CHAPTER 3

RESULTS AND DISCUSSION

ามยนต์

3.1 Investigation of extraction procedure for HPLC method

The selection of extracting solvent is very important to pesticide analysis, so various organic solvents were investigated.

3.1.1 Investigation of extracting solvent as diluent for standard solution

The extracting solvents including ethyl acetate, acetone, ethanol and their mixture (1:1:1) were investigated for their extraction efficiency of analytes. The dimethoate, carbaryl and fenvalerate were analyzed by HPLC (Table 3.1 and Figure 3.1). Dimethoate was also analyzed by GC (Table 3.2 and Figure 3.2). The peak area of dimethoate, carbaryl and fenvalerate in standard solution were calculated by the differentiation between standard solution and blank. From HPLC results obtained, acetone was the most appropriate diluent for use in simultaneous determination of these three pesticides. Therefore, it was further used as diluent in 3.1.2 and 3.1.3.

Solvent	Peak area of dimethoate (mAU*s)			Peak area of carbaryl (mAU*s)			Peak area of fenvalerate (mAU*s)		
	Std	Blank	P _A *	Std	Blank	P _A *	Std	Blank	P _A *
	42	nd	dia	6946	nd	91	669	nd	
EtOAc 37 40	37	nd	39	6712	nd	6957	650	nd	674
	40	nd	C	7213	nd		704	nd	
	573	nd		6483	nd		627	nd	
Acetone	613	nd	592	6721	nd	6614	648	nd	643
	591	nd		6636	nd		654	nd	
	502	nd	$\left(\mathbf{x} \right)$	5739	nd		565	nd	
EtOH	515	nd	515	5773	nd	5756	566	nd	564
5	529	nd		5756	nd		562	nd	
	175	nd		6362	nd		620	nd	
1:1:1** (mL)	174	nd	177	6431	nd	6345	626	nd	611
	183	nd		6243	nd		587	nd	

Table 3.1 HPLC peak data of dimethoate, carbaryl and fenvalerate in standard solution using different extracting solvents as diluent.

 $^{*}P_{A} = Peak$ area of triplicate results

**1:1:1 = A ratio of EtOAc: Acetone: EtOH

Figure 3.1 HPLC peak areas of dimethoate, carbaryl and fenvalerate in standard solution using different extracting solvents as diluent.

Table 3.2	GC peak	data of	dimethoate in	standard	solution	using	different	extracting
solvents as	diluent.							

Colvent	Peak area of dimethoate (pA)								
Solvent	Standard	Blank	Average						
0	252	nd	0						
EtOAc	262	nd	256						
9	253	nd							
	232	nd							
Acetone	241	nd	240						
	248	nd							
300	188	nd	800						
EtOH	193	nd nd	189						
500	185	nd	502						
	191	nd							
1:1:1* (mL)	203	nd	198						
	200	nd							

*1:1:1 = A ratio of EtOAc: Acetone: EtOH

Figure 3.2 GC peak areas of dimethoate obtained in standard solution using different extracting solvents as diluent.

3.1.2 Investigation of extracting solvent using acetone as diluent for sample

The extracting solvents were investigated for its extraction efficiency of analytes using acetone as diluent. These solvents included ethyl acetate, acetone, ethanol and their mixture. The dimethoate, carbaryl and fenvalerate were analyzed by HPLC (Table 3.3 and Figure 3.3). Dimethoate was also analyzed by GC (Table 3.4 and Figure 3.4). The peak area of dimethoate, carbaryl and fenvalerate in sample were calculated by the differentiation between spiked sample and unspiked sample.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Table 3.3	HPLC peak	data of dimet	hoate, carbar	yl and fenval	lerate in sa	mple after
extraction	with differen	t solvents usin	ng acetone as	diluent.		

Extrac-	Peak ar	rea of dime (mAU*s)	ethoate	Peak	Peak area of carbaryl (mAU*s)			Peak area of fenvalerate (mAU*s)		
ting solvent	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	PA*	
	nd	nd	Ń	2087	209		243	nd		
EtOAc	nd	nd	3	2206	254	1903	273	33	246	
	8	nd		2188	309		254	nd		
	21	nd	Et)	4164	788	1	363	9		
Acetone	43	nd	38	4161	776	3355	326	8	331	
	-50	nd	A	4095	790		333	<-12		
- X	nd	nd		4489	1006		443	72		
EtOH	nd	nd	0	4257	734	3503	529	118	391	
	nd	nd		4623	1120		490	100		
*	41	nd		4431	764		493	109		
1:1:1* (mL)	24	nd	28	4712	939	3720	506	112	389	
(IIIL)	19	nd		4521	801		488	99		
$^{*}P_{A} = Peak and a Peak and and and and and and and and and and$	rea of triplica	te results	**1:1:1	= A ratio of H	EtOAc: Acetor	ne: EtOH				
	4000			UN		പ	Din	nethoate		
	3500			1	1	1	□Car	baryl		
(s+(3000	<					□Fen	valerate		
23	2500		23	130	18		6137			
R	2000	17								
) Op §r	1500		by (Chiai	ng N	la T	Iniv	ersit	У	
Peal	1000		h		6		r		d	
	500						1			

Acetone

EtOAc

EtOH

1:1:1 (mL)

	Pea	k area of dimethoate	(pA)		
Extracting solvent	Spiked sample	Un-spiked sample	Average		
	278	nd nd			
EtOAc	286	nd	280		
	277	nd de			
9	176	nd			
Acetone	176	nd	178		
	182	nd			
800	175	nd	300		
EtOH	176	nd	502 177		
20%	179	nd	202		
	116	nd	4		
1:1:1* (mL)	120	nd	116		
	111	nd	$\overline{\langle}$		

Table 3.4 GC peak data of dimethoate in sample after extraction with different solvents using acetone as diluent.

*1:1:1 = A ratio of EtOAc: Acetone: EtOH

Figure 3.4 GC peak areas of dimethoate, carbaryl and fenvalerate in sample after extraction with different solvents using acetone as diluent.

It is well known that dimethoate and fenvalerate have always been detected by GC method while carbaryl has been detected by HPLC method. Since no derivatization is required for the thermalabile carbaryl in HPLC, so it was preferred over GC methods.

The type of interaction between the pesticides and the environmental (fruit, vegetable, soil, sediment, water etc.) depends on the biomass, organic matter content, pH, ionic strength capability, texture and hydrogeology [92]. Therefore the selection of extracting solvent is very important to pesticide analysis.

From the literatures review (Appendix D), the commonly extracting solvents used are dichloromethane (DCM), acetonitrile (ACN) and/or even in mixtures. As mentioned in Chapter 1, due to their environment hazard, a combination of ethyl acetate (EtOAc) and cyclohexane was employed to replace DCM [103], and since ACN has been banned by poisoning, thus acetone and ethyl acetate are considered to be used as extracting solvent. In addition P. Mayer *et al.* [104] recommended polar solvent like ethanol (EtOH) added to extraction solvent for increasing the signal detection of polar compounds. Thus organic solvents; ethyl acetate, acetone, ethanol and a mixture of ethyl acetate-acetone-ethanol (1:1:1, mL) were chosen to investigate.

From the experiment, peak areas of carbaryl and fenvalerate obtained in each organic solvent gave equivalent results except in the case of dimethoate in ethyl acetate presented the lowest in peak area due to UV cut-off point (Appendix E). In addition it can be noticed that peak areas of these pesticides in real sample are lower than in mixed standard solution because of co-extractives disturbing in HPLC and GC analysis.

In the sample extracts, the peak area of dimethoate obtained with acetone and a mixture of ethyl acetate-acetone-ethanol (1:1:1, mL) were similar whereas ethyl acetate and ethanol showed peak area lower than or approached to zero. Although ethyl acetate extract was clean, less color and less of polar matrix compounds than others but lipids and waxes were also co-extracted. Moreover ethyl acetate has less polar property; the dimethoate was not readily partition into ethyl acetate. In acetone extract both polar (dimethoate) and less polar (carbaryl and fenvalerate) pesticides could be extracted with acetone owing to the solubility property.

Increasing results in peak area of carbaryl with ethanol is supported by Mumma *et al.* hypothesis which reported that carbaryl interacting with surfactant such as phospholipids, sulfolipids and glycolipids from the matrix thus ethanol is needed for the extraction of carbaryl from the orange peels matrix [105]. Using ethanol extracting solvent made evaporation time much longer than others. Increasing in temperature might be reduce time in evaporation step but probable decomposition of carbaryl and led to low signal in peak area. Forcing the evaporation of ethanol extract took an extended period of time and led to resulting in the loss of volatile pesticides, particularly dimethoate.

The HPLC method is valid for carbaryl and fenvalerate except in the case of dimethoate lack of sensitivity at λ max: 220 nm detection. Due to lower in signal of dimethoate and to achieve reliable results and/or ensure the existence of dimethoate, the dimethoate is also determined with gas chromatography (GC) couple with flame photometric detection (FPD) in phosphorus mode (P-mode) which is a selective detector more than HPLC. From the experiment, it was found that the dimethoate results obtained from standard solution (Figure 3.1) and sample (Figure 3.3) by HPLC

65

were correlated and have a similar response by GC (Figure 3.2 and 3.4). The use of ethyl acetate as extracting solvent allowed a better in peak area of dimethoate by detection with GC (Appendix F) but worse in HPLC detection because of matrix compounds also likely absorbed UV at 220 nm. The GC-FPD is selective for compounds containing phosphorus or sulfur thus most of the sample matrix did not response [106]. In addition in acetone, ethanol and a mixture of ethyl acetate-acetone-ethanol (1:1:1, mL) extract, dimethoate produced similar in peak area.

Although peak area of dimethoate in a mixture of ethyl acetate-acetone-ethanol (1:1:1, mL) seem to lower than in acetone in both of HPLC and GC detection but presenting the maximum peak area in carbaryl and fenvalerate (Figure 3.3). According to extend the polarity range for extraction of different class of pesticides thus a mixture of ethyl acetate-acetone-ethanol (1:1:1, mL) is the most suitable extracting solvent.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

VG MAI

3.1.3 Investigation of sonication time using acetone as diluent for sample

The sonication time was varied from 0 minute to 20 minutes. From the experiment, by using HPLC detection, peak areas of dimethoate fluctuated in the range of 5 to 10 minutes and obtained constant value at 15 minutes after that the peak areas decreased (Table 3.5). In addition, those peak areas was less and no different in significant (Figure 3.5). The maximum peak area was obtained at 15 minute by using GC detection (Table 3.6, Figure 3.6 and Appendix G). Due to GC-FPD is a selective detector so the different result obtained in HPLC. Increasing results in peak area of carbaryl and fenvalerate were obtained from 0 minute to 15 minutes after that the signal had a tendency to decrease.

Sonication of the sample in the presence of solvents is much more effective. The ultrasonic disrupted the cell walls of orange peels and accelerated the washing pesticides out of the cell contents. A longer period of extraction time, the pesticide residues inside the orange peels were gradually released cause of more cells were broken in the other word the pesticide residues released more and more as time expending. In addition, raised temperature caused by mechanical energy transfer to thermal energy also can profitably enhance the mass transfer [51]. Therefore, 15 minutes was reasonable sonication time.

rights reserved

Sonica-	Peak a	Peak area of dimethoate (mAU*s)			area of car (mAU*s)	baryl	Peak area of fenvalerate (mAU*s)		
time (min)	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	P _A *
	nd	nd		1980	48	91	142	nd	
0	nd	nd	nd	1703	46	1867	146	nd	145
	nd	nd		2071	58		148	nd	
	110	69	Ŋ	3280	nd		202	nd	
5	80	nd	52	3330	nd	3363	218	nd	216
	36	nd		3479	nd		229	nd	
	72	7	C.Y.	3610	nd		197	nd	
10	30	nd	39	3906	nd	3778	249	nd	222
	22	nd	A	3820	nd		221	nd	
6	21	nd		3994	nd		220	nd	
15	28	nd	20	3837	nd	3946	533	nd	437
	11	nd		4006	nd	A land	557	nd	
	6	nd	7	3645	7	3662	265	nd	265
20	10	nd		3606	9		243	nd	
	6	nd		3757	6		286	nd	

Table 3.5 HPLC peak data of dimethoate, carbaryl and fenvalerate in sample using different sonication time.

 $^{*}P_{A} = Peak$ area of triplicate results

Figure 3.5 HPLC peak areas of dimethoate, carbaryl, fenvalerate in sample using different sonication time.

Sonication time		Peak area of dimethoat	te (pA)	
(minute)	Spiked sample [X]	Un-spiked sample [Y]	X - Y	Average
	215 01 9	8	207	
0	0 176	7 9/	169	196
	225	12	213	
	345	17	328	
5	299	10	288	333
	394	13	382	
	444	15	428	
10	464	21	443	446
9	483	16	467	
502	512	33	479	2
15	491	24	467	466
	484	31	453	
C	51	3	48	
20	50	3	46	50
	56	nd	56	

Table 3.6 GC peak data of dimethoate in sample using different sonication time.

Figure 3.6 GC peak areas of dimethoate obtained in sample using different sonication time.

3.1.4 Investigation of solid phase extraction

A MAI

3.1.4.1 Investigation of eluting solvent for standard solution

The eluting solvent was compared among a mixture of MeOH:H₂O (7:3, v/v), ACN:H₂O (7:3, v/v), acetone:H₂O (7:3, v/v) and ACN, respectively, using either acetone or deionized water as diluent. The dimethoate, carbaryl and fenvalerate were detected with HPLC (Tables 3.7-3.8 and Figures 3.7-3.8). The dimethoate was also detected with GC (Table 3.9 and Figure 3.9). The peak areas of dimethoate, carbaryl and fenvalerate in standard solution were calculated by the differentiation between standard solution and blank.

Eluting Solvent	Peak area of dimethoate (mAU*s)			Peak area of carbaryl (mAU*s)			Peak area of fenvalerate (mAU*s)		
	Std	Blank	P _A *	Std	Blank	P _A *	Std	Blank	P _A *
	45	nd	A/Q	4149	nd	9/	7.38	nd	
Un-adsorbed solution	45 0	nd	44	4100	nd	4087	15.97	nd	14
solution	42	nd	7	4012	nd	4	18.86	nd	
	912	nd	Ŋ	1151	nd		6.36	nd	
MeOH:H ₂ O (7.3 v/v)	14	nd	13	1187	nd	1178	6.68	nd	6
(7.13, 7.7)	13	nd		1196	nd		6.20	nd	
	7	nd	July	1216	nd	1187	nd	nd	nd
ACN:H ₂ O (7:3, v/v)	8	nd	8	1176	nd		nd	nd	
562	9	nd	2	1168	nd		nd	nd	
202	11	nd	J.	1189	nd		319.49	nd	
acetone:H ₂ O (7.3 v/v)	15	nd	14	1142	nd	1178	296.14	nd	294
(1.3, 1, 1)	15	nd		1202	nd		267.77	nd	
17	nd	nd		1255	nd		500.01	nd	
ACN	nd	nd	nd	1265	nd	1268	488.47	nd	495
	nd	nd		1285	nd		495.48	nd	

Table 3.7 HPLC peak data of dimethoate, carbaryl and fenvalerate in standard solution using different eluting solvent and acetone as diluent.

 $^{*}P_{A} = Peak$ area of triplicate results

Figure 3.7 HPLC peak areas of dimethoate, carbaryl, and fenvalerate in standard solution using different eluting solvents and acetone as diluent.

Eluting	Peak a	rea of dim (mAU*s)	ethoate	Peak	Peak area of carbaryl (mAU*s)			Peak area of fenvalerate (mAU*s)		
Solvent	Std	Blank	P _A *	Std	Blank	P _A *	Std	Blank	P _A *	
Un-adsorbed solution	382	nd	362	52	nd		13	nd		
	369	nd		40	nd	47	16	nd	17	
	334	nd		50	nd	6),	22	nd		
MeOH:H ₂ O (7:3, v/v)	85	nd	2	3379	nd	0.	30	nd		
	92	nd	86	3533	nd	3422	26	nd	27	
	82	nd		3352	nd		24	nd		
	113	nd		3459	nd	3585	71	nd	77	
ACN:H ₂ O (7:3, y/y)	101	nd	103	3730	nd		77	nd		
1	94	nd	\rightarrow	3565	nd		83	nd		
225	82	nd		3985	nd		102	nd	98	
acetone: H_2O (7:3, v/v)	111	nd	95	3737	nd	3804	92	nd		
(7:3, \/\)	92	nd		3689	nd		99	nd		
ACN	67	nd		3842	nd		190	nd		
	58	nd	57	3635	nd	3609	177	nd	194	
, i i	47	nd		3350	nd	1	217	nd		

Table 3.8 HPLC peak data of dimethoate, carbaryl and fenvalerate in standard solution using different eluting solvent and deionized water as diluent.

*P_A = Peak area of triplicate results

Eluting solvent	Peak	area of dimethoate	(pA)
Litting solvent	Standard	Blank	Average
Un adapthed	139	nd	
solution	133	nd	145
solution	163	nd	
MOULIO	20	nd	
(7:3 y/y)	23	nd	20
$(1.3, \sqrt{2})$	18	nd	6
	16	nd	
$ACN:H_2O$ (7:3 y/y)	15	nd	16
$(7.3, \sqrt{2})$	18	nd	
S Su o	36 🗟 🕅	nd	
acetone:H ₂ O $(7:3 \text{ y/y})$	29	nd	29
$(7.3, \sqrt{2})$	24	nd	
	63	nd	\mathbf{A}
ACN	33	nd	41
	28	nd	

Table 3.9 GC peak data of dimethoate in standard using different eluting solvent and acetone as diluent.

Figure 3.9 GC peak areas of dimethoate obtained in standard solution using different eluting solvent and acetone as diluent.

3.1.4.2 Investigation of eluting solvent for sample

The eluting solvent was compared among a mixture of MeOH:H₂O (7:3, v/v), ACN:H₂O (7:3, v/v), acetone:H₂O (7:3, v/v) and ACN, respectively, using either acetone or deionized water as diluent. The dimethoate, carbaryl and fenvalerate were detected with HPLC (Tables 3.10-3.11 and Figures 3.10-3.11). The dimethoate was also detected with GC (Table 3.12 and Figure 3.12). The peak area of dimethoate, carbaryl and fenvalerate in sample were calculated by the differentiation between spiked sample and unspiked sample.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

Eluting	Peak are	ea of dimetl mAU*s)	noate	Peak	Peak area of carbaryl (mAU*s)			Peak area of fenvalerate (mAU*s)		
Solvent	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	P _A *	
Un-	nd	nd	101	1484	nd	91	nd	nd		
adsorbed	nd	nd	nd	1781	nd	1653	nd	nd	nd	
solution	nd	nd	C	1692	nd		nd	nd		
	nd	nd		583	nd		nd	nd		
MeOH:H ₂ O (7:3, v/v)	nd	nd	nd	536	nd	527	nd	nd	nd	
6	nd	nd		462	nd		nd	nd		
	nd	nd	F	539	nd	5	42	nd		
ACN:H ₂ O (7:3, v/v)	nd	nd	nd	540	nd	519	33	nd	34	
	nd	nd		477	nd		27	nd		
200	nd	nd	Z	624	nd		87	nd		
acetone:H ₂ O(7:3 v/v)	nd	nd	nd	477	nd	552	51	nd	62	
0 (7.5, 77)	nd	nd		555	nd		49	nd		
	nd	nd		730	nd		239	nd		
ACN	nd	nd	nd	674	nd	654	237	nd	229	
	nd	nd		558	nd		209	nd		

Table 3.10 HPLC peak data of dimethoate, carbaryl and fenvalerate in sample using different eluting solvent and acetone as diluent.

 $^{*}P_{A} = Peak$ area of triplicate results

Eluting solvent

Figure 3.10 HPLC peak areas of dimethoate, carbaryl and fenvalerate in sample using different eluting solvent and acetone as diluent.

Fluting	Peak area of dimethoate (mAU*s)			Peak area of carbaryl (mAU*s)			Peak ar	Peak area of fenvalerate (mAU*s)		
Solvent	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	P _A *	
	11	nd	104	nd	nd		nd	nd		
Un-adsorbed solution	11 0	nd	12	nd	nd	nd	nd	nd	nd	
solution	13	nd	0	nd	nd		nd	nd		
	nd	nd		1489	nd		nd	nd		
MeOH:H ₂ O (7:3, v/v)	nd	nd	nd	1934	nd	1721	nd	nd	nd	
	nd	nd		1740	nd		nd	nd		
	nd	nd	nd	1805	nd	1967	nd	nd	nd	
ACN:H ₂ O (7:3, v/v)	nd	nd		2220	nd		nd	nd		
	nd	nd		1877	nd		-Snd -	nd		
22	nd	nd	Z	2223	nd		99	nd		
acetone:H ₂ O (7.3 v/v)	nd	nd	nd	1954	nd	2085	65	nd	78	
(7.5, (7.7)	nd	nd		2191	nd		69	nd		
	nd	nd		1417	nd		91	nd		
ACN	nd	nd	nd	1340	nd	1417	90	nd	90	
	nd	nd		1493	nd	A	88	nd		

Table 3.11 HPLC peak data of dimethoate, carbaryl and fenvalerate in sample using

 different eluting solvent and deionized water as diluent.

*PA = Peak area of triplicate results

Figure 3.11 HPLC peak areas of dimethoate, carbaryl and fenvalerate in sample using different eluting solvent and deionized water as diluent.

	Peak	area of dimethoate (j	pA)
Eluting solvent	Spiked sample	Un-spiked sample	Average
	27	nd	
Un-adsorbed solution		nd	26
solution	20	nd	
	II I	nd	
(7.3 v/v)	13	nd	12
(1.3, 1/1)	12	nd	3
	8	nd	
$ACN:H_2O$ (7:3 v/v)	8	nd	8
	7 - 6	nd	STR
295	211 23	nd	
acetone:H ₂ O $(7:3 v/v)$	12	nd	11
$(7.3, \sqrt{2})$	8	nd	\checkmark
	7	nd	0
ACN	9	nd	8
	9	nd	

Table 3.12 GC peak data of dimethoate in sample using different eluting solvent and acetone as diluent.

Figure 3.12GC peak areas of dimethoate obtained in sample using

different eluting solvent and acetone as diluent.

It is obvious that the direct injection of the crude extract produced unsatisfactory chromatograms, particularly dimethoate. This is because a mixture of ethyl acetate:acetone:ethanol (1:1:1, v/v) are capability to extract a wide range of compounds in orange peels including co-extractive compounds. It is not possible to analyze raw extracts by using HPLC-UV detection without clean-up step. Among the clean-up methods, SPE techniques have gained in popularity because detection limit is improved and advantage of the reduction of solvent consumption is offered with respect to classical extraction methods. Thus the additional SPE clean-up step is required in the extraction procedure in order to separate the analyte from the interfering co-extractives prior to determination by LC techniques. The criterion concerned to select the eluting solvent is ability to water miscible. Other solvents may have greater eluting power in reversed phase chromatography but are not water miscible. In this research work, the eluting solvents; MeOH:H₂O (7:3, v/v), ACN:H₂O (7:3, v/v), Acetone:H₂O (7:3, v/v) and acetonitrile were evaluated.

When acetone was used as dissolved solvent, it can be noticed that most of dimethoate and carbaryl was not retained on C18 sorbent or passed through cartridge together with redissolved solvent while as fenvalerate was retained in the cartridge. The appearing of dimethoate in unadsorbed solution was confirmed from GC results in both of standard solution and sample (Figures 3.9 and 3.12). The results obtained were different from using deionized water as dissolved solvent, which only dimethoate passed through cartridge while carbaryl and fenvalerate were retained. Caused by the favorable partition coefficient in acetone used as redissolved solvent, dimethoate likely passed through the cartridge more than adsorbed on C18 sorbent. In addition a minimum of dimethoate was not eluted but retained by the residual silanol group or interact with the active site on C18 sorbent (Appendix H). The behavior of carbaryl is also similar to dimethoate, it expressed the maximum peak area in the filtrate or unadsorbed solution and produced equivalent signal when eluting with different organic solvents. The results obtained indicated that carbaryl was not completely retained on C18 sorbent because attractive force or van der Waals between C18 sorbent and carbaryl is less than dipolar attraction and/or hydrogen bonding between carbaryl and acetone.

The unadsorbed dimethoate in deionized water redissolution resulted from the hydrophilic structure or due to relatively polar, thus dimethoate was preferred to soluble in deionized water rather than to retain on C18 sorbent. The elution of carbaryl and fenvalerate adsorbed on C18 sorbent was maximum accomplished, due to polarity property, with a mixture of acetone:H₂O (7:3, v/v) and acetonitrile, respectively, while the co-extractives were retained by the sorbent.

Acetone has a wide range polarity to recover the pesticide from different class. G. S. Nunes *et al.* [107] presented acetone to concentrate the residue after extraction of OPPs in water with n-hexane and dichloromethane, evaporation and detection with GC-FPD technique. Therefore acetone was firstly used as dissolved solvent.

It is noteworthy that SPE clean-up step employing a solvent polarity gradient including type of dissolved solvent which is also significant in consideration. The chemical interactions between the matrix and C18 sorbent allowed specific solvent elution of the interested pesticide [80]. Moreover to avoid many matrix which came out together with dimethoate in acetone more than in deionized water and allowed specific acetone: H_2O (7:3, v/v) and ACN elution of carbaryl and fenvalerate , thus deionized water is better choice than acetone to be used as diluent. In addition the deionized water is very compatible with reverse-phase HPLC than acetone and much more injected acetone to LC system did not recommend because it might risk C18 bleeding. Implicit acceptability that using deionized water as dissolved solvent, lower in peak area of fenvalerate is obtained.

The results obtained are related with R. J. Bushway *et al.* [88] that the C18 sorbent proved to be better for carbaryl and fenvalerate retention than dimethoate due to their hydrophobic characteristics which provided high affinity for either less polar or non-polar compounds. For polar pesticide, dimethoate, C18 sorbent is not necessarily the best choice. Lesage [108] and Chaput [109] obtained higher signal of polar pesticide on C8 than on C18 - bonded silica. This behavior may be explained by selective sorption of the polar pesticide on the free silanol groups of the silica, which are more accessible on the C8 than on C18 - bonded material.

Copyright[©] by Chiang Mai University All rights reserved

According to the literatures review (Appendix I), the suitable wavelength was set at 220 nm which all of pesticides were detected by UV detection and the total analysis time was extended to 90 min because the target pesticides were belonging to different chemical classes (Figure 3.13). Although it seem to longer analysis time used but in many instance this time was needed to prevent interference. From this experiment, it was observed that dimethoate, carbaryl and fenvalerate in HPLC chromatogram which obtained before (Figures 3.14 - 3.15) and after SPE clean-up step (Figures 3.16 - 3.17) were still not well separated from the peak of co-extractive originating from the matrix such as pigments (e.g. chlorophyll), waxes, lipids etc. The presence of interferences appeared at a closer retention time of those target pesticides and disturbed signal in peak areas which might be leading to obtained higher peak area and/or percentage of recovery more than originated fortified in the sample. Therefore, by using HPLC detection, the extraction and clean-up conditions had to be carefully selected to achieve the highest recovery for the pesticides contained in orange peels while eliminating most of the interfering matrix The confirmations of dimethoate, carbaryl and fenvalerate components. pesticide in the sample were identified by comparison of retention time with standard solution and by using mass to charge ratios (m/z) with LC/MS technique. ights reserved

Figure 3.13 HPLC chromatograms of standard solutions of dimethoate, carbaryl and fenvalerate concentrations of 5.00, 1.50 and 2.00 mg L^{-1} , respectively. The retention time (t_R) of dimethoate, carbaryl and fenvalerate were approximately 14, 22 and 63 min, respectively.

Figure 3.14 HPLC chromatograms of an orange sample peels extract before SPE clean-up step: unfortified orange peels (A) and fortified orange peels (B) with a mixture of dimethoate, carbaryl and fenvalerate at concentrations of 5.00, 1.50 and 2.00 mg L^{-1} , respectively. Peak identification: (1) dimethoate; (2) carbaryl; (3) fenvalerate.

Figure 3.15 HPLC chromatograms of individual pesticide in the orange sample peels extract before SPE clean-up step: unfortified (above) and fortified orange peels (below) of (A) dimethoate, (B) carbaryl and (C) fenvalerate. Peak identification: (1) dimethoate; carbaryl; (3) fenvalerate.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

Figure 3.16 HPLC chromatograms of an orange sample peels extract after SPE clean-up step: unfortified orange peels (A) and fortified orange peels (B) with a mixture of dimethoate, carbaryl and fenvalerate at concentrations of 5.00, 1.50 and 2.00 mg L^{-1} , respectively. Peak identification: (1) dimethoate; (2) carbaryl; (3) fenvalerate.

Figure 3.17 HPLC chromatograms of individual pesticide in the orange sample peels extract after SPE clean-up step: unfortified (above) and fortified orange peels (below) of (A) dimethoate, (B) carbaryl and (C) fenvalerate. Peak identification: (1) dimethoate; carbaryl; (3) fenvalerate.

3.2 Validation of HPLC method

3.2.1 Calibration curve

HPLC peak data of each pesticide at various concentrations for calibration curve are shown in Table 3.13. A graph is plotted between the peak area on the y-axis and the concentration on the x-axis (Figures 3.18 - 3.20).

 Table 3.13
 HPLC peak data of each pesticide at various concentrations for calibration curve.

Conc.	Dimethoate		Conc.	Carb	aryl	Conc.	Fenva	alerate
(mg L-1)	° P _A *	Average	(mg L ⁻¹)	P _A *	Average	(mg L ⁻¹)	P _A *	Average
	5			125			7	
0.13	5	5	0.040	143	133	0.050	- 11	10
	4			130	Λ		12	
	26		\sim	511			66	
0.27	30	27	0.080	503	506	0.11	65	42
	25		6	505		\mathcal{S}^{*}	65	
	67	Mr.		529	25	· //	42	
0.50	68	67	0.15	-540	535	0.20	42	65
	66		U	534			42	
	130			790			79	
0.80	125	125	0.24	705	766	0.32	75	97
ar	119	129	n	793		K 91	78	K1
	150			1343			131	
1.0	150	149	0.30	1322	1033	0.40	129	
- / 8	148	~ /	0.1	1334			133	-7
	165	gh	t s	2121	es	e r	237	C
2.0	179	176	0.60	2305	2238	0.80	229	234
	184			2306			235	
	230			3089			337	
3.0	248	238	0.90	3400	3250	1.2	343	339
	235			3262			337	

^{*}P_A = Peak area (mAU*s unit)

Table 3.13	(continued)
-------------------	-------------

Conc.	Dimethoate		Conc.	Carbaryl		Conc.	Fenvalerate	
(mg L ⁻¹)	PA*	Average	(mg L ⁻¹)	P _A *	Average	(mg L-1)	PA [*]	Average
	488		4490	4490			482	
4.0	475	477	1.2	4870	4658	1.6	492	486
	468		010	4614			485	

From Table 3.13, the peak areas obtained were proportional to the concentration of standard solutions. Thus the calibration curves of dimethoate, carbaryl and fenvalerate were constructed in relationship between peak areas and concentrations of standard solutions in the ranges of 0.13 - 1.0, 0.24 - 1.2 and 0.20 - 1.2 mg L⁻¹, respectively (Figures 3.22 - 3.24).

Figure 3.18 Calibration curve of dimethoate in the range of $0.13 - 1.0 \text{ mg L}^{-1}$.

Figure 3.20 Calibration curve of fenvalerate in the range of $0.20 - 1.2 \text{ mg L}^{-1}$.

Α

From Figures 3.18 - 3.20, peak area (y) and concentration (x) of each pesticide was subjected to regression analysis to calculate the linear regression equation (y = ax + b) and the correlation coefficients (R^2). The linear regression equations obtained were y = 170.99x - 17.67 with $R^2 = 0.9965$ for dimethoate

(Figure 3.18), y = 3967.52x - 181.98 with $R^2 = 0.9973$ for carbaryl (Figure 3.19) and y = 272.55x + 13.99 with $R^2 = 0.9980$ for fervalerate (Figure 3.20).

3.2.2 Limit of detection

The limit of detection (LOD) was established as the lowest or minimum detectable concentration that provided the occurrence in peak area signal. Besides mentioned method, LOD was also determined by Miller - Miller method (Appendix J). The results are shown in Table 3.14.

 Table 3.14
 Minimum detectable concentration of each pesticide analyzed by

 HPLC.

Pesticide	Minimum detectable concentration (mg L ⁻¹)	LOD from Miller- Miller method (mg L ⁻¹)			
Dimethoate	0.20	0.07			
Carbaryl	0.0051	0.009			
Fenvalerate	0.00020	0.02			

From Table 3.14, LODs obtained by direct injection of minimum detectable concentration were not in agreement, even, not also in the same trend with Miller-Miller method owing to fluctuation in signal from each injection.

Chromatogram of dimethoate, carbaryl and fenvalerate pesticide at minimum detectable concentration are shown in Figures 3.21, 3.22 and 3.23, respectively.

ve

Figure 3.21 Minimum detectable concentration of dimethoate at 0.20 mg L⁻¹.

Figure 3.22 Minimum detectable concentration of carbaryl at 0.0051 mg L⁻¹.

Figure 3.23 Minimum detectable concentration of fervalerate at 0.00020 mg L^{-1} .

3.2.3 Accuracy

The accuracy was investigated in term of percentage of recovery. The equation for determination of percentage of recovery followed as:

Percentage of recovery = Spiked sample response – Unspiked sample response x 100

978

Standard added response

Percentage of recovery was determined based on external calibration curve and the peak area obtained sample (Appendix K). The results are shown in Table 3.15.

 Table 3.15
 Percentages of recoveries of sample spiked with standard solution.

	Pesticide	Spiked (µg)	P _A of un- spiked sample (mAU*s)	P _A of spiked sample (mAU*s)	Average	Conc. (mg L ⁻¹)	Amount found (µg)	Recovery (%)
		6	nd	98	6			
	Dimethoate	10.00	nd	107	101	0.70	2.80	28.0
			nd	100	VEL			
		3.00	nd	1325	1442	0.41	1.64	
	Carbaryl		nd	1535				54.7
5	ana	5 U I	nd	1467	าลย		IJðli	KU
	nyriah	+C	nd	99	σ Μ-		ivor	
0	Fenvalerate	4.00	nd	96	5 97	0.31	1.24	31.0
	ľ	'ig	nd	96	re	s e	rvo	e d

3.2.4 Precision

The precision was determined by injection the mixed standard solution at the concentrations of 6.00, 1.80 and 2.40 mg L⁻¹ of dimethoate, carbaryl and fenvalerate, respectively, eight times in the same day (Table 3.16) and eight times for six day (Tables 3.17 - 3.22) for repeatability and reproducibility, respectively.

Table 3.16 Repeatability of retention time (min) and peak area of pesticide in standard solution analyzed by HPLC.

Run	Dime	ethoate	Car	baryl	Fen	valerate
No.	t _R	P _A *	t _R	P _A *	t _R	P _A *
र्देश्हे	13.8	158	21.8	21956	62.5	2359
2	13.8	156	21.8	21984	62.5	2351
3	13.8	163	21.8	21853	62.5	2353
4	13.7	177	21.7	22089	62.5	2396
5	13.7	160	21.7	21739	62.5	2359
6	13.7	164	21.5	21780	62.5	2354
7	13.7	160	21.7	21861	62.5	2362
8	13.8	157	- 21.9	22120	62.6	2341
Average	13.8	162	21.7	21923	62.5	2359
SD	0.052	6.79	0.10	138.6	0.061	16.0
% R.S.D.	0.38	4.19	0.47	0.63	0.097	0.68

*P_A = Peak area (mAU*s unit)

From Table 3.16, average of the retention time (t_R) of dimethoate, carbaryl and fenvalerate were 13.8, 21.7 and 62.5 min, respectively. The repeatability or intra-day precision was determined on eight consecutive times (n = 8) with %R.S.D. values of retention time and peak area be in the range of 0.097 - 0.47% and 0.63 - 4.19%, respectively.

Run	Dim	ethoate	Ca	arbaryl	Fen	PA* 2359 2351 2353	
No.	t _R	P _A *	t _R	P _A *	t _R	P _A *	
1	13.8	158	21.8	21956	62.5	2359	
2	13.8	156	21.8	21984	62.5	2351	
3	13.8	163	21.8	21853	62.5	2353	
4	13.7	177	21.7	22089	62.5	2396	
5	13.7	160	21.7	21739	62.5	2359	
6	13.7	164	21.5	21780	62.5	2354	
7	13.7	160	21.7	21861	62.5	2362	
8	13.8	157	21.9	22120	62.6	2341	
Average	13.8	162	21.7	21923	62.5	2359	
SD	0.052	6.79	0.10	138.6	0.061	16.0	
% R.S.D.	0.38	4.19	0.47	0.63	0.097	0.68	

Table 3.17 Reproducibility of retention time (min) and peak area of pesticide instandard solution on the first day analyzed by HPLC.

Table 3.18 Reproducibility of retention time (min) and peak area of pesticide instandard solution on the second day analyzed by HPLC.

			1	TR5+				
	Run	Dim	ethoate	Ca	rbaryl	Fenvalerate		
	No.	t _R	P _A *	t _R	P _A *	t _R	P _A *	
	1	13.9	170	21.9	21998	62.7	2344	
	2	13.9	179	21.9	22362	62.7	2396	
	3	13.9	168	22.0	22210	62.7	2364	
Со	ov ⁴ ig	14.0	158	22.0	22066	62.7	2368	
	5	13.9	174	22.0	22399	62.7	2376	
	6	13.8	181	S 21.9	22361	62.7	2397	
	7	13.8	161	21.8	22028	62.7	2365	
	8	13.9	166	21.8	22212	62.6	2353	
	Average	13.9	170	21.9	22205	62.7	2370	
	SD	0.065	8.24	0.079	160.3	0.052	18.6	
	% R.S.D.	0.47	4.86	0.36	0.72	0.083	0.78	

 $^{*}P_{A} = Peak area (mAU*s unit)$

Run	Dim	ethoate	Ca	rbaryl	Fen	valerate
No.	t _R	P _A *	t _R	$\mathbf{P_A}^*$	t _R	P _A *
1	13.9	165	21.9	22032	62.7	2372
2	13.8	159	21.8	22389	62.5	2363
3	13.9	174	21.9	22474	62.6	2404
4	13.8	181	21.8	22293	62.5	2408
5 0	13.7	180	21.7	22322	62.7	2404
6	13.8	169	21.8	22276	62.5	2381
7	13.8	180	21.9	22574	62.7	2408
8	13.8	181	21.8	22462	62.6	2366
Average	13.8	174	21.8	22353	62.6	2388
SD	0.047	8.51	0.069	165.0	0.063	19.8
% R.S.D.	0.34	4.90	0.32	0.74	0.10	0.83

Table 3.19 Reproducibility of retention time (min) and peak area of pesticide instandard solution on the third day analyzed by HPLC.

Table 3.20 Reproducibility of retention time (min) and peak area of pesticide instandard solution on the fourth day analyzed by HPLC.

Run	Dim	ethoate	Ca	rbaryl	Fer	nvalerate
No.	tr	P _A *	tr	P _A *	tr	P _A *
1	13.7	162	21.6	22109	62.0	2372
2	13.6	175	21.5	22301	62.1	2407
	13.6	168	21.5	22217	61.9	2401
4	13.6	166	21.5	22203	61.9	2392
Dyblgr	13.6	165	21.4	22208	61.9	2394
6	13.7	159	21.7	22441	62.0	2403
7	13.6	176	21.5	22605	62.1	2444
8	13.6	159	21.5	22736	62.1	2419
Average	13.6	166	21.5	22352	62.0	2404
SD	0.056	6.73	0.073	221.1	0.086	21.1
% R.S.D.	0.41	4.05	0.34	0.99	0.14	0.88

 $^{*}P_{A} = Peak area (mAU*s unit)$

Run	Din	nethoate	Ca	arbaryl	Fer	valerate
No.	tr	P _A *	tr	P _A *	tr	P _A *
1	13.6	176	21.5	22806	61.9	2465
2	13.6	165	21.4	23113	61.9	2444
3	13.7	162	21.6	23112	62.0	2439
4	13.6	172	21.6	23237	62.1	2447
5 9	13.6	182	21.5	23124	62.1	2477
6	13.6	177	21.6	23136	62.1	2465
7	13.7	174	21.5	22988	62.1	2460
8	13.7	179	21.5	23152	62.1	2484
Average	13.6	173	21.5	23083	62.0	2460
SD	0.049	6.93	0.057	131.2	0.11	5 15.8
% R.S.D.	0.36	4.00	0.27	0.57	0.17	0.64

Table 3.21 Reproducibility of retention time (min) and peak area of pesticide instandard solution on the fifth day analyzed by HPLC.

Table 3.22 Reproducibility of retention time (min) and peak area of pesticide instandard solution on the sixth day analyzed by HPLC.

		$\sim \Lambda$	1	~~~~			
	Run	Dim	ethoate	Ca	rbaryl	Fer	nvalerate
	No.	tr	P _A *	tr	P _A *	tr	P _A *
	1	13.6	165	21.5	22962	61.9	2455
	2	13.6	179	21.5	22908	61.9	2482
		13.6	164	21.4	23187	61.9	2462
Co	4 h	13.6	164	21.4	23240	61.9	2474
CU	55	13.6	168	21.5	23222	61.9	2470
	6	13.6	171	21.4	23144	61.9	2491
	7	13.7	160	21.6	23434	62.0	2495
	8	13.6	178	21.5	23622	62.1	2534
	Average	13.6	169	21.5	23215	61.9	2483
	SD	0.055	6.91	0.069	232.6	0.078	24.8
	% R.S.D.	0.40	4.10	0.32	1.00	0.13	1.00

 $^{*}P_{A} = Peak area (mAU*s unit)$

From Tables 3.17 - 3.22, %R.S.D. values of retention time and peak area are summarized Table 3.23.

		% R.S.D.									
Day	Dim	Dimethoate		rbaryl	Fenvalerate						
	tr	P _A *	tr	P _A *	tr	P _A *					
	0.38	4.19	0.47	0.63	0.097	0.68					
2	0.47	4.86	0.36	0.72	0.083	0.78					
532	0.34	4.90	0.32	0.74	0.10	0.83					
24	0.41	4.05	0.34	0.99	0.14	0.88					
5	0.36	4.00	0.27	0.57	0.17	0.64					
6	0.40	4.10	0.32	1.00	0.13	1.00					

 Table 3.23
 R.S.D. values of retention time (min) and peak area of each pesticide

 analyzed by HPLC.
 Image: Comparison of the second second

 P_A^* = Peak area (mAU*s unit)

From Table 3.23, the reproducibility or the inter-day precision was determined on eight consecutive times in the six successive days (n = 8, 6 days). Average %R.S.D. values of retention time and peak area be in the range of 0.083 - 0.47% and 0.57 - 4.90%, respectively.

3.3 Investigation of extraction procedure for LC/MS method

3.3.1 Investigation of extracting solvent for sample

The extracting solvents were compared among ethyl acetate, acetone, ethanol and a mixture of ethyl acetate-acetone-ethanol (1:1:1, mL). The dimethoate, carbaryl and fenvalerate were detected with LC/MS. The peak areas of dimethoate, carbaryl and fenvalerate in sample were calculated by the differentiation between spiked sample and unspiked sample. The results are shown in Table 3.24 and Figure 3.24.

Table 3.24 LC/MS peak data of dimethoate, carbaryl and fenvalerate in sample using different extracting solvent.

	Extrac-	Peak a	rea of dim (mAU*s)	ethoate	Peak	area of ca (mAU*s)	rbaryl	Peak area of fenvalerate (mAU*s)		
	ting solvent	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	P _A *
		329920	nd	350551	650544	nd	5	47675	nd	
	EtOAc	377236	nd		711955	nd	670277	66735	nd	59591
		344497	nd		648331	nd		64364	nd	
		184929	nd		641150	nd		139302	nd	
	Acetone	176637	nd	179177	697828	nd	672715	152433	nd	153359
		175965	nd		679168	nd	UII	168343	nd	
C	opy	183479	nd	by (657091	nd	Aai I	122495	end	149160
	EtOH	149505	nd	164254	741225	nd	697199	163561	nd	
		159779	nd	nu	693281	nd	250	161423	nd	Q
		151992	nd		632465	nd		155310	nd	
1:1 (m	1:1:1 (mL)	228801	nd	195722	743754	nd	701884	174246	nd	163728
	``'	206374	nd		729433	nd		161629	nd	

 $^{*}P_{A} = Peak$ area of triplicate results

**1:1:1 = EtOAc: Acetone: EtOH

Figure 3.24 LC/MS peak areas of dimethoate, carbaryl and fenvalerate in sample using different extracting solvent.

In ethyl acetate extract, the peak area of dimethoate was higher than the others (Figure 3.24). The result obtained is opposite to HPLC results that showed the absence and lower of signal in ethyl acetate extract (Figure 3.3). As described above lipids and waxes were also co-extracted in ethyl acetate extraction thus these sample matrix influenced on ion formation processes, when a sample is introduced into MS without clean up. The occurrence of matrix presenting enhanced in signal and this effect strongly on the interface, especially electrospray ionization in positive mode (ESI+). In addition the obtained results are supported by K. Bester *et al.* [110] reported coeluting substances may cause quantification problems by compound specific suppression or enhancement. From the experiment, it was found that a mixture of ethyl acetate-acetone-ethanol (1:1:1, mL) is suitable extracting solvent to achieve simultaneous extraction of dimethoate, carbaryl and fenvalerate in sample.

3.3.2 Investigation of sonication time for sample

The sonication time was varied from 0 minute to 20 minute. The dimethoate, carbaryl and fenvalerate were detected with LC/MS (Table 3.25). The peak area of dimethoate, carbaryl and fenvalerate in sample were calculated by the differentiation between spiked sample and unspiked sample.

From the experiment, increasing results in peak area of dimethoate, carbaryl and fenvalerate were obtained from 0 minute to 15 minutes after that the peak areas decreased (Figure 3.25). The ultrasound radiation provokes molecules vibration and eases the diffusion of the solvent to the orange peels, favoring the contact between both phases. The mass transfer of pesticides from cellular orange sample to extracting solvent occurred by diffusion and/or osmosis. As described above, raised temperature caused by mechanical energy transfer to thermal energy also can profitably enhance the mass transfer. Based on the results obtained, 15 minutes was suitable sonication time for simultaneous determination of dimethoate, carbaryl and fenvalerate in orange sample peels.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

Sonication time (min)	Peak ar (x1	Peak area of dimethoate (x10 ⁶) (mAU*s)			Peak area of carbaryl (x10 ⁶) (mAU*s)			Peak area of fenvalerate (x10 ⁶) (mAU*s)		
	Spiked sample	Un- spiked sample	P _A *	Spiked sample	Un- spiked sample	PA*	Spiked sample	Un- spiked sample	P _A *	
	1.414	1.107		0.889	nd	V.S	0.28	nd		
0	1.343	1.116	0.260	0.590	nd	0.778	0.17	nd	0.256	
	1.309	1.062		0.856	nd		0.32	nd		
	2.434	1.976		0.988	nd		0.27	nd		
5	2.947	2.027	0.780	1.137	nd	1.078	0.30	nd	0.273	
	2.877	1.914		1.110	nd		0.28	nd		
•	3.017	1.994	\checkmark	1.011	nd	1.140	0.25	nd	0.276	
510	2.978	1.638	1.081	1.196	nd		0.30	nd		
500	2.817	1.937	The.	1.212	nd	-	0.28	nd		
	2.226	1.517		1.101	nd		0.28	nd		
15	2.728	1.276	1.126	1.222	nd	1.153	0.30	nd	0.279	
E I	2.677	1.459		1.135	nd		0.25	nd		
20	4.091	3.406		1.142	nd		0.35	nd	0.279	
	3.498	3.060	0.568	1.345	nd	1.147	0.26	nd		
	3.815	3.233	6	0.955	nd		0.22	nd		

Table 3.25 LC/MS peak data of dimethoate, carbaryl and fenvalerate in sample

 using different sonication time.

 ${}^{*}P_{A}$ = Peak area of triplicate results, calculation by (the differentiation between spiked and un-spiked sample)/3

Typically either electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) is the most interface technique for residue analysis of different pesticides. From the injection of a mixture standard solution, the results demonstrated higher responses in ESI than APCI and provided higher responses in positive mode (ESI+) than negative mode. The result was supported by M. Liu *et al.* [95] presented the signal responses were 10 - 20 times higher by ESI than APCI for pesticide. Therefore, ESI+ was selected for real sample.

The mass spectrometer was operated in the positive ionization mode (ESI+) for measure pesticide residues in sample. The MS parameters such as capillary voltage, drying flow rate, nebulizer pressure, drying temperature and fragmentor voltage were optimized to provide the best possible sensitivity. From the experiment the optimum conditions are used of the capillary voltage 3.5 kV, nitrogen gas flow (N₂, 99.99% purity HP grade) at 10 L min⁻¹, nebulizer pressure 40 psi, drying gas temperature 300°C. The effect of these parameters did not affect significantly the signal of the analytes, except of the fragmentor voltage, which played an important role in both the sensitivity and fragmentation patterns. Because the fragmentor voltage provided valuable structural information or characteristic fragmentation for each pesticide making attainable the accurate mass of each characteristic fragment ion together with its elemental composition which can be used with the molecular ion for confident identification criteria [94]. As a compromise value between sensitivity for simultaneous quantitation of dimethoate, carbaryl and fenvalerate, a value of 60 V was chosen for fragmentor voltage.

In full scan mode or the total ion chromatogram (TIC) a great number of product ions were recorded across the range 50 to 1000 m/z but lack of detection sensitivity for less concentrated residues in sample (Figure 3.26). Thus the extracted ion chromatography (EIC) is the reason why to be considerate (Figure 3.27). The m/z of each pesticide was extracted from EIC. Using the EIC, each pesticide enabled the selective and positive identification of dimethoate, carbaryl and fenvalerate by comparing the pattern of mass spectra in sample extracts with standard solutions.

In addition the MS signal for pesticides decreased by a factor of 5-10 when ACN-H₂O was compared to MeOH-H₂O [111]. This is most likely due to the fact that acetonitrile is a weaker proton donor than methanol. C. Crescenzi *et al.* [112] proposed methanol was suitable for obtaining high intensity of carbaryl since it is liable to provide hydrogen to the radical ion of carbaryl.

From the experiment, it was found that mass spectrums of the spiked sample were almost the same as the standard solution. For carbaryl, the ion used identify presented $[M+H]^+$ moreover 1-naphthol, thermal degradation of carbaryl, also demonstrated the fragmentation patterns. Therefore $[M+H]^+ = 202$ and $[M+H-57]^+ = 145$, equivalent to the molecular ion and 1-naphthol ion, respectively [7, 113] (Figure 3.28 (A)). The ion (m/z) used for dimethoate identify presented in the molecular ion or the protonated form of the molecule $[M+H]^+$. The ion used identify presented $[M+H]^+ = 230$ and $[M+H-31]^+ = 199$, equivalent to the molecular ion and $[M+H-31]^+$ ion, respectively (Figure 3.28 (B)).

It could be noticed that mass spectrum of fenvalerate was observed in the formation of strong ammonium adduct $[M+NH_4]^+$ signal. The presence of the $[M+NH_4]^+$ showed as base peak in sample and did not show the molecular ion $[M+H]^+$ [17] (Figure 3.28 (C)). According to fenvalerate containing chlorine atom in structure it can be seen the characteristic of chlorine isotopic pattern between Cl³⁵:Cl³⁷

in a ratio of 3:1 in height unit of $[M+NH_4]^+$ and $[M+H]^+$ in sample and standard solution, respectively.

Furthermore in advantage of using LC/MS, the presence of the co-extractives in the electrosprayed solution derived from the sample did not interfere significantly with the ionization process of the target analytes.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 3.26 The total ion chromatogram (TIC) of an extract of an orange sample peels after SPE clean-up step. Unfortified (A) and fortified orange peels (B) with a mixture of dimethoate, carbaryl and fenvalerate at 5.00, 1.50 and 2.00 mg L^{-1} , respectively.

Figure 3.27 The extract ion chromatogram (EIC) of an extract of an orange sample peels after SPE clean-up step. Unfortified (A) and fortified orange peels (B) with a mixture of dimethoate, carbaryl and fenvalerate at 5.00, 1.50 and 2.00 mg L^{-1} , respectively. Peak identification: (1) carbaryl; (2) dimethoate; (3) fenvalerate.

Figure 3.28 The mass spectras of (A) carbaryl (B) dimethoate and (C) fenvalerate. Assignment; $[M+H]^+$ = molecular ion and $[M+NH_4]^+$ = ammonium adducted ion with the chlorine isotopic pattern ($Cl^{35}:Cl^{37} = 3:1$).

3.4 Validation of LC/MS method

3.4.1 Calibration curve

The calibration curve is a linear range which obtains results directly proportional to the concentration of each analyte (Table 3.26). A graph is plotted between the peak area on the y-axis and the concentration on the x-axis.

 Table 3.26
 LC/MS peak data of each pesticide at various concentrations on calibration curve.

Conc.	Dime	thoate	Conc.	Cart	oaryl	Conc.	Fenva	alerate
(mg L ⁻¹)	P _A *	Average	(mg L ⁻¹)	P _A *	Average	(mg L [.] 1) ₀	P _A *	Average
5	15304		Z.	11567			14066	
0.50	15676	15877	0.040	11404	11401	0.20	13974	13651
	16652			11231			12915	
	86081			216584			44896	
1.0	91754	87850	0.30	221136	204460	0.40	57441	47530
	85715			175660			40254	
	172930			409587			76432	
2.0	176337	163879	0.60 -	_388475	397450	0.80	86007	81895
	142369			394288			83247	
	223005			572993			116902	
3.0	232089	228585	0.90	591883	581094	1.2	130582	122747
BDF	230661	UK	991	578406	BB	301	120757	n.U
	326107			792071			185107	
4.0	296395	306221	1.2	838462	812883	1.6	168641	160538
A É É	296161		ĥ +	808116		0.14	127867	Á
	373495	18	II L	983329	CS	CI	197235	
5.0	375451	373925	1.5	988978	987279	2.0	212258	199255
	372828			989531			188272	

 $* P_A = Peak area (relative abundance unit)$

Table 3.26	(continued)
-------------------	-------------

Conc.	Dimethoate		Conc.	Carl	oaryl	Conc.	Fenvalerate	
(mg L ⁻¹)	P _A *	Average	$(mg L^{\cdot 1})$	PA*	Average	(mg L ⁻¹)	PA*	Average
	434263			1085277			222000	
6.0	525711	440246	1.8	1367490	1202592	2.4	265631	243366
	360764			1155008			242467	
	610071		141	1583190	2 0		336850	
7.0	644369	589066	2.1	1570290	1570290	2.8	326478	289458
	512759			1583730		40	325047	

 $^{*}P_{A} = Peak area (relative abundance unit)$

From data in Table 3.26, the peak areas were obtained proportional to the concentration of standard solutions. Thus the calibration curve of dimethoate, carbaryl and fenvalerate were constructed in a relationship between peak areas and concentration of standard solutions in the range of 1.0 - 5.0, 0.30 - 1.50 and 1.2 - 2.8 mg L⁻¹, respectively (Figures 3.29 - 3.31).

Concentration of dimethoate (mg/L)

Figure 3.29 Calibration curve of dimethoate in the range of $1.0 - 5.0 \text{ mg L}^{-1}$.

From Figures 3.29 - 3.31, peak area (y) and concentration (x) of each pesticide was subjected to regression analysis to calculate the linear regression equation (y = ax + b) and the correlation coefficients (R^2). The linear regression

equations obtained were y = 71,449.20x + 17,744.40 with $R^2 = 0.9994$ for dimethoate (Figure 3.29), y = 660,357.00x + 2311.90 with $R^2 = 0.9984$ for carbaryl (Figure 3.30) and y = 104.062.50x - 5.052.20 with $R^2 = 0.9980$ for ามยานดี 2/22 fenvalerate (Figure 3.31).

3.4.2 Limit of detection

Limit of Detection (LOD) was established at a signal to noise ratio (S/N) of 3. LOD was experimentally verified by three injections of dimethoate, carbaryl and fenvalerate at the LOD concentration. Besides mentioned method, LOD was also determined by Miller - Miller method. The results are shown in Table 3.27.

Pesticide	Minimum detectable concentration (mg L ⁻¹)	LOD from Miller- Miller method (mg L ⁻¹)		
Dimethoate	0.50	0.001		
Carbaryl	0.030	0.0003		
Fenvalerate	0.20	0.002		

 Table 3.27 LOD of dimethoate, carbaryl and fenvalerate analyzed by LC/MS.

From Table 3.27, the results obtained by both methods were not in agreement which the experimental LODs were higher than the theoretical LODs with Miller-Miller method owing to fluctuation in signal from each injection. The EICs of dimethoate, carbaryl and fenvalerate of LOD concentration are shown in Figures 3.32, 3.33 and 3.34, respectively.

Figure 3.33 A signal of carbaryl to noise ratio (S/N) of 3.

ลื่งสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

3.4.3 Accuracy

The accuracy was investigated in term of percentage of recovery. The equation for determination of percentage of recovery followed as:

Percentage of recovery = Spiked sample response – Unspiked sample response x 100

Standard added response

Percentage of recovery was determined based on external calibration curve and the peak area obtained sample (Appendix L). The results are shown in Table 3.28.

Table 3.28 Percentages of recoveries obtained sample spiked with standard solution analyzed by LC/MS.

	Pesticide	Spiked (µg)	P _A * of un-spiked sample	P _A *of spiked sample	Average	Conc. (mg L ⁻¹)	Amount found (µg)	Recovery (%)
		10	nd	254373	60			
	Dimethoate	5.00	nd	278344	264472	3.45	3.45	69
			nd	260700	VE			
			nd	729658				
	Carbaryl	1.50	nd	707280	705229	1.06	1.06	71
5	ana	5 U I	nd	678750	าลย	108	IJJJI	hIJ
	nyriah	+C	nd	226182			ivor	
U _	Fenvalerate	2.00	nd	210881	212603	2.09	2.09	105
	l r	'ig	nd	200745	re	s e	rvo	e d

^{*}P_A = Peak area (relative abundance unit)

3.4.4 Precision

The precision was determined by injection mixed standard solution at the concentration level 6.00, 1.80 and 2.40 mg L^{-1} of dimethoate, carbaryl and fenvalerate, respectively, eight times in the same day (Table 3.29) and eight times for two day (Tables 3.30 - 3.31) for repeatability and reproducibility, respectively.

 Table 3.29
 Repeatability of retention time (min) and peak area of pesticide in

 standard solution analyzed by LC/MS.

Run	Di	methoate	C	larbaryl	Fe	Fenvalerate		
No.	tr	P _A * (x10 ⁶)	tr	P _A * (x10 ⁶)	tr	P _A * (x10 ⁶)		
1	14.6	2.22	22.8	4.93	63.8	0.99		
2	14.5	2.21	22.7	5.03	63.7	0.99		
3	14.6	2.18	22.7	5.05	63.7	0.95		
4	14.6	2.38	22.7	5.47	63.7	1.07		
5	14.5	2.39	22.7	5.22	63.6	0.95		
6	14.5	2.31	22.6	5.00	63.6	0.97		
7	14.5	2.29	22.6	5.38	63.6	1.05		
8	14.5	2.22	22.6	5.39	63.6	1.04		
Average	14.5	2.28	22.7	5.18	63.7	1.00		
SD	0.049	0.080	0.070	0.21	0.086	0.046		
% R.S.D.	0.34	3.52	0.31	4.02	0.14	4.60		

 $^{*}P_{A}$ = Peak area (relative abundance unit)

From Table 3.29, average of the retention time (t_R) of dimethoate, carbaryl and fenvalerate were 14.52, 22.67 and 63.66, respectively. The repeatability or intra-day precision was determined on eight consecutive times (n = 8) with R.S.D. values of retention time and peak area were found to be in the ranges of 0.14 - 0.34% and 3.52 - 4.60%, respectively.

Table 3.30 Reproducibility of retention time (min) and peak area of pesticide instandard solution on the first day analyzed by LC/MS.

Run	Di	methoate	C	arbaryl	Fei	nvalerate
No.	t _R	P _A * (x10 ⁶)	t _R	P _A * (x10 ⁶)	2 t _R	P _A * (x10 ⁶)
1	14.6	2.22	22.8	4.93	63.8	0.99
2	14.5	2.21	22.7	5.03	63.7	0.99
3	14.6	2.18	22.7	5.05	63.7	0.95
543	14.6	2.38	22.7	5.47	63.7	1.07
5	14.5	2.39	22.7	5.22	63.6	0.95
6	14.5	2.31	22.6	5.00	63.6	0.97
7	14.5	2.29	22.6	5.38	63.6	1.05
8	14.5	2.22	22.6	5.39	63.6	1.04
Average	14.5	2.28	22.7	5.18	63.7	1.00
SD	0.049	0.080	0.070	0.21	0.086	0.046
% R.S.D.	0.34	3.52	0.31	4.02	0.14	4.60

*P_A = Peak area (relative abundance unit) **All rights reserved**

Run No.	Dimethoate		Carbaryl		Fenvalerate	
	t _R	P _A * (x10 ⁶)	t _R	P _A * (x10 ⁶)	t _R	P _A * (x10 ⁶)
1	14.5	2.17	22.7	5.45	63.6	0.99
2	14.5	2.20	22.6	5.45	63.6	0.95
3	14.4	2.25	22.6	5.15	63.6	0.96
4	14.4	2.24	22.6	5.03	63.5	0.96
5	14.4	2.18	22.5	5.19	63.5	0.98
6	14.4	2.17	22.6	5.25	63.5	1.00
324	14.4	2.25	22.6	5.12	63.5	0.95
85	14.4	2.20	22.6	5.24	63.5	0.99
Average	14.4	2.21	22.6	5.24	63.5	0.97
SD	0.036	0.035	0.045	0.15	0.038	0.020
% R.S.D.	0.25	1.55	0.20	2.85	0.060	2.22

Table 3.31 Reproducibility of retention time (min) and peak area of pesticide instandard solution on the second day analyzed by LC/MS.

 $^{*}P_{A} = Peak area (relative abundance unit)$

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University AII rights reserved

AI UNIVER

From Table 3.30 - 3.31, %R.S.D. values of retention time and peak area are summarized Table 3.32.

 Table 3.32
 R.S.D. values of retention time (min) and peak area of each pesticide

 analyzed by LC/MS.

Day	% R.S.D.							
	Dimethoate		Carbaryl		Fenvalerate			
	t _R	P _A [*] (x10 ⁶)	t _R	P _A * (x10 ⁶)	t _R	P _A * (x10 ⁶)		
19	0.34	3.52	0.31	4.02	0.14	4.60		
2	0.25	1.55	0.20	2.85	0.060	2.22		

 $^{*}P_{A} = Peak area (relative abundance unit)$

From Table 3.32, the reproducibility or the inter-day precision was determined on eight consecutive times in the two successive days (n = 8, 2 days). Average R.S.D. values of retention time and peak area were found to be in the ranges of 0.060 - 0.34% and 1.55 - 4.60%, respectively.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

AI IINI

3.5 The Comparison between HPLC and LC/MS method

The percentage of recoveries \geq 70% were found for target pesticides by using both of HPLC and LC/MS technique. Unfortunately, the percentage of recovery as analyzed by HPLC presented less than 50% through the proposed method in the other word the amount found of target pesticides obtained were lower than originated fortified in sample due to interference disturbing and lost during extraction step. From the experiment, it can be seen LC/MS has a selectivity and sensitivity. The extracted ion chromatograms (EIC) of the spiked and un-spiked sample were very clean, no interference compounds were presented in the extract and, therefore, a clean-up step was not necessary. The results obtained were agreement with S. Jin *et al.* [114] that reported LC/MS need almost no sample pretreatment. Thus LC/MS technique is clearly preferable than HPLC for the determination of pesticides and also profitably in low concentration or trace level without interference disturbing.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

AI UNIVER