'), 60.73 (C _q -2'), 122.65, 123.77, 125.41, 125.59, 125.77, 126.02,		
126.45, 126.69, 127.23(2), 127.33, 128.61(2) (CH-aromatic), 137.96, 138.54,		
139.55, 143.53, 144.05 (C _q -aromatic), 166.11 (C _q -1"), 173.37 (C _q -1""), 208.09		

 (C_q-1')

Table 2.31 Data of spirocyclopentanone–anthracene adduct (\pm)-117b-i (continued)
Table 2.31 Data of spirocyclopentanone–anthracene adduct (\pm)-117b-i (continued)

Mass spectrometry (ESI-MS)		
Molecular weight	m/z.	
Calc. for C ₃₃ H ₃₂ NO ₄	506.2331 [M+H] ⁺	
Lock mass of C ₂₈ H ₃₇ N ₅ O ₇	556.2771 [M+H] ⁺	
Calc. for C ₃₃ H ₃₁ NO ₄ Na	528.2151 [M+Na] ⁺	
Found for C ₃₃ H ₃₁ NO ₄ Na	528.2154 [M+Na] ⁺	

 Table 2.32 Data of spirocyclopentanone–anthracene adduct (±)-117b-ii

	Physical properties
White crystals	BSY/
Melting point (m.p.)	263.1–267.3 °C (CH ₂ Cl ₂ /hexane)
$R_f = 0.26$ (EtOAc/CH	I ₂ Cl ₂ /hexane, 1.5:0.5:8.0)
IR sj	pectroscopy (evaporated thin film)
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1175	C–O stretching of ester
1497	C=C aromatic of benzene
1638, 1745	C=O stretching of carbonyl
2875, 2950	C–H stretching

	NMR spectroscopy	
I	H-NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm) Type of proton		
1.68–1.97	m, 4H, CH ₂ -3'''', 4''''	
2.00, 2.19, 4.39	ABX system ($J = 12.9, 3.0, 2.4 \text{ Hz}$), 3H, H _a , H _b , H _x	
2.43	d (<i>J</i> = 6.7 Hz), 1H, H _c	
3.28-3.33	m, 2H, CH ₂ -2'''' or 5''''	
3.41–3.49, 3.97–4.08	m, 2H, CH ₂ -2'''' or 5''''	
3.39	s, 3H, COOMe-2''	
4.27	d (<i>J</i> = 11.9 Hz), 1H, H _e	
4.41	dd (<i>J</i> = 10.8, 5.5 Hz), 1H, H _d	
4.45	s, 1H, H _y	
6.92–7.48	m, 13H, ArH	
¹³ C-N	NMR (100 MHz) in CDCl ₃ (ppm)	
24.28, 25.77 (CH ₂ -3"" or	4''''), 41.31 (CH ₂ -12), 43.35 (CH-4'), 44.22 (CH-9),	
46.05, 46.87 (CH ₂ -2'''' or	5""), 47.81 (CH-10), 51.08 (CH ₃ -2"), 55.29 (CH-5'),	
58.51 (C _q -2'), 59.91 (CH-	3'), 122.63, 123.78, 124.12, 125.49, 125.60, 125.89,	
126.42, 126.74, 127.22(2)	, 127.38, 128.50(2) (CH-aromatic), 137.22, 140.63,	
141.22, 143.05, 143.40 (C _q -	aromatic), 165.48 (C _q -1"), 173.52 (C _q -1""), 211.07 (C _q -	
1') <u>nenika</u>	<u> วิทยุจลัยเชียงไห</u> า	
	fass spectrometry (ESI-MS)	
Molecular weight	Chiang Mm/z University	
Calc. for C ₃₃ H ₃₂ NO ₄	506.2331 [M+H] ⁺	
Lock mass of C ₃₂ H ₄₁ NO ₂	472.3215 [M+H] ⁺	
Calc. for C ₃₃ H ₃₁ NO ₄ Na	528.2151 [M+Na] ⁺	
Found for $C_{33}H_{31}NO_4Na$ 528.2153 $[M+Na]^+$		

Table 2.32 Data of spirocyclopentanone–anthracene adduct (\pm)-117b-ii (continued)

2.8.3 Syntheses of 5'-(N,N-diisopropylcarboxamid-1-yl)-3'-methoxycarboxyl-4'-phenyl-1'-cyclopentanone-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes ((\pm)-117c-i and (\pm)-117c-ii)

According to general procedure II in 2.6.1 anhydrous diisopropyl-amine (1.68 equiv., 0.71 ml, 4.99 mmol), n-butyllithium (1.40 equiv., 3.16 ml, 1.32 N in hexane, 4.16 mmol), dimethyl itaconate-anthracene adduct ((±)-74) (1.0 equiv., 1.00 g, 2.97 mmol), α,β -unsaturated amide **114c** (1.2 equiv., 0.82 g, 3.57 mmol). preparative thin Purification by layer chromatography (PLC) using EtOAc/CH₂Cl₂/hexane (1.0:0.5:8.5)eluent, affords diastereomeric as spirocyclopentanone-anthracene adducts (\pm)-117c-*i* in 1% yield (0.016 g) and (\pm)-117c-ii in 19% yield (0.228 g), 75% conversion from the starting material.

OD	Physical properties
	White crystals
1	Melting point (m.p.) 98.5–101.9 °C (CH ₂ Cl ₂ /hexane)
	$R_f = 0.47$ (EtOAc/CH ₂ Cl ₂ /hexane, 1.0:0.5:8.5)

$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1198, 1329	C–O stretching of ester
1437, 1458	C=C aromatic of benzene
1632, 1743	C=O stretching of carbonyl
2851, 2926	C–H stretching
2	NMR spectroscopy
IN IN IN	H-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
1.14	d (<i>J</i> = 6.7 Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.24	d (<i>J</i> = 6.4 Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.39	d (<i>J</i> = 6.7 Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.51	d (<i>J</i> = 6.7 Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''
1.31, 2.25, 4.30	ABX system ($J = 12.7, 2.7, 2.6$ Hz), 3H, H _a , H _b , H
3.02	d ($J = 7.0$ Hz), 1H, H _c
3.22	s, 3H, COOMe-2"
3.48	hept ($J = 6.7$ Hz), 1H, CH-2''' or 5''''
4.57	hept ($J = 6.7$ Hz), 1H, CH-2'''' or 5''''
4.31	d (<i>J</i> = 10.3 Hz), 1H, H _e
4.93	s, 1H, H _y
5.08	dd (<i>J</i> = 10.4, 7.1 Hz), 1H, H _d
6.95-7.52	m, 13H, Ar-H

 Table 2.33 Data of spirocyclopentanone–anthracene adduct (±)-117c-i (continued)

Table 2.33 Data of spirocyclopentanone–anthracene adduct (±)-117c-*i* (continued)

NMR spectroscopy		
¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
20.36, 20.74, 20.82, 21.00 (CH ₃ -3''', 4'''', 6'''' or 7'''), 36.05 (CH ₂ -12), 43.42 (CH-4'), 44.21 (CH-9), 46.48, 49.49 (CH-2'''' or 5''''), 46.72 (CH-10), 51.28 (CH ₃ -2''), 53.32 (CH-5'), 56.86 (CH-3'), 60.90 (C _q -2'), 122.86, 123.74, 125.48, 125.53, 125.59, 126.07, 126.55, 126.73, 126.97(2), 127.11, 128.58(2) (CH-aromatic), 138.63, 138.66, 139.50, 143.48, 144.18 (C _q -aromatic), 165.77 (C _q -1''), 173.73 (C _q -1'''), 207.49 (C _q -1')		
Mass s	pectrometry (ESI-MS)	
Molecular weight	m/z.	
Calc. for C ₃₅ H ₃₈ NO ₄	536.2801 [M+H] ⁺	
Lock mass of C33H40N2O9	609.2812 [M+H] ⁺	
Calc. for C ₃₅ H ₃₇ NO ₄ Na	558.2620 [M+Na] ⁺	
Found for C ₃₅ H ₃₇ NO ₄ Na	558.2620 [M+Na] ⁺	

 Table 2.34 Data of spirocyclopentanone-anthracene adduct (±)-117c-iii

Physical properties

White crystals

Melting point (m.p.) 238.2–242.1 °C (CH₂Cl₂/hexane)

 $R_f = 0.42$ (EtOAc/CH₂Cl₂/hexane, 1.0:0.5:8.5)

IR spectroscopy (evaporated thin film)			
$\nu_{\rm max}~({\rm cm}^{-1})$	Type of vibration		
1174, 1207	C–O stretching of ester		
1439	C=C aromatic of benzene		
1635, 1744	C=O stretching of carbonyl		
2874, 2967	C–H stretching		
181/	NMR spectroscopy		
	¹ H-NMR (400 MHz) in CDCl ₃		
Chemical shift (δ , ppm)	Type of proton		
1.03	d (<i>J</i> = 6.7 Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''		
1.11	d ($J = 6.7$ Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''		
1.25	d (<i>J</i> = 6.4 Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''		
1.26	d (<i>J</i> = 6.7 Hz), 3H, CH ₃ -3'''', 4'''', 6'''' or 7''''		
1.98, 2.19, 4.38	ABX system ($J = 12.8, 3.1, 2.2 \text{ Hz}$), 3H, H _a , H _b , H _x		
2.42	d (<i>J</i> = 5.6 Hz), 1H, H _c		
3.23–3.36	m, 1H, CH-2'''' or 5''''		
3.39	s, 3H, COOMe-2''		
4.31-4.43	m, 3H, H _d , H _e , CH-2'''' or 5''''		
4.47	s, 1H, H _y		
6.91–7.47	m, 13H, Ar-H		
¹³ C-	¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
20.39, 20.54, 20.90, 21.14 (CH ₃ -3'''', 4'''', 6'''' or 7''''), 41.60 (CH ₂ -12), 44.27(2) (CH-		
9, 4'), 46.18, 49.36 (CH-2'''	' or 5''''), 47.93 (CH-10), 51.02 (CH ₃ -2''), 54.68 (CH-5'),		
58.23 (C _q -2'), 59.77 (CH-3')), 122.53, 123.85, 124.15, 125.49, 125.55, 125.79, 126.38,		
126.85, 127.14(2), 127.28, 1	126.85, 127.14(2), 127.28, 128.38(2) (CH-aromatic), 137.45, 140.66, 141.54, 143.08		
143.72 (C_q -aromatic), 166.10 (C_q -1''), 173.74 (C_q -1'''), 210.82 (C_q -1')			

Table 2.34 Data of spirocyclopentanone–anthracene adduct (\pm)-117c-ii (continued)

Fable 2.34 Data of spirocyc	lopentanone-anthracene ad	lduct (±)-117c-ii (continued)
-----------------------------	---------------------------	-------------------------------

Mass spectrometry (ESI-MS)		
Molecular weight	m/z.	
Calc. for C ₃₅ H ₃₈ NO ₄	536.2801 [M+H] ⁺	
Lock mass of C ₃₃ H ₄₀ N ₂ O ₉	$609.2812 [M+H]^+$	
Calc. for C ₃₅ H ₃₇ NO ₄ Na	558.2620 [M+Na] ⁺	
Found for C ₃₅ H ₃₇ NO ₄ Na	558.2618 [M+Na] ⁺	

ລິບສິກສົມหາວົກຍາລັຍເຮีຍວໃหມ່ Copyright[©] by Chiang Mai University All rights reserved 2.8.4 Syntheses of 5'-(N,N-dibutylcarboxamid-1-yl)-3'-methoxycarbo-nyl-4'-phenyl-1'-cyclopentanone-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes ((\pm)-117d-i and (\pm)-117d-i)

According to general procedure II in 2.6.1 anhydrous diisopropyl-amine (1.68 equiv., 1.06 ml, 7.49 mmol), n-butyllithium (1.4 equiv., 4.74 ml, 1.32 N in hexane, 6.24 mmol), dimethyl itaconate-anthracene adduct ((±)-74) (1.0 equiv., 1.50 g, 4.46 mmol), α , β -unsaturated amide **114d** (1.2 equiv., 1.39 g, 5.35 mmol). Purification by preparative thin layer chromatography (PLC) using EtOAc/CH₂Cl₂/hexane (1.5:0.5:8.0)eluent. affords diastereomeric as spirocyclopentanone-anthracene adducts (\pm)-117d-*i* in 4% yield (0.084 g) and (\pm)-117d-ii in 2% yield (0.048 g), 90% conversion from the starting material.

IR sp	pectroscopy (evaporated thin film)
$\nu_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1124, 1175	C–O stretching of ester
1434, 1458	C=C aromatic of benzene
1636, 1745	C=O stretching of carbonyl
2872, 2956	C–H stretching
8.	NMR spectroscopy
	H-NMR (400 MHz) in CDCl ₃
Chemical shift (δ , ppm)	Type of proton
0.89	t (<i>J</i> = 7.3 Hz), 3H, CH ₃ -5'''' or 9''''
0.95	t (<i>J</i> = 7.3 Hz), 3H, CH ₃ -5'''' or 9''''
1.22–1.41, 1.47–1.62	m, 8H, CH ₂ -3'''', 4'''', 7'''', 8''''
1.27, 2.26, 4.30	ABX system ($J = 12.7, 2.4, 2.2 \text{ Hz}$), 3H, H _a , H _b , H _x
2.96	d ($J = 7.0$ Hz), 1H, H _c
2.93-3.04, 3.67-3.79	m, 2H, CH ₂ -2'''' or 6''''
3.05–3.16, 3.79–3.91	m, 2H, CH ₂ -2''' or 6''''
3.25	s, 3H, COOMe-2"
4.28	d ($J = 11.0$ Hz), 1H, H _e
4.97	dd (<i>J</i> = 10.7, 7.0 Hz), 1H, H _d
5.01	s, 1H, H _y
6.97-7.52	m, 13H, ArH

Table 2.35 Data of spirocyclopentanone–anthracene adduct (±)-117d-ii (continued)

Table 2.35 Data of spirocyclo	ppentanone–anthracene adduct (±)- 117d - <i>ii</i> (continued)
¹³ C-N	TMR (100 MHz) in CDCl ₃ (ppm)
13.79, 14.04 (CH ₃ -5"" or 9"	"'), 20.08, 20.12 (CH ₂ -4"" or 8""), 29.85, 31.35 (CH ₂ -
3'''' or 7''''), 36.54 (CH ₂ -12)	, 44.22 (CH-9), 44.26 (CH-4'), 46.53, 47.65 (CH ₂ -2""
or 6''''), 46.87 (CH-10), 51.3	30 (CH ₃ -2''), 52.66 (CH-5'), 57.60 (CH-3'), 60.79 (C _q -
2'), 122.77, 123.80, 125.4	46, 125.60(2), 126.07, 126.57, 126.74, 127.42(3),
128.62(2) (CH-aromatic), 1	38.08, 138.54, 139.55, 143.55, 144.10 (C _q -aromatic),
167.11 (C _q -1"), 173.64 (C _q -1	1''''), 207.79 (C _q -1')
М	ass spectrometry (ESI-MS)
Molecular weight	m/z

Molecular weight	m/z.		
Calc. for C ₃₇ H ₄₂ NO ₄	564.3114 [M+H] ⁺	224	
Lock mass of C ₃₃ H ₄₀ N ₂ O ₉	609.2812 [M+H] ⁺		
Calc. for C ₃₇ H ₄₁ NO ₆ Na	586.2933 [M+Na] ⁺		
Found for C ₃₇ H ₄₁ NO ₄ Na	586.2929 [M+Na] ⁺		

(±)-**117d**-ii

Table 2.36 Data of spirocyclopentanone-anthracene adduct (±)-117d-ii

Physical properties

White crystals

Melting point (m.p.) 192.4–195.3 °C (CH₂Cl₂/hexane)

 $R_f = 0.48$ (EtOAc/CH₂Cl₂/hexane, 1.5:0.5:8.0)

IR spectroscopy (evaporated thin film)	
$v_{\rm max}~({\rm cm}^{-1})$	Type of vibration
1175, 1195	C–O stretching of ester
1435, 1458	C=C aromatic of benzene
1638, 1745	C=O stretching of carbonyl
2871, 2956	C–H stretching
NMR spectroscopy	
¹ H-NMR (400 MHz) in CDCl ₃	
Chemical shift (δ , ppm)	Type of proton
0.79	t (<i>J</i> = 7.3 Hz), 3H, CH ₃ -5'''' or 9''''
0.95	t (<i>J</i> = 7.2 Hz), 3H, CH ₃ -5'''' or 9''''
1.22–1.41, 1.47–1.62	m, 8H, CH ₂ -3'''', 4'''', 7'''', 8''''
1.99, 2.17, 4.38	ABX system ($J = 12.8, 3.0, 2.5 \text{ Hz}$), 3H, H _a , H _b , H _x
2.40	dd (<i>J</i> = 4.8, 0.9 Hz), 1H, H _c
2.93-3.04, 3.22-3.35	m, 2H, CH ₂ -2'''' or 6''''
3.04–3.13, 3.66–3.78	m, 2H, CH ₂ -2'''' or 6''''
3.43	s, 3H, COOMe-2''
4.35–4.39	m, 2H, H _d , H _e
4.47	s, 1H, H _y
6.93–7.47	m, 13H, ArH

 Table 2.36 Data of spirocyclopentanone–anthracene adduct (±)-117d-ii (continued)

Copyright[©] by Chiang Mai University All rights reserved

 Table 2.36 Data of spirocyclopentanone–anthracene adduct (±)-117d-ii (continued)

¹³ C-NMR (100 MHz) in CDCl ₃ (ppm)		
13.71, 13.83 (CH ₃ -5'''' or 9''''), 20.11, 20.13 (CH ₂ -4'''' or 8''''), 29.71, 31.47		
(CH ₂ -3"" or 7""), 41.58 (CH ₂ -12), 44.23 (CH-4'), 44.26 (CH-9), 46.62, 47.80		
(CH ₂ -2'''' or 6''''), 47.83 (CH-10), 51.10 (CH ₃ -2''), 53.71 (CH-5'), 58.42 (C _q -2'),		
59.95 (CH-3'), 122.58, 123.79, 124.10, 125.51, 125.57, 125.80, 126.37, 126.71,		
127.32(2), 127.44, 128.44(2) (CH-aromatic), 137.25, 140.57, 141.34, 143.04,		
143.50 (C _q -aromatic), 166.85 (C _q -1"), 173.67 (C _q -1""), 210.94 (C _q -1')		
Mass spectrometry (ESI-MS)		
Molecular weight	m/z	
Calc. for C ₃₇ H ₄₂ NO ₄	564.3114 [M+H] ⁺	
Lock mass of C33H40N2O9	609.2812 [M+H] ⁺	
Calc. for C ₃₇ H ₄₁ NO ₆ Na	586.2933 [M+Na] ⁺	
Found for C ₃₇ H ₄₁ NO ₄ Na	586.2936 [M+Na] ⁺	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved