TABLE OF CONTENTS

2918126	
° P	age
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
ABBREVIATIONS AND SYMBOLS	xix
The second second	
CHAPTER 1 INTRODUCTION	
1.1 Introduction	1
1.2 Carbaryl	3
1.3 Dimethoate	4
1.4 Fenvalerate	6
1.5 Sample preparation	7
1.5.1 Solvent extraction	8
1.5.2 Solid Phase Extraction	8
1.6 High Performance Liquid Chromatography	12
1.6.1 Solvent reservoir	13
1.6.2 Pump	14
1.6.3 Sample injector	14
A 1.6.4 Column ights reserved	15
1.6.5 Detector	15

1.7 Liquid chromatography/Mass spectrometry	16
1.7.1 LC/MS interface	17
1.7.2 Electrospray ionization	17
1.7.3 Quadrupole mass spectrometer	20
1.8 Gas chromatography	21
1.8.1 Carrier gas and flow controllers	22
1.8.2 Sample injection system	22
1.8.3 Column and column oven	23
1.8.4 Detector	23
1.9 Analytical methods for residual pesticides	25
1.10 The Aim of the research work	36
CHAPTER 2 EXPERIMENTAL	
2.1 Apparatus and Chemicals	37
2.1.1 Apparatus	37
2.1.2 Chemicals	39
2.2 Preparation of solutions	40
2.2.1 Preparation of stock standard solutions	40
2.2.2 Preparation of working standard solutions	40
2.2.2.1 Preparation of working standard solution A	40
2.2.2.2 Preparation of working standard solution B	40
2.2.2.3 Preparation of working standard solution C	41
2.2.3 Preparation of standard solution for sample fortification	41
2.2.4 Preparation of standard solutions for calibration in HPLC	41
2.2.5 Preparation of standard solutions for limit of detection in HPLC	41
2.2.6 Preparation of standard solution for precision in HPLC	42
2.2.7 Preparation of standard solutions for calibration curve in LC/MS	42
2.2.8 Preparation of standard solutions for limit of detection in LC/MS	42
2.2.9 Preparation of standard solution for precision in LC/MS	43

2.2.10 Preparation of spiked sample solution by extraction	43
2.3 Chromatographic Conditions	44
2.3.1 Gas Chromatographic Conditions	44
2.3.2 Liquid Chromatographic Conditions	45
2.3.3 Liquid Chromatographic/Mass Spectrometry Conditions	46
2.4 Investigation of extraction procedure for HPLC method	47
2.4.1 Investigation of extracting solvent as diluent for standard solution	47
2.4.2 Investigation of extracting solvent using acetone as diluent for sample	47
2.4.3 Investigation of sonication time using acetone as diluent for sample	48
2.4.4 Investigation of solid phase extraction	48
2.4.4.1 Investigation of eluting solvent for standard solution	48
2.4.4.2 Investigation of eluting solvent for sample	49
2.5 Validation of HPLC Method	50
2.5.1 Calibration curve	50
2.5.2 Limit of detection	50
2.5.3 Accuracy	51
2.5.4 Precision	53
2.6 Investigation of extraction procedure for LC/MS method	54
2.6.1 Investigation of extracting solvent for sample	54
2.6.2 Investigation of sonication time for sample	55
2.7 Validation of LC/MS Method	55
2.7.1 Calibration curve	55
2.7.2 Limit of detection	55
CO2.7.3 Accuracy by Chiang Mai University	56
2.7.4 Precision ghts reserved	56

CHAPTER 3 RESULTS AND DISCUSSION	
3.1 Investigation of extraction procedure for HPLC method	58
3.1.1 Investigation of extracting solvent as diluent for standard solution	58

3.1.2 Investigation of extracting solvent using acetone as diluent for sample	61
3.1.3 Investigation of sonication time using acetone as diluent for sample	67
3.1.4 Investigation of solid phase extraction	70
3.1.4.1 Investigation of eluting solvent for standard solution	70
3.1.4.2 Investigation of eluting solvent for sample	74
3.2 Validation of HPLC method	87
3.2.1 Calibration curve	87
3.2.2 Limit of detection	90
3.2.3 Accuracy	92
3.2.4 Precision	93
3.3 Investigation of extraction procedure for LC/MS method	98
3.3.1 Investigation of extracting solvent for sample	98
3.3.2 Investigation of sonication time for sample	100
3.4 Validation of LC/MS method	107
3.4.1 Calibration curve	107
3.4.2 Limit of detection	110
3.4.3 Accuracy	113
3.4.4 Precision	114
3.5 The Comparison between HPLC and LC/MS method	118
UTT	
CHAPTER 4 CONCLUSION	119
BIBLIOGRAPHY	124
APPENDICES	138
Cop Appendix A by Chiang Mai University	139
APPENDIX B	140
APPENDIX C	142
APPENDIX D	143
APPENDIX E	144
APPENDIX F	146

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 9818160 P	906
1 1 Analytical matheda fan raaidwaa nasticida	age
1.1 Analytical methods for residues pesticide	23
2.1 List of chemicals used, their purity grade and suppliers	39
2.2 The GC conditions	44
2.3 The optimum HPLC conditions with the Envirosep-CM column	45
2.4 The optimum LC/MS conditions with the Envirosep-CM column	46
3.1 HPLC peak data of dimethoate, carbaryl and fenvalerate in standard	
solution using different extracting solvents as diluent	59
3.2 GC peak data of dimethoate in standard solution using different	
extracting solvents as diluent	60
3.3 HPLC peak data of dimethoate, carbaryl and fenvalerate in sample after	
extraction with different solvents using acetone as diluent	62
3.4 GC peak data of dimethoate in sample after extraction with different	
solvents using acetone as diluent	63
3.5 HPLC peak data of dimethoate, carbaryl and fenvalerate in sample using	
different sonication time	68
3.6 GC peak data of dimethoate in sample using different sonication time	69
3.7 HPLC peak data of dimethoate, carbaryl and fenvalerate in standard	
solution using different eluting solvent and acetone as diluent	71
3.8 HPLC peak data of dimethoate, carbaryl and fenvalerate in standard	
solution using different eluting solvent and deionized water as diluent	72

3.9 GC peak data of dimethoate in standard using different eluting solvent	
and acetone as diluent	73
3.10 HPLC peak data of dimethoate, carbaryl and fenvalerate in sample	
using different eluting solvent and acetone as diluent	75
3.11 HPLC peak data of dimethoate, carbaryl and fenvalerate in sample	
using different eluting solvent and deionized water as diluent	76
3.12 GC peak data of dimethoate in sample using different eluting solvent	
and acetone as diluent	77
3.13 HPLC peak data of each pesticide at various concentrations for	
calibration curve	87
3.14 Minimum detectable concentration of each pesticide analyzed by HPLC	90
3.15 Percentages of recoveries of sample spiked with standard solution	92
3.16 Repeatability of retention time (min) and peak area of pesticide in	
standard solution analyzed by HPLC	93
3.17 Reproducibility of retention time (min) and peak area of pesticide in	
standard solution on the first day analyzed by HPLC	94
3.18 Reproducibility of retention time (min) and peak area of pesticide in	
standard solution on the second day analyzed by HPLC	94
3.19 Reproducibility of retention time (min) and peak area of pesticide in	
standard solution on the third day analyzed by HPLC	95
3.20 Reproducibility of retention time (min) and peak area of pesticide in	
standard solution on the fourth day analyzed by HPLC	95
3.21 Reproducibility of retention time (min) and peak area of pesticide in	/
standard solution on the fifth day analyzed by HPLC	96
3.22 Reproducibility of retention time (min) and peak area of pesticide in	
standard solution on the sixth day analyzed by HPLC	96
3.23 R.S.D. values of retention time (min) and peak area of each pesticide	
analyzed by HPLC	97
3.24 LC/MS peak data of dimethoate, carbaryl and fenvalerate in sample	
using different extracting solvent	98

3.25 LC/MS peak data of dimethoate, carbaryl and fenvalerate in sample	
using different sonication time	101
3.26 LC/MS peak data of each pesticide at various concentrations on	
calibration curve	107
3.27 LOD of dimethoate, carbaryl and fenvalerate analyzed by LC/MS	110
3.28 Percentages of recoveries obtained sample spiked with standard	
solution analyzed by LC/MS	113
3.29 Repeatability of retention time (min) and peak area of pesticide in	
standard solution analyzed by LC/MS	114
3.30 Reproducibility of retention time (min) and peak area of pesticide in	
standard solution on the first day analyzed by LC/MS	115
3.31 The reproducibility of retention time (min) and peak area of pesticide in	
standard solution on the second day analyzed by LC/MS	116
3.32 R.S.D. values of retention time (min) and peak area of each pesticide	
analyzed by LC/MS	117
A A A	
AI UNIVERS	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure Pa	age
1.1 Chemical structure of carbaryl	3
1.2 Chemical structure of dimethoate	5
1.3 Chemical structure of fenvalerate	6
1.4 Solid phase extraction step	11
1.5 Components of high performance liquid chromatography	13
1.6 Diagram of diode array detector	16
1.7 Diagram of ESI source	18
1.8 Quadrupole instrument	21
1.9 Schematic of gas chromatography	22
1.10 Schematic of gas chromatographic-flame photometric detector	24
3.1 HPLC peak areas of dimethoate, carbaryl and fenvalerate in standard	
solution using different extracting solvents as diluent	59
3.2 GC peak areas of dimethoate obtained in standard solution	
using different extracting solvents as diluent	60
3.3 HPLC peak areas of dimethoate, carbaryl and fenvalerate in sample	
after extraction with different solvents using acetone as diluenet	62
3.4 GC peak areas of dimethoate, carbaryl and fenvalerate in sample	
after extraction with different solvents using acetone as diluent	63
3.5 HPLC peak areas of dimethoate, carbaryl, fenvalerate in sample using	
different sonication time	68
3.6 GC peak areas of dimethoate obtained in sample using different	
sonication time	69
3.7 HPLC peak areas of dimethoate, carbaryl, and fenvalerate in standard	
solution using different eluting solvents and acetone as diluent	71

3.8 HPLC peak areas of dimethoate, carbaryl and fenvalerate in standard	
solution using different eluting solvent and deionized water as diluent	72
3.9 GC peak areas of dimethoate obtained in standard solution using	
different eluting solvent and acetone as diluent	73
3.10 HPLC peak areas of dimethoate, carbaryl, and fenvalerate in sample	
using different eluting solvent and acetone as diluent	75
3.11 HPLC peak areas of dimethoate, carbaryl and fenvalerate in sample	
using different eluting solvent and deionized water as diluent	76
3.12 GC peak areas of dimethoate obtained in sample using different eluting	
solvent and acetone as diluent	77
3.13 HPLC chromatograms of standard solutions of dimethoate, carbaryl	
and fenvalerate concentrations of 5.00, 1.50 and 2.00 mg L ⁻¹ , respectively	82
3.14 HPLC chromatograms of an orange sample peels extract before SPE	
clean-up step	83
3.15 HPLC chromatograms of individual pesticide in the orange sample	
peels extract before SPE clean-up step	84
3.16 HPLC chromatograms of an orange sample peels extract after SPE	
clean-up step	85
3.17 HPLC chromatograms of individual pesticide in the orange sample peels	
extract after SPE clean-up step	86
3.18 Calibration curve of dimethoate in the range of $0.13 - 1.0 \text{ mg L}^{-1}$	88
3.19 Calibration curve of carbaryl in the range of $0.24 - 1.2 \text{ mg L}^{-1}$	89
3.20 Calibration curve of fenvalerate in the range of $0.20 - 1.2 \text{ mg L}^{-1}$	89
3.21 Minimum detectable concentration of dimethoate at 0.20 mg L ⁻¹	91
3.22 Minimum detectable concentration of carbaryl at 0.0051 mg L ⁻¹	91
3.23 Minimum detectable concentration of fenvalerate at 0.00020 mg L ⁻¹	91
3.24 LC/MS peak areas of dimethoate, carbaryl and fenvalerate in sample	
using different extracting solvent	99

3.25 LC/MS peak areas of dimethoate, carbaryl and fenvalerate in the	
sample using different sonication time	101
3.26 The total ion chromatogram (TIC) of an extract of an orange	
sample peels after SPE clean-up step	105
3.27 The extract ion chromatogram (EIC) of an extract of an orange	
sample peels after SPE clean-up step	105
3.28 The mass spectras of (A) carbaryl, (B) dimethoate and (C) fenvalerate	106
3.29 Calibration curve of dimethoate in the range of $1.0 - 5.0 \text{ mg L}^{-1}$	108
3.30 Calibration curve of carbaryl in the range of 0.30 - 1.5 mg L^{-1}	109
3.31 Calibration curve of fenvalerate in the range of $1.2 - 2.8 \text{ mg L}^{-1}$	109
3.32 A signal of dimethoate to noise ratio (S/N) of 3	111
3.33 A signal of carbaryl to noise ratio (S/N) of 3	111
3.34 A signal of fenvalerate to noise ratio (S/N) of 3	112
AI UNIVERSIT	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

ACN	Acetonitrile
AChE	Acetylcholinesterase
NH4OAc	Ammonium acetate
APCI	Atmospheric Pressure Chemical Ionization
CE	Capillary Electrophoresis
CB	Carbamate
CCC SU	Counter Current Chromatography
CNS	Central Nervous System
CI	Chemical Ionization
Chl	Chlorophyll
ChE	Cholinesterase
Conc.	Concentration
DDT	Dichlorodiphenyltrichloroethane
DM ar	Dimethoate DINI AUTOLIU
DIM	Dimethoate
DAD	Diode Array Detector
EI	Electron Ionization
ECD	Electron-Capture Detection
ES	Electrospray Ionization

ESI	Electrospray Ionization
EPA	Environment Protection Agency
EU	European Union
EIC	Extracted Ion Chromatography
FAB	Fast Atom Bombardment
FPD	Flame Photometric Detector
F	Flow rate
Fl	Fluorescence detection
FDA	Food and Drug Administration
GC	Gas Chromatography
GPC	Gel Permeation Chromatography
GCB	Graphitized Carbon Black
НСВ	Hexachlorobenzene
HPLC	High Performance Liquid Chromatography
IARC	International Agency for Research on Cancer
ІСН	International Conference on Harmonization
LDH	Lactate dehydrogenase
Copyris	Liquid Chromatography ang Mai University
QA	Quality Assured to reserved
 QC	Quality Control
QuEChERS	Quick Easy Cheap Effective Rugged and Safe
MDH	Malate dehydrogenase

MRL	Maximum Residue Limit
MS	Mass Spectrometry
m/z	Mass to charge
MRM	Multiple Reaction Monitoring
nd	Not detected
NPD	Nitrogen-Phosphorus Detection
C18	Octadecyl carbon
OC	Organochlorine
OPP 5	Organophosphate
OME	Oxon omethoate
PA	Peak area
POCL	Peroxyoxalate Chemiluminescence
PAM	Pesticide Analytical Manual
PMT	Photomultiplier tube
PSA	Primary Secondary Amine
Ру	Pyrethroid
QIT	Quadrupole Ion Trap
REDVI	Radio Frequency Chiang Mai University
ROS	Reactive Oxygen Species
t _R	Retention time
V _R	Retention volume
SIM	Selected Ion Monitoring

SPE Solid Phase Extraction

- SAX Strong Anion Exchange
- SDVB Styrene-divinyl benzene
- SDH Succinate dehydrogenase
- SFE Supercritical Fluid Extraction
- TOF Time of Flight
- TIC Total Ion Chromatogram
- TQ Triple Quadrupole
- WHO World Health Organization
- WTO World Trade Organization

AT ANAI

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

2620376