CHAPTER 2
THEORY

2.1 Fiber-reinforced composite materials

A Composite material is a structural material consisted of two or more
different materials which are mechanically or metallurgically bonded together at a
macroscopic level. One constituent is called the reinforcing phase and the one which
is embedded is called the matrix (Figure 2.1). The reinforcing phase material could
be in form of particles, flakes, or fibers. The matrix phase materials are generally
continuous. Composite materials offer several other advantages over conventional
materials such as steel, aluminum, and other types of metal. These advantages
include improved strength, stiffness, fatigue and impact resistance, thermal
conductivity, and corrosion resistance.
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Figure 2.1 Phases of a composite materials.
(Source: lIsaac, 1994)
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Figure 2.2 Classification of composite materials.
(Source: Laszlo, 2003)
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There are many types of composite materials and several methods of
classifying them. One method is based on geometry of the reinforcement (Figure
2.2).

(1) Particulate composite materials consist of particles immersed in matrices.

They are usually isotropic because the particles are added randomly.
Particulate composites have advantages such as improved strength,
increased operating temperature, oxidation resistance, etc.

(2) Flake composite materials consist of flat reinforcements of matrices.

They provide advantages such as high out-of-plane flexural modulus,
higher strength, and low cost. However, flakes cannot be oriented easily
and only a limited number of materials are available for use.

(3) Fiber-reinforced composite materials consist of matrices reinforced by

short (discontinuous) or long (continuous) fiber; fibers are generally
anisotropic.
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Figure 2.3 The levels of analysis for a structure made of laminated composite.
(Source: Laszlo, 2003)
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Figure 2.4 lllustrations of possible fiber orientations.
(Source: Laszlo, 2003)

Fiber-reinforced composite materials consist of two materials, a
reinforcement material called fiber and a base material called matrix material. Fibers
are the principal load-carrying members, they are kept together by the matrix material
which acts as a load-transfer medium between fibers, and protects fibers from being
exposed to the environment. Fiber reinforced composite materials are often made in
the form of a thin layer, called lamina or ply. Within each lamina, the fibers can be
continuous or discontinuous, woven, unidirectional, bidirectional, or randomly
distributed. Stacking a number of such lamina in the direction of lamina thickness
called laminate, which can form the desired structure such as bars, beams or plates
(Figure 2.3). The sequence of various orientations of a fiber reinforced composite
layer in a laminate is termed the lamination scheme or stacking sequence. The
lamination scheme and material properties of individual lamina provide an added
flexibility to designs to tailor the stiffness and strength of the laminate in order to
match the structural stiffness and strength requirements. Depending on the
arrangements of the fibers, the material may behave differently in different directions.
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According to their behavior, fiber-reinforced composite materials may be
characterized as anisotropic, monoclinic, orthotropic, transversely isotropic, or
isotropic materials (Figure 2.4).

2.1.1 Stress-strain relationships
In macromechanical analyses of fiber-reinforced composite materials that are
large with respect to the fiber diameter, the fiber and matrix properties may be
averaged, and the material may be treated as linear and elastic behavior. Thus, the
stress-strain relationships follow Hook’s law for a three-dimensional boxhyxxs

coordinate system in matrix form is
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where o,,0,,0, Normal components of stress parallel X9 x;, and x3
direction, respectively

T 93 T13: 715 Shearing stress components ifxxXxz coordinate system
£1,E2,E3 Normal strains in X %, and % direction, respectively
Y 03V 130 V12 Shearing strain components iaxg-Xs coordinate system
[C;] The element of stiffness Ki-x;-X3 coordinate system

inverting equation (2.1), the general strain-stress relationship for a three-dimensional

body inx;-x>-X3 coordinate system is
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where [S§] The element of compliance ¥a-x-x3 coordinate system

Due to the symmetry of the stiffness mat[®<], the 36 constants in equation

(2.1) actually reduce to 21 independent constants. This also implies that only 21
independent constants are in the general compliance ni&tiof equation (2.2).
Further reduction in the number of independent stiffness (or compliance) parameters
comes from the so-called material symmetry. When elastic material parameters at a
point have the same values for every pair of coordinate systems that are mirror images
of each other in a certain plane, that plane is called a material plane of symmetry. The
difference in material plane of symmetry may be characterized material as
anisotropic, monoclinic, orthotropic, transversely isotropic, or isotropic materials.

(1) Anisotropic materials: when there are no symmetry planes with respect
to the alignment of the fibers the material, the stiffness matrix can be
written as equation (2.3) and the compliance matrix can be written as
equation (2.4)

% (2.3)
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(2) Monoclinic materials: when there is a symmetry plane with respect to
the alignment of the fibers, the stiffness matrix can be written as
equation (2.5) and the compliance matrix can be written as equation
(2.6)
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where E,E, E; Modulus of elasticity in tension and compressio;irxs,

and x direction, respectively

G, G5G, Modulus of elasticity in shear in the-X,, Xi-X3, andxy-xs,
respectively

2 Poisson’s ratio, defined as the ratio of transverse strain in
the j™ direction to the axial strain in thH& direction when

stressed in théhidirection, and

Y% T 2.7)

= '

(3) Orthotropic materials: when there are three mutually perpendicular
symmetry planes with respect to the alignment of the fibers, the
stiffness matrix can be written as equation (2.8) and the compliance

matrix be written as equation (2.9)



000

o O O

J'”|§JTI|'—‘

o Jm

Vi3

N PO
N N

00

o O O

|
J”|HJ”|.'§

_Va

o N

0

23

0

0

0
1
G

0

0
ey
Gy, |

(4) Transversely isotropic materials:

(2.8)

(2.9)

when there are three mutually

perpendicular symmetry planes with respect to the alignment of the

fibers and in one of the planes of symmetry the material is treated as

isotropic, the stiffness matrix can be written as equation (2.10) and the

compliance matrix can be written as equation (2.11)
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(5) Isotropic materials: when there are no preferred directions and every
plane is a plane of symmetry, the stiffness matrix can be written as
equation (2.12) and the compliance matrix can be written as equation
(2.13)
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where E Modulus of elasticity in tension and compression of
isotropic material
1% Poisson’s ratio of isotropic material

The stiffness and compliance matrix from equation (2.3)-(2.13) are referred
to a coordinate system that coincides with the principal material coordinate system.
The coordinate system used in the problem formulation, in general, does not coincide
with the principal material coordinate system. Further, composite laminates have
several layers; each with different orientation of their material coordinates with
respect to the laminate coordinates. Thus, there is a need to establish transformation
one coordinate system to the corresponding quantities in another coordinate system.

2.1.2 Transformation of material coefficients

Due to the laminates have several layers, each with different orientation of
their material coordinates system; the problem coordinate system does not coincide
with the material coordinate system (Figure 2.5). Thus there is a need to establish
transformation relations along stresses and strains in the material coordinate system of
each layer to the problem coordinate system. In general, two coordinate systems are
used to describe a laminatex, ¥, z2) denotes the problem coordinate system which
used to write the governing equations of a laminate andk{, x3) is the material
coordinate system of a typical layer in the laminate. Xkeplane and th&y-plane
are parallel; theis-axis is parallel to the-axis. Thex;-axis is oriented at an angle of
+6 counterclockwise from theaxis (Figure 2.6).

In x-y-zcoordinate system, the stress-strain relationship can be written as
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Figure 2.5 A laminate made up of lamina with different fiber orientations.

where

(Source: Reddy, 2004)

Figure 2.6 A lamina with material and problem coordinate systems.

0,,0,,0,

TuynTynT

yzr ¥ xz1 Y xy

Ex €y &,
VoV sV xy
[C;]

(Source: Reddy, 2004)

Normal components of stress parallel oy, and z
directions, respectively

Shearing stress components-yz coordinate system
Normal strains i, y, andz directions, respectively
Shearing strain componentsxHy-z coordinate system
The element of stiffness matrix xay-z coordinate system,
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where c,s cos¥ andsiné , respectively

inverting equation (2.14), can be written strain-stress relationshigyimcoordinate
as
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where [§]

[31 ]_l = [c_:u ]

The element of compliance inyxz coordinate system,

(2.17)

In most structural applications fiber-reinforced composite materials are used
Thus, fiber-
reinforced composite materials can be considered to be under a condition of plane
This
assumption then reduces the three-dimensional stress-strain relationship, equation

in the form of thin laminates loaded in the plane of the laminate.

stress with all stress components in the out-of-plane direction being zero.

(2.14), to two-dimensional stress-strain relationship-yazcoordinate system as
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where [6".] The element of plane stress-reduce stiffness,
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2.2 Fiber-reinforced composite plates

Plates that are straight, plane, two-dimensional structural components of
which one dimension, referred to the thickness, is much smaller than the other
dimensions. Plates have free, simply supported and clamped boundary conditions,
including elastic supports and elastic restraints, or, in some case, even point SUpports.

The static and dynamic loads carried by plates are predominantly perpendicular to the
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plate surface. These external loads are carried by internal bending and twisting
moments and by transverse shear forces.

A rigorous elastic analysis would require, for instance, that the plate should
be considered as a three-dimensional continuum. Needless to say, such an approach
is highly impractical since it would create almost insurmountable mathematical
difficulties. Even if a solution could be found, the resulting costs would be, in most
cases, prohibitively high. Consequently, in order to rationalize the plate analyses,
plate is distinguished into three categories with inherently different structural behavior
and, hence, different governing differential equations. The three plate-types might be
categorized, to some extent, using their ratio of thickness to governing lefigth (

(1) Stiff plates b/L = < 1/10) are thin plates with flexural rigidity, carrying
loads two dimensionally, mostly by internal bending and twisting
moments and by transverse shear, generally in a manner similar to
beams.

(2) Moderately thick platesh(L = 1/10 — 1/5) are in many respects similar to
stiff plates, with the notable exception that the effects of transverse shear
forces on the normal stress components are also taken into account.

(3) Thick plates (/L > 1/5) have an internal stress condition that resembles

that of three-dimensional continua.

duw o
ox

Figure 2.7 Undeformed and deformed geometries of an edge of a plate
under Kirchhoff hypothesis.
(Source: Reddy, 2004)
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Fiber-reinforced composite laminates are formed by stacking layers of
different composite materials and/or fiber orientation. By construction, fiber-
reinforced composite laminates have their planar dimensions one to two orders of
magnitude larger than their thickness. Often fiber-reinforced composite laminates are
used in applications that require membrane and bending strengths. Therefore, fiber-
reinforced composite laminates are treated as plate type structure.

2.2.1 The classical laminated plate theory
The classical laminated plate theory (CLPT) is an extension of the Kirchhoff
plate theory to laminated composite plates. In the classical laminated plate theory it is
assumed that the Kirchhoff hypothesis holds:

(1) There is no deformation in the middle plane of the plate. This plane
remains neutral during bending.

(2) Points of the plate lying initially on a normal-to-the middle plane of the
plate remain on the normal-to-the-middle surface of the plate after
bending.

(3) The normal stresses in the direction transverse to the plate can be
disregarded in comparison to the stress in other directions.

According to Kirchhoff hypothesis, the displacement field-iy+zcoordinate

system (Figure 2.7) is assumed to be

oW
= 1) — 0
Uxyzd=uy(xyt Zax

oW
= 1) — °
UXYz9=v(xyt) z5

WX %z = w (Xyt) (2.22)

where Uu,v,w Components of displacements xny, and z directions,
respectively
Uy, Vg, Wy Components of displacements of middle surface ynand
z directions, respectively
z Distance from middle surface
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from equation (2.22), the strains are therefore given by
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where &7,6,,7y, Normal strains of middle surface ¥y, andz directions,
respectively
KoKy Ky Curvatures of middle surface of plate

Considering all stress over the thickness of the plate (Figure 2.8), the normal
stress and the shearing stress give the in-plane forces, moments (per unit length), and
the transverse shear forces (per unit length) acting on a small element as (Figure 2.9)
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Figure 2.8 Stresses on plate element.
(Source: Timoshenko, 1959)
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Figure 2.9 Force and moment resultants on a plate element.
(Source: Reddy, 2004)
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where Ny, Ny Normal forces per unit length of sections of a plate
perpendicular to and ydirections, respectively
Nyy Shearing force per unit length of section of a plate

perpendicular to ”irection
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My, My Bending moments per unit length of sections of a plate
perpendicular to and ydirections, respectively

Myy Twisting moment per unit length of section of a plate
perpendicular to direction

Qv Q Shearing forces parallel t direction per unit length of
sections of a plate perpendicular xoandy directions,
respectively

h Thickness of a plate

combining equation (2.18), (2.19) and (2.23), the in-plane forces, moments (per unit
length) and the transverse shear forces (per unit length) can be written as

N, A A As 53 B. B, Bp ||k

Ny =] A Ay A€ 3 - B, By Byl &y (2.24)
L ny As A A7 >c<)y Bs By Bgl|x Xy

M, By B, Bgll¢ S Dy Dy, Dy || &y

My |=| B, B, Byx|ié 3 =D, Dy Dy |y x, (2.25)
_M Xy B By B |7 >c<)y Dis Dy Des || & Xy

Qyj|:|:A44 A45:| |:7yzj| (226)
_Qx A45 A’)S Y xz

where [A] The element of extensional stiffness

[B;] The element of coupling stiffness
[D;] The element of bending stiffness,

[ A1=2(Q)(Z~2)
[Bij]_%i J)k(zi_zlil)

[D,]=3 (QW(Z-2) 227)
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The [A], [B], and D] matrices represent the stiffness of a laminate and
describe the response of the laminate to in-plane forces and moments. Examination of
[A], [B], and D] matrices shows that the different types of couplings may occur as
illustrated in Table 2.1. When the coupling terms shown in the last column are zero,
there is no coupling. The coupling terns,, D, B,,,B,, can be illustrated in a
similar manner by applying a ford¢, and a momenM  in they-z plane.

Table 2.1 lllustration of the coupling term.
(Source: Laszlo, 2003)

Coupling No coupling Element

Extension-shear
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Bending-twist

Extension-twist
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(1) Extension-shear coupling: when the elemeAjg A, are not zero, in-
plane normal forcesN,,N, cause shear deformatiorf, and a twist
force N,, cause elongations in theandy directions.

(2) Bending-twist coupling: when the elemen3,,D,, are not zero,

bending momentdM ,,M cause twist of the laminate,,, and a twist

Xy ?
momentM,, causes curvatures in tke andy-z planes.
(3) Extension-twist and bending-shear coupling: when the elenigptB,

are not zero, in-plane normal forcég, N, cause twistc,,, and bending

xy ?
momentsM,, M results in shear deformatiqr‘jy.

(4) In-plane-out-of-plane coupling: when the elemeBjfsare not zero, in-
plane forcesN,,N,, N,  cause out-of-plane deformations (curvatures) of
the laminate, and the momeri,,M ,M, cause in-plane deformations
in thex-y plane.

(5) Extension-extension coupling: when the eleméhis is not zero, a
normal forceN, causes elongation in thedirection ¢7, and a normal
force N, causes elongation in thedirection &7 .

(6) Bending-bending coupling: when the elemddisis not zero, a bending
momentM, causes curvature of the laminate in yeplanex,, and a
bending momentM , causes curvature of the laminate in e plane
K, .

2.2.2 Typical fiber-reinforced composite lamination scheme
Based on angle, material, and thickness of lamina, the symmetry or
antisymmetry of a laminate may zero out some elements of the three stiffness
matrices A, [B], and D]. These are important because they may result in reducing
or zeroing out the coupling of forces and bending moments, normal and shear forces,
or bending and twisting moments. Most commonly fiber-reinforced composite
laminates used forms (Figure 2.10) are:
(1) Unidirectional laminates: where the fiber orientation angle is same in all
lamina, it can be implied th§B]=0.
(2) Cross-ply laminates: where the orientation angles in alternate layer are
...10/90/0/90/.... It can be implied thatA,=A,= 0B,=B, =0,
and D, = D,s = 0.
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Unidirectional laminates Cross-ply laminates Angle-ply laminates
. : J
+6 T +0 T T
i » I
B _ Midplane B o Midplane by
P P = | \ Midplane {
hy hy h‘z
| | [
+6 =6 -8
Tfo Tfo Tr“
Symmetric laminates Anti Symmetric laminates Balanced laminates

Figure 2.10 Type of the lamination schemes.
(Source: Autar, 2006)

(3) Angle-ply laminates: where the orientation angles in alternate layer are
.101-6161-61... when 6= (,90°. It can be implied that
As=A=0.

(4) Symmetric laminates: where the lamina orientation is symmetrical about
the center line of the laminated plate; that is for each lamina above the
mid plane, there is identical lamina in all respects (material, thickness,
fiber orientation) at an equal distance below the mid plane. It can be
implied that B E Q

(5) Anti symmetric laminates: where for every lamina+a#° orientation at
distancez, there is an identical ° orientation lamina at distanee It
can be implied thath;= A, = OandD,; =D, =0.

(6) Balance laminates: where for every lamina+a® orientation, there is
an identical-#° orientation lamina, somewhere within the laminate. It
can be implied thalh;=A,,= O
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2.2.3 Boundary conditions

The conditions along each edge of the plate must be specified. Boundary

conditions of plates in bending can be generally classified as one of the following.

(1) Clamped edge (C): If the edge of a plate is clamped, the deflection along
this edge is zero, and the tangent plane to the deflected middle surface
along this edge coincides with the initial position of the middle plane of
the plate. Assuming the clamped edge to be givenxbya, the
boundary conditions are

(W)x=a =0

ow
(&j = 0 (2.28)

(2) Simply supported edge (S): If the edge of a plate is simply supported,
the deflection along this edge must be zero. At the same time this edge
can rotate freely with respect to the edge line; there are no bending
moments along this edge. Assuming the simply supported edge to be
given by x = a, the boundary conditions are

(W), =0
(M), =0 (2.29)

(3) Free edge (F): If the edge of a plate is entirely free, it is natural to
assume that along this edge there are no bending moments and
supplement shear forces. Assuming the free edge to be givee by
the boundary conditions are

(M X)X=a = 0
V,),. =0 (2.30)
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F

Figure 2.11 The CFCS boundary conditions.

The notation for boundary conditions is, for example, CFCS, in which the
first and third letters mean the boundary conditions aleriyandx=a respectively,
and the second and fourth letters mean the boundary conditionsyal@randy=b
respectively (Figure 2.11).

2.3 Vibration of fiber-reinforced composite plates

Vibration is any motion that repeats itself after an interval of time. A
vibratory system, in general, includes a means for storing potential energy (spring or
elasticity), a means for storing kinetic energy (mass or inertia), and a means by which
energy is gradually lost (damper). It involves the transfer of its potential energy to
kinetic energy and kinetic energy to potential energy, alternately. If the system is
damped, some energy is dissipated in each cycle of vibration and must be replaced by
an external source if a state of steady vibration is to be maintained.

Vibration system models can be divided into two classes, discrete and
continuous (or distributed). The systems do depend on system parameters such as
mass, damping, and elasticity (Figure 2.12).

(1) Discrete systems where mass, damping, and elasticity are assumed to be

present only at certain discrete points in the system.

(2) Continuous systems are systems with varying distributions of mass,

damping, and elasticity.
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(b) Continuous systems: Cantilever beam

Figure 2.12 Discrete and continuous systems.
(Source: Rao, 1999)

2.3.1 Continuous systems

The continuous systems are designated by infinite number of degrees of
freedom (DOFs). Displacement of continuous systems is described by a continuous
function of position and time, and consequently will be governed by partial
differential equations (PDEs). The behavior of discrete systems, by contrast, is
defined by finite number of DOFs and the corresponding equation is ordinary
differential equations (ODESs). In general, the equations of motion for continuous
system are a transcendental equation that yields an infinite number of natural
frequencies and mode shapes. The vibration frequencies and their modes are
conventionally ordered as a sequenge @, @s... with an«1 > on. The lowest
frequency of vibration is denotedi. A mode shape is a specific pattern of vibration
executed by a mechanical system at a specific frequency and the lowest natural
frequencies tends to have a long wavelength; the wavelength decreases for higher
frequency modes. As illustrated in Figure 2.13, the first and second mode shapes of
simply supported plate has a single and double sine wavesdardinate direction,

respectively.
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(b} Second mode

Figure 2.13 First and second modes of simply supported plate.
(Source: Rudolph, 2004)

Most of time, continuous systems are approximated as discrete systems due
to the fact that the ordinary differential equation is easier to be solved than the partial
differential equation. Although the treatment of a system as continuous gives exact
results, the exact methods available for dealing with continuous systems are limited to
a narrow selection of problems. Hence most of the continuous systems are studied by
treating them as an approximate method or a numerical method. In this regard, many
methods exist. But here, only three methods are addressed for solving the free
vibration of symmetrically laminated composite rectangular plates with various
boundary conditions.

(1) The extended Kantorovich method

(2) The Rayleigh-Ritz method

(3) The finite element method
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2.3.2The extended Kantorovich method

The extended Kantorovich method is an approximate method which used a
separable function in the form of functiof(x) and functionY(y). A separable
function is applied to the dynamic system energy equation which yields the partial
differential equation. The variation method is used to reduce the partial differential
equations to ordinary differential equations in xrendy coordinates direction, with a
constant coefficient. The iterative calculation is used to evaluate the natural
frequency from the ordinary differential equation, and to force the final solution
required to satisfy the boundary conditions. These iterations are repeated until the
result converges to a desired degree.

Hamiton’s principle is a generalization of the principle of virtual
displacement within the dynamics of a system. The principle assumes that the system
under consideration is characterized by two energy functions: the potential energy and
the kinetic energy.

s[m-KJ]=0 (2.31)
where TI1 Potential energy
K Kinetic energy

The potential energy of the symmetrically laminated composite rectangular plate
(Figure 2.14) can be written as

Yy

Figure 2.14 The rectangular plate.
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h/

2
lo &0 g, 7, dxdydz (2.32)

-h/2

_lab
"]

substitute equation (2.23) into equation (2.32)

= %”b hﬁa (£%—2x )+o (22 )+, (70 — x,)] dxdydz

0 0-h/2

By the in-plane forces-stress relationship and the moment-stress relationship, the
potential energy can be written as

ab
H:%”[ Ng% N+ N O+ Mg+ Mg+ Mg, Jddy  (2.33)
00

Based upon the first assumption of the Kirchhoff hypothesisgthe:, and y;, are
zero. Thus, combining equation (2.25) with equation (2.33)

ab 2 2 2 2 2 2
= 1J.J. Dn(a V\zloj + 2D12(a V\2/0 J(a V\zloJ+ 4D16(6 V\zlo j(a WO]
2% OX OX oy oxX~ )\ oxoy
2 2 2 2 2 2
+ Dzz(%j + 4D2{%j(‘2—$j + 4D6{Z—X‘2’;j ] dxdy (2.34)

The kinetic energy of the symmetrically laminated composite rectangular plate

(Figure 2.15) can be written as

ab
ke 1 j o w; )’ dxdy (2.35)
2 00
where m Mass per unit area of plate
1) Natural circular frequency

substitute equation (2.34) and (2.35) in the application of Hamiton’s principle as
equation (2.31)
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122 2w\’ 0w, \ o%w, o*w, | 0w,
S1= [ Dy % | 1op, | T W | “Yo || yp
(1l o e T o o e o

2 2 2 2 2 2
+D, | I Yo | + 4D, W Yo OWo | L ap, |9 | | gxdy
oy oy ) oxay B0y

—%TJ. nfe vg)zdxdy} =0 (2.36)
Assume the solution as
Wi x Y= X(JY(y) (2.37)

substitute equation (2.37) into equation (2.36)

5{1TF{D11(62_)2<YJ 2[)12(a A YJ(X 5ZZJ+ Dzz(xaz_rj
29% OX ox? oy oy
+ 4D 8X 8Y 4dp 8X 8Y dxd
66 aX ay 16 8 2 y

—%J%jz[ szYza)z]dxdy}zo (2.38)

If X(x) is defined as priori, equation (2.38) can be rewritten as
17 v o%Y oy Y oy Y’
o E.([ § [1)1 +2 %x D12Y ayz +3 Dzz 8y2 4S4x Des 8y
oY \ o2
+45, DY ( yj+486xD26( ay]( oy de

b
—%I S, mYzcozdy} =0 (2.39)
0

Jox

a 2 2 a 2
where S, =I(a Xj dx S, :I(X %x);
0
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a ) a a
:£de :{é%j
S (%)(aaxx jdx S, =[x ( j (2.40)

The variational method and integration by parts equation (2.39) yields

om0 2 s0(2Y) 022250

-2 gxm@zvjéwi( 253XD22(63YJ 252XD12(6YJ
oy oy’ oy

oY 6Y o%Y
884x D66 4 X 6Y ZSSX D22
(631 J N j oy [ (ay J

oY 0oY
+4S,, D, +2S,, D, d 0
(yj %Dtz jay} -

The fourth order ordinary differential equations and the boundary conditions plong
sides, as shown in equations (2.41)-(2.43), are obtained by setting the coefficients of
oY and(0oY/oy) to zero separately.

d*y a2y ,
SsxDzzd_y4+ (ZSZX D.I.2_4S4XD66)d_y2+( §< Ql_ %xm@ )Y:O (2-41)
d’y dy
Vy = S3>< Dzz_yg + (Szx D.I.2 - 4S4x Des)d_y - Zsax D16Y (2.42)
d?y dy
=S Doy —— dy2 ZSex D%d_y+ S2X D,Y (2.43)

Similarly when Y(y) is defined as priori, the fourth order ordinary differential
equations can be written as equation (2.44) and the boundary conditionsxaidng
and x =a as equations (2.45) and (2.46)

d*X d*X

D, +(2S, D, - 4S4yD66) +(§yg2 S,Mw*)X =0 (2.44)

Sy Ldxt
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d*X dX
Vx = SSyDll e + (%y [)12_484yD66)a_285y Dzex (2-45)
d?X dX
Mx = S3y DllV'i‘ ZSGy D16E+ SZy D12X (246)
b/ A2y \2 b 2
oY oY
where S, = ( jdy S, = (Y de
y v[ ayZ y _([ ayZ
b b aY 2
g1y s,=[(5)
0 0
Sy ) 8%y S (oY
S, = (— dy S, =Y — |dy (2.47)
y _0[ ay ayZ y '! ay

The fourth order ordinary differential equations in equation (2.41) can be
rewritten in a simple form as

4 2
gyf +2n, gyf +nY=0 (2.48)
where n = %x DJ _284XD66
Ssx Dzz
. _ §0,-Smo’
2
S3x D22

The characteristic equation of equation (2.48) is
o +2ng’ +n,=0 (2.49)

whose four roots are

Qi234 = i\/_ n=x v nlz —n, (2-50)

From equation (2.50) it follows that the nature of the solution depends on whether the
expression under the inner square root is positive, zero, or negative. Thus, there are

four distinct cases.
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(1) If n,>0and (¢ -n, )> Q all four roots are imaginary:

-
+
3‘

G, =*i -n

Gy = * -
Y(y& G sin@yy G, cos@yr G, sin(gy)+ C,, cos@y)

e
o
|

N:

(2) If n, <0 andn, <0, two roots are imaginary and the other are real:

G4 = * I"f —-n,—=n
Yy § sin(gy+ G, cos(gy+ G, sinh(qy) + C,, cosh@y)

(3) If n,<0 and @*-n, X Q roots are in complex conjugate pairs:

Q.- :%\/\/n_z_rﬁ i%\./\/n_z‘HM
O34 :_%\/\/n_z_nl iﬁ\/\/n_z‘krh

Y(y¥ [G cos@ yr G, sin@@y)kosh@y)
+ [G, cos@ y)+ G, sin(g y)lsinh(q,y)

(4) If n, <0 and0< n,<n?, all four roots are real:

Cl,zzi\/_ q+\,nf—n2
Q3,4:i\/_ Q—an—nz

¥ )= Gsinh(gy+ G, cosh(@y+ G, sinh(g}) + C,, cosh@y)

In this study considering a cas§ D, < S, mw?, the solution can be written as

follows:



a7

Yy § sin@y} G, cos@yy G, sinh@ y} C,, cosh@,y) (2.51)

where ¢, andq, Modal parameters in y coordinate direction, and

0n2 _qz - 25, 0,-4S,Dg

3

(2.52)
SSx Dzz
2 42 %x rm)z B Slx D11
= 2.53
q 0; s.D,, (2.53)

Similarly, the fourth order ordinary differential equations in equation (2.44)
can be rewritten in a simple form as

d*X d?X
o +m e +mX=0

(2.54)

where m, = %y D12 - 284yD66
SSy D11

_ Sy QZ - Sjyma)z
S;,Dny

I,

The characteristic equation of equation (2.54) is

F+2mp*+m, =0 (2.55)

whose four roots are

Pi23a = i\/_ m= nf —-m, (2-56)

From equation (2.56) it follows that the nature of the solution depends on whether the

expression under the inner square root is positive, zero, or negative. Thus, there are
four distinct cases.
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(1) If m >0 and (nf —m,) >0, all four roots are imaginary:

szii\/m+m
Q,4:ii\/nﬂ_m

X(¢ § sin(px) G, cos(px) G, sin(px)+ G, cos(p,x)

(2) If m <0 andm, <0, two roots are imaginary and the other are real:

po=t i nf-m+m
p3,4:i\/\/ nj_mz_ml

X(% G sin(pXr G, cos(pX+ G, sinh(p X + C,, cosh(p,X)

(3) If m <0 and(nf-m,)<0, roots are in complex conjugate pairs:

pl,zzﬁ'vm_mi%\)\/ﬁ'km
|03,4=—%\/\/E—mli%\/\/ﬁ+ml

X(xF [G cos(gx)} G, sin(px)kosh(px)
+ [G, cos(R X+ G, sin(px)Isinh(p,X)

(4) If m <0 and0< m,<m?, all four roots are real:
pl,zzi\/_ rr1|+‘\lnf_mz
p3’4=i\/— rq_\/nf_mz

X ¥= gsinh( px+ G, cosh(pX+ C, sinh(p X + C,, cosh(p,x)

In this study considering a cas§, D, < S,, m»?, the solution can be written as

follows:
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X0g G sinpx} G, cosfpx} G, sinh(g xi C,, cosh(p;x) (2.57)
where p;andp Modal parameters in thecoordinate direction, and

2 2 _ Z%y D.I.2 _4S4yD66

of-p (2.58)
: S3y Dy;
mw®-S, D
P pi = 3 w (2.59)
SSy Dyy

The iterative calculation is used to evaluate the natural frequency and to

develop a final solution to satisfy the boundary conditions.

(1) The iterative calculation begins by choosing a basis function ir ong
coordinate direction, using the procedures shown in Figure 2.15, and
choosing theX, X )as a basis function.S, through S, is calculated
from X, (x).

(2) In the first iteration, substitute the solution equation (2.51) in the
boundary conditions and usg as a function ofg, , or g, as a function
of g, from the relationship equation (2.52). Then find the eigenvajue

or g,;, the eigenvectorY,(y), and the natural circular frequency from
equation (2.53).

Xo : Choose basis function

J

Wo1 @ Y, : Iteration no.1

g

Wi =X : Iteration no.2

Wi, Y, : Iteration no.3

Wo, = X : Iteration no.4
[ J

Converged solution

Figure 2.15 lteration procedures.
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(3) In the second iteration, substitute the solution equation (2.57) in the
boundary conditions and use, as a function ofp,, or p, as a function
of p, from the relationship equation (2.58f5, through S;, is
calculated from the eigenvectdf(y) obtained from step (2). Then find
the eigenvaluep, or p;, the eigenvectorX,(x), and the natural circular
frequency from equation (2.59).

(4) Compare the natural frequency from step (3) and (2). If the difference
satisfies the specified tolerance level, the last natural circular frequency
can be taken as the final solution. Otherwise continue the iterative

calculation by repeating steps (2) to (4).

2.3.3The Rayleigh-Ritz method

The Rayleigh-Ritz method is an approximate method which can be
considered an extension of Rayleigh’s method. It is based on the premise that a closer
approximation to the exact natural mode can be obtained by superposing a number of
assumed functions than by using a single assumed function, as in Rayleigh’s method.
If the assumed functions are suitably chosen, this method provides not only the
approximate value of the fundamental frequency but also the approximate values of
the higher natural frequencies and the mode shapes. An arbitrary number of functions
can be used, and the number of frequencies that can be obtained is equal to the
number of functions used. A large number of functions, although it involves more
computational work, leads to more accurate results.

By equation (2.36), the Lagrangian equation can be written as

ab 2 2 2 g 2 2
(2] (23
249% oX oX oy ox" |\ oxoy
2 2 2 2 2 2
+ Dz{—a V‘Z’Oj +4D2{—a %o J(_a V"Oj+4D6{a WOJ dxdy
oy oy \ oxoy oxoy

—ETJ nfw W’ dxdy (2.60)

[EEN
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Assume the solution as

wixY=>> Aty (2.61)
i=1 j=1
where A Arbitrary coefficients
f.(X) Functions which satisfy the boundary conditions along the

X coordinate direction
g;(y) Functions which satisfy the boundary conditions along the

y coordinate direction

The arbitrary coefficients are to be determined so that the solution provides
the best possible approximation to the natural frequency. Substituting equation (2.61)
into equation (2.60), the resulting expression is partially differentiated with respect to
each of the arbitrary coefficients. To make the natural frequency stationary, each of

partial derivatives is equal to zero and obtain

i=O (2.62)
oA,
Equation (2.62) yields a set of linear algebraic equations in the arbitrary coefficients
and also contains the undetermined natural circular frequency. This defines an
algebraic eigenvalue problem. The solution of this eigenvalue problem generally
gives n natural circular frequencies amdeigenvectors. When this eigenvector is
substituted into equation (2.61), the best possible approximation solution of the plate

is obtained.

(KA -0*[M]{A}=0 (2.63)
where [K] Stiffness matrix

M] Mass matrix

{A} Avrbitrary coefficients vector,
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m

n a b a b
Km:;ll[ 9{ S ik df g g dy QZ[) fr :d>§o g 9,,,dy
b B ok, g2 L. fdf gg,,dy

a b a b
+2 R Jif dkg gdy B[ ffdf g,0,dy

a b a b
+2 Qf & fdk g, g, de20f { f,0f g,0,dy
0 0 0 $

+4 Qei f. fofa, gj,ydy} (2.64)

m

My :Zzn:[ m’zj‘. f Id>j‘ g gjd)’} (2.65)

k=1 I=1

where f,,9;, The first differentiation with respect to the subscripted
variable
fixvoJiyy The second differentiation with respect to the subscripted

variable

2.3.4 The finite element method
The finite element method is a numerical method used for analyzing
structure and continuum. Usually the problem addressed is too complicated to be
solved satisfactorily by analytical methods. The basic idea of the finite element
method is to view a given domain as an assemblage of simple geometric shapes,
called elements, (Figure 2.16). These elements assemble through interconnection at a
finite number of points on each element called nodes. Within the domain of each
element we assume a simple general solution to the governing equations. The specific
solution for each element becomes a function of unknown solution values at nodes.
The application of the general solution form to all elements results in a finite set of
algebraic equations is solved for unknown nodal values by using numerical

procedures.
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4

7
///////\

Boundary

Figure 2.16 Two-dimensional continuum domain.
(Source: Knight, 1993)

The principle of virtual work states that a virtual change of the internal strain
energy must be offset by an identical change in external work due to the applied

loads,

oU = oV (2.66)
where U Strain energy

\Y, External work

1) Virtual operator

The virtual strain energy is

M, = [{5} {o} d(vol) (2.67)
vol
where {s} Strain vector
{o} Stress vector
vol Volume of element

For linear elastic material, the stresses is related to the strains by

{o}=[cle} (2.68)
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where [C] Stiffness matrix

For small deformations, the strains is related to the displacements by

e}=[o}u} (2.69)
where [9] Derivative operator matrix
{u} Displacement vector

By using an assumed displacement function to define the displacement of every
material point in the element

{u}=[Nd} (2.70)
where [N] Element shape functions or interpolation functions
{d} Nodal displacement

substituting equation (2.70) into (2.69), the strains may be related to the nodal
displacement by

{e}=[Bld} (2.71)

where [B] Strain-displacement matrix, based on the element shape
functions

substituting equation (2.71) into (2.68)
lo}=[cl[Bfd} (2.72)

combining equation (2.72) with equation (2.71), and nothing {lrh\htdoes not vary
over the volume, equation (2.67) can be written as
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sy=1{sd" [[g'[d[8{d}d(vol) (2.73)

vol

Another form of virtual strain energy is when a surface moves against a distributed
resistance, as in a foundation stiffness. This may be written as

oU = [{ow] {o}darea) (2.74)
where {w, } Motion normal to the surface

{o} Stress carried by the surface

areg Area of the distributed resistance

Both {w,} and {c} will usually have only one non-zero component. The point-wise
normal displacement is related to the nodal displacements by

{w }=[N,]Jid} (2.75)
where [N,] Matrix of shape functions for normal motions at the surface
The stress{c} is

{or}=kiw, } (2.76)

where Kk Foundation stiffness in units of force per length per unit
area

substituting equation (2.75) into (2.76) into equation (2.74)

s Y={5d" k[[N][N]{d darea) (2.77)

area;

Next, the external virtual work will be considered. The inertial effects will be studied
first
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j U d(vol) (2.78)

vol

where {F a} Acceleration (DAlembert) force vector

According to Newtors second law

E}: a—z{w} (2.79)

vol pat2

where p Density
t Time

The displacements with the element are related to the nodal displacements by

{w=[N]{d} (2.80)
where [N] Matrix of shape functions

combining equations (2.78), (2.79), and (2.80) and assumingpthatconstant over
the volume

o\ ={oaf p [ININ]Z (et wol @8Y)

vol
The pressure force vector formulation starts with

s\ = [lowl (P darea,) (2.82)

areap

where { P} Applied pressure vector (normally contains only one non-
zero component)

areg Area over which pressure acts
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combining equation (2.80) and (2.82)

s¥=1{6d" [[N]'{B darea,) (2.83)

area,

Unless otherwise noted, pressures are applied to the outside surface of each element
and are normal to curved surfaces, if applicable. Nodal forces applied to the element
can be accounted for by

oV, ={od " {Fre} (2.84)

e

where {F ”"} Nodal forces applied to the element

e

All material properties for stress analysis elements are evaluated at the average
temperature of each element. Finally, equations (2.66), (2.73), (2.77), (2.81), (2.83)
and (2.84) may be combined to give

oA BLH ¥ ¢ evo-lod [[F[de"dvon

vol vol
2

+{5 " kJTNTINI{d darea,) =—{od)” » [INT [N} {c}d(vo)

area; vol

+{5d" [[NT{P dareq,)+ {ad) {F*] (2.85)

area,

Noting that the{d}T vector is a set of arbitrary virtual displacements common in all
of the above terms, the condition required to satisfy equation (2.85) reduces to

([KJ+[k! Didh-{Fr = m Jid}+ 7+ fFoe (2.86)

where [K]= j[ g’ [C|[B]d(vol) Element stiffness

vol

E kj[ N][N]d@area,) Element foundation stiffness matrix

area;

{F}= j[B]T[C]{gt“}d(vol) Element thermal load vector

vol
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[M,]= pJ'[ N [N]d(vol) Element mass matrix
) 82 vol
{d}z?{d} Acceleration vector
{pr)= J'[ N] (P d(area,) Element pressure vector
areap

Equation (2.86) represents the equilibrium equation on a one element basis.

equation of motion for an undamped system, expressed in matrix notation is

[ M1{d}+[K1{d}= {0} (2.87)
where [K] The structure stiffness matrix
For a linear system, free vibrations will be harmonic of the form:

{d}=1{g}, cos) (2.88)
where {4}, Eigenvector representing the mode shape of‘theatural
frequency
The {" natural circular frequency
Thus, equation (2.88) becomes:

(- @M1+[K1) g}, = 0} (2.89)

This equality is satisfied if eithelp}, = {0} or if the determinant off K] —’[M] ) is

The

zero. The first option is the trivial one and, therefore, is not of interest. Thus, the

second one gives the solution:
[Kl-0’[M]|=0 (2.90)

This is an eigenvalue problem which may be solved for up to n valued ahd n

eigenvectors{p},

which satisfy equation (2.89) where n is the number of DOFs.
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Rather than outputting the natural circular frequengiel, the natural frequencies
(f) are output; where:

f= (2.91)

where f, The " natural frequency



