
 

CHAPTER 2 

THEORY 

 

2.1  Fiber-reinforced composite materials 

 A Composite material is a structural material consisted of two or more 

different materials which are mechanically or metallurgically bonded together at a 

macroscopic level.  One constituent is called the reinforcing phase and the one which 

is embedded is called the matrix (Figure 2.1).  The reinforcing phase material could 

be in form of particles, flakes, or fibers.  The matrix phase materials are generally 

continuous.  Composite materials offer several other advantages over conventional 

materials such as steel, aluminum, and other types of metal.  These advantages 

include improved strength, stiffness, fatigue and impact resistance, thermal 

conductivity, and corrosion resistance. 

 

 

 

 

 

 

 

 

 

Figure 2.1  Phases of a composite materials. 

(Source:  Isaac, 1994) 

 

 

 

 

 

Figure 2.2  Classification of composite materials. 

(Source:  Laszlo, 2003) 
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There are many types of composite materials and several methods of 

classifying them.  One method is based on geometry of the reinforcement (Figure 

2.2). 

(1) Particulate composite materials consist of particles immersed in matrices.  

They are usually isotropic because the particles are added randomly. 

Particulate composites have advantages such as improved strength, 

increased operating temperature, oxidation resistance, etc. 

(2) Flake composite materials consist of flat reinforcements of matrices.  

They provide advantages such as high out-of-plane flexural modulus, 

higher strength, and low cost.  However, flakes cannot be oriented easily 

and only a limited number of materials are available for use. 

(3) Fiber-reinforced composite materials consist of matrices reinforced by 

short (discontinuous) or long (continuous) fiber; fibers are generally 

anisotropic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.3  The levels of analysis for a structure made of laminated composite. 

(Source:  Laszlo, 2003) 
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Figure 2.4  Illustrations of possible fiber orientations. 

(Source:  Laszlo, 2003) 

 

Fiber-reinforced composite materials consist of two materials, a 

reinforcement material called fiber and a base material called matrix material.  Fibers 

are the principal load-carrying members, they are kept together by the matrix material 

which acts as a load-transfer medium between fibers, and protects fibers from being 

exposed to the environment.  Fiber reinforced composite materials are often made in 

the form of a thin layer, called lamina or ply.  Within each lamina, the fibers can be 

continuous or discontinuous, woven, unidirectional, bidirectional, or randomly 

distributed.  Stacking a number of such lamina in the direction of lamina thickness 

called laminate, which can form the desired structure such as bars, beams or plates 

(Figure 2.3).  The sequence of various orientations of a fiber reinforced composite 

layer in a laminate is termed the lamination scheme or stacking sequence.  The 

lamination scheme and material properties of individual lamina provide an added 

flexibility to designs to tailor the stiffness and strength of the laminate in order to 

match the structural stiffness and strength requirements.  Depending on the 

arrangements of the fibers, the material may behave differently in different directions.  

Anisotropic material Monoclinic material Orthotropic material 

Transversely isotropic 
material 

Isotropic material 
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According to their behavior, fiber-reinforced composite materials may be 

characterized as anisotropic, monoclinic, orthotropic, transversely isotropic, or 

isotropic materials (Figure 2.4). 

 

       2.1.1  Stress-strain relationships 

In macromechanical analyses of fiber-reinforced composite materials that are 

large with respect to the fiber diameter, the fiber and matrix properties may be 

averaged, and the material may be treated as linear and elastic behavior.  Thus, the 

stress-strain relationships follow Hook’s law for a three-dimensional body in x1-x2-x3 

coordinate system in matrix form is  
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321 ,, σσσ  Normal components of stress parallel to x1, x2, and x3 

direction, respectively 

121323 ,, τττ  Shearing stress components in x1-x2-x3 coordinate system 

321 ,, εεε  Normal strains in x1, x2, and x3 direction, respectively 

121323 ,, γγγ  Shearing strain components in x1-x2-x3 coordinate system 

][ ijC   The element of stiffness in x1-x2-x3 coordinate system 

 

inverting equation (2.1), the general strain-stress relationship for a three-dimensional 

body in x1-x2-x3 coordinate system is 
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where 



21 

 

where ][ ijS   The element of compliance in x1-x2-x3 coordinate system 

 

Due to the symmetry of the stiffness matrix [ ]C , the 36 constants in equation 

(2.1) actually reduce to 21 independent constants.  This also implies that only 21 

independent constants are in the general compliance matrix [ ]S  of equation (2.2).  

Further reduction in the number of independent stiffness (or compliance) parameters 

comes from the so-called material symmetry.  When elastic material parameters at a 

point have the same values for every pair of coordinate systems that are mirror images 

of each other in a certain plane, that plane is called a material plane of symmetry.  The 

difference in material plane of symmetry may be characterized material as 

anisotropic, monoclinic, orthotropic, transversely isotropic, or isotropic materials. 

(1) Anisotropic materials:  when there are no symmetry planes with respect 

to the alignment of the fibers the material, the stiffness matrix can be 

written as equation (2.3) and the compliance matrix can be written as 

equation (2.4)  
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(2) Monoclinic materials:  when there is a symmetry plane with respect to 

the alignment of the fibers, the stiffness matrix can be written as 

equation (2.5) and the compliance matrix can be written as equation 

(2.6) 
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321 ,, EEE  Modulus of elasticity in tension and compression in x1, x2, 

and x3 direction, respectively 

231312 ,, GGG  Modulus of elasticity in shear in the x1-x2, x1-x3, and x2-x3, 

respectively 

ijν  Poisson’s ratio, defined as the ratio of transverse strain in 

the j th direction to the axial strain in the i th direction when 

stressed in the ith direction, and 

 

j
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(3) Orthotropic materials:  when there are three mutually perpendicular 

symmetry planes with respect to the alignment of the fibers, the 

stiffness matrix can be written as equation (2.8) and the compliance 

matrix be written as equation (2.9) 

 

where 
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(4) Transversely isotropic materials:  when there are three mutually 

perpendicular symmetry planes with respect to the alignment of the 

fibers and in one of the planes of symmetry the material is treated as 

isotropic, the stiffness matrix can be written as equation (2.10) and the 

compliance matrix can be written as equation (2.11) 
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(5) Isotropic materials:  when there are no preferred directions and every 

plane is a plane of symmetry, the stiffness matrix can be written as 

equation (2.12) and the compliance matrix can be written as equation 

(2.13) 
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E  Modulus of elasticity in tension and compression of 

isotropic material 

ν   Poisson’s ratio of isotropic material 

 

The stiffness and compliance matrix from equation (2.3)-(2.13) are referred 

to a coordinate system that coincides with the principal material coordinate system.  

The coordinate system used in the problem formulation, in general, does not coincide 

with the principal material coordinate system.  Further, composite laminates have 

several layers; each with different orientation of their material coordinates with 

respect to the laminate coordinates.  Thus, there is a need to establish transformation 

one coordinate system to the corresponding quantities in another coordinate system.   

 

       2.1.2  Transformation of material coefficients 

Due to the laminates have several layers, each with different orientation of 

their material coordinates system; the problem coordinate system does not coincide 

with the material coordinate system (Figure 2.5).  Thus there is a need to establish 

transformation relations along stresses and strains in the material coordinate system of 

each layer to the problem coordinate system.  In general, two coordinate systems are 

used to describe a laminate:  (x, y, z) denotes the problem coordinate system which 

used to write the governing equations of a laminate and (x1, x2, x3) is the material 

coordinate system of a typical layer in the laminate.  The x1x2-plane and the xy-plane 

are parallel; the x3-axis is parallel to the z-axis.  The x1-axis is oriented at an angle of 

+θ counterclockwise from the x-axis (Figure 2.6).  

In x-y-z coordinate system, the stress-strain relationship can be written as 
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Figure 2.5  A laminate made up of lamina with different fiber orientations. 

(Source:  Reddy, 2004) 

 

 

 

 

 

 

 

Figure 2.6  A lamina with material and problem coordinate systems. 

(Source:  Reddy, 2004) 

 

zyx σσσ ,,  Normal components of stress parallel to x, y, and z 

directions, respectively 

xyxzyz τττ ,,  Shearing stress components in x-y-z coordinate system 

zyx εεε ,,  Normal strains in x, y, and z directions, respectively 

xyxzyz γγγ ,,  Shearing strain components in x-y-z coordinate system 

][ ijC   The element of stiffness matrix in x-y-z coordinate system,  
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where sc,   θcos  and θsin , respectively 

 

inverting equation (2.14), can be written strain-stress relationship in x-y-z coordinate 

as 
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where ][ ijS   The element of compliance in x-y-z coordinate system, 

 

 [ ] [ ]ijij CS =
−1

       (2.17) 

 

 In most structural applications fiber-reinforced composite materials are used 

in the form of thin laminates loaded in the plane of the laminate.  Thus, fiber-

reinforced composite materials can be considered to be under a condition of plane 

stress with all stress components in the out-of-plane direction being zero.  This 

assumption then reduces the three-dimensional stress-strain relationship, equation 

(2.14), to two-dimensional stress-strain relationship in x-y-z coordinate system as 

 

  
































=
















xy

y

x

xy

y

x

QQQ

QQQ

QQQ

γ
ε
ε

τ
σ
σ

662616

262212

161211

     (2.18) 

 

 















=









xz

yz

xz

yz

QQ

QQ

γ
γ

τ
τ

5545

4544       (2.19) 

 

where ][ ijQ   The element of plane stress-reduce stiffness,    
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2.2  Fiber-reinforced composite plates 

Plates that are straight, plane, two-dimensional structural components of 

which one dimension, referred to the thickness, is much smaller than the other 

dimensions.   Plates have free, simply supported and clamped boundary conditions, 

including elastic supports and elastic restraints, or, in some case, even point supports.  

The static and dynamic loads carried by plates are predominantly perpendicular to the 
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plate surface.   These external loads are carried by internal bending and twisting 

moments and by transverse shear forces.   

A rigorous elastic analysis would require, for instance, that the plate should 

be considered as a three-dimensional continuum.  Needless to say, such an approach 

is highly impractical since it would create almost insurmountable mathematical 

difficulties.  Even if a solution could be found, the resulting costs would be, in most 

cases, prohibitively high.  Consequently, in order to rationalize the plate analyses, 

plate is distinguished into three categories with inherently different structural behavior 

and, hence, different governing differential equations.  The three plate-types might be 

categorized, to some extent, using their ratio of thickness to governing length (h/L). 

(1) Stiff plates (h/L = < 1/10) are thin plates with flexural rigidity, carrying 

loads two dimensionally, mostly by internal bending and twisting 

moments and by transverse shear, generally in a manner similar to 

beams. 

(2) Moderately thick plates (h/L = 1/10 – 1/5) are in many respects similar to 

stiff plates, with the notable exception that the effects of transverse shear 

forces on the normal stress components are also taken into account. 

(3) Thick plates (h/L > 1/5) have an internal stress condition that resembles 

that of three-dimensional continua. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7  Undeformed and deformed geometries of an edge of a plate 

under Kirchhoff hypothesis. 

(Source:  Reddy, 2004) 
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Fiber-reinforced composite laminates are formed by stacking layers of 

different composite materials and/or fiber orientation.  By construction, fiber-

reinforced composite laminates have their planar dimensions one to two orders of 

magnitude larger than their thickness.  Often fiber-reinforced composite laminates are 

used in applications that require membrane and bending strengths.  Therefore, fiber-

reinforced composite laminates are treated as plate type structure. 

 

       2.2.1  The classical laminated plate theory 

The classical laminated plate theory (CLPT) is an extension of the Kirchhoff 

plate theory to laminated composite plates.  In the classical laminated plate theory it is 

assumed that the Kirchhoff hypothesis holds: 

(1) There is no deformation in the middle plane of the plate.  This plane 

remains neutral during bending. 

(2) Points of the plate lying initially on a normal-to-the middle plane of the 

plate remain on the normal-to-the-middle surface of the plate after 

bending. 

(3) The normal stresses in the direction transverse to the plate can be 

disregarded in comparison to the stress in other directions. 

According to Kirchhoff hypothesis, the displacement field in x-y-z coordinate 

system (Figure 2.7) is assumed to be 
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wvu ,,  Components of displacements in x, y, and z directions, 

respectively 

000 ,, wvu  Components of displacements of middle surface in x, y, and 

z directions, respectively 

z  Distance from middle surface 

 

where 
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from equation (2.22), the strains are therefore given by 
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000 ,, xyyx γεε  Normal strains of middle surface in x, y, and z directions, 

respectively 

xyyx κκκ ,,  Curvatures of middle surface of plate 

 

 Considering all stress over the thickness of the plate (Figure 2.8), the normal 

stress and the shearing stress give the in-plane forces, moments (per unit length), and 

the transverse shear forces (per unit length) acting on a small element as (Figure 2.9) 

 

 

 

 

 

 

 

 

 

 

Figure 2.8  Stresses on plate element. 

(Source:  Timoshenko, 1959) 

 

 

where 
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Figure 2.9  Force and moment resultants on a plate element. 

(Source:  Reddy, 2004) 
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Nx, Ny Normal forces per unit length of sections of a plate 

perpendicular to x and y directions, respectively 

Nxy Shearing force per unit length of section of a plate 

perpendicular to x direction 

where 
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Mx, My Bending moments per unit length of sections of a plate 

perpendicular to x and y directions, respectively 

Mxy Twisting moment per unit length of section of a plate 

perpendicular to x direction 

Qx, Qy Shearing forces parallel to z direction per unit length of 

sections of a plate perpendicular to x and y directions, 

respectively 

h   Thickness of a plate 

 

combining equation (2.18), (2.19) and (2.23), the in-plane forces, moments (per unit 

length) and the transverse shear forces (per unit length) can be written as 
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where ][ ijA   The element of extensional stiffness 

][ ijB   The element of coupling stiffness 

][ ijD   The element of bending stiffness, 
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 The [A], [B], and [D] matrices represent the stiffness of a laminate and 

describe the response of the laminate to in-plane forces and moments.  Examination of 

[A], [B], and [D] matrices shows that the different types of couplings may occur as 

illustrated in Table 2.1.  When the coupling terms shown in the last column are zero, 

there is no coupling.  The coupling terms 22262626 ,,, BBDA  can be illustrated in a 

similar manner by applying a force yN  and a moment yM  in the y-z plane. 

 

Table 2.1  Illustration of the coupling term. 

(Source:  Laszlo, 2003) 

 

Coupling     No coupling Element 

Extension-shear 

 

 

  

A16 

Bending-twist 

 

 

  

D16 

Extension-twist 

 

 

  

B16 

In-plane-out-of-plane 

 

 

 

 

 

 

  

B11 

 

B12 

 

B66 

 

Extension-extension 

 

 

  

A12 

Bending-extension 

 

 

  

D12 
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(1) Extension-shear coupling:  when the elements 2616, AA  are not zero, in-

plane normal forces yx NN ,  cause shear deformation 0xyγ , and a twist 

force xyN  cause elongations in the x and y directions. 

(2) Bending-twist coupling:  when the elements 2616,DD  are not zero, 

bending moments yx MM ,  cause twist of the laminate xyκ , and a twist 

moment xyM  causes curvatures in the x-z and y-z planes. 

(3) Extension-twist and bending-shear coupling:  when the elements 2616,BB  

are not zero, in-plane normal forces yx NN ,  cause twist xyκ , and bending 

moments yx MM ,  results in shear deformation 0xyγ . 

(4) In-plane-out-of-plane coupling:  when the elements Bij are not zero, in-

plane forces xyyx NNN ,,  cause out-of-plane deformations (curvatures) of 

the laminate, and the moments xyyx MMM ,,  cause in-plane deformations 

in the x-y plane. 

(5) Extension-extension coupling:  when the elements A12 is not zero, a 

normal force xN  causes elongation in the y direction 0
yε , and a normal 

force yN  causes elongation in the x direction 0
xε . 

(6) Bending-bending coupling:  when the elements D12 is not zero, a bending 

moment xM  causes curvature of the laminate in the y-z plane yκ , and a 

bending moment yM  causes curvature of the laminate in the x-z plane 

xκ . 

 

       2.2.2  Typical fiber-reinforced composite lamination scheme 

Based on angle, material, and thickness of lamina, the symmetry or 

antisymmetry of a laminate may zero out some elements of the three stiffness 

matrices [A], [B], and [D].  These are important because they may result in reducing 

or zeroing out the coupling of forces and bending moments, normal and shear forces, 

or bending and twisting moments.  Most commonly fiber-reinforced composite 

laminates used forms (Figure 2.10) are: 

(1) Unidirectional laminates:  where the fiber orientation angle is same in all 

lamina, it can be implied that 0][ =B .  

(2) Cross-ply laminates:  where the orientation angles in alternate layer are 

.../90/0/90/0/... .  It can be implied that 02616 == AA , 02616 == BB , 

and 02616 == DD . 
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Figure 2.10  Type of the lamination schemes. 

(Source:  Autar, 2006) 

 

(3) Angle-ply laminates:  where the orientation angles in alternate layer are 

.../////... θθθθ −−  when °°≠ 90,0θ .  It can be implied that 

02616 == AA . 

(4) Symmetric laminates:  where the lamina orientation is symmetrical about 

the center line of the laminated plate; that is for each lamina above the 

mid plane, there is identical lamina in all respects (material, thickness, 

fiber orientation) at an equal distance below the mid plane.  It can be 

implied that 0][ =B . 

(5) Anti symmetric laminates:  where for every lamina of °+θ  orientation at 

distance z, there is an identical °−θ  orientation lamina at distance –z.  It 

can be implied that 02616 == AA , and 02616 == DD . 

(6) Balance laminates:  where for every lamina of °+θ  orientation, there is 

an identical °−θ  orientation lamina, somewhere within the laminate.  It 

can be implied that 02616 == AA . 

 

 

 

Unidirectional laminates Cross-ply laminates Angle-ply laminates 

Symmetric laminates Anti Symmetric laminates Balanced laminates 
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       2.2.3  Boundary conditions 

The conditions along each edge of the plate must be specified.  Boundary 

conditions of plates in bending can be generally classified as one of the following. 

(1) Clamped edge (C):  If the edge of a plate is clamped, the deflection along 

this edge is zero, and the tangent plane to the deflected middle surface 

along this edge coincides with the initial position of the middle plane of 

the plate.  Assuming the clamped edge to be given by ax = , the 

boundary conditions are 

 

0)( ==axw  
 

0=







∂
∂

=axx

w
       (2.28) 

 

(2) Simply supported edge (S):  If the edge of a plate is simply supported, 

the deflection along this edge must be zero.  At the same time this edge 

can rotate freely with respect to the edge line; there are no bending 

moments along this edge.  Assuming the simply supported edge to be 

given by ax = , the boundary conditions are 

 

0)( ==axw  

0)( ==axxM        (2.29) 

 

(3) Free edge (F):  If the edge of a plate is entirely free, it is natural to 

assume that along this edge there are no bending moments and 

supplement shear forces.  Assuming the free edge to be given by ax = , 

the boundary conditions are 

 

0)( ==axxM  

0)( ==axxV        (2.30) 
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Figure 2.11  The CFCS boundary conditions. 

 

The notation for boundary conditions is, for example, CFCS, in which the 

first and third letters mean the boundary conditions along x=0 and x=a respectively, 

and the second and fourth letters mean the boundary conditions along y=0 and y=b 

respectively (Figure 2.11).  

 

2.3  Vibration of fiber-reinforced composite plates 

Vibration is any motion that repeats itself after an interval of time.  A 

vibratory system, in general, includes a means for storing potential energy (spring or 

elasticity), a means for storing kinetic energy (mass or inertia), and a means by which 

energy is gradually lost (damper).  It involves the transfer of its potential energy to 

kinetic energy and kinetic energy to potential energy, alternately.  If the system is 

damped, some energy is dissipated in each cycle of vibration and must be replaced by 

an external source if a state of steady vibration is to be maintained. 

Vibration system models can be divided into two classes, discrete and 

continuous (or distributed).  The systems do depend on system parameters such as 

mass, damping, and elasticity (Figure 2.12). 

(1) Discrete systems where mass, damping, and elasticity are assumed to be 

present only at certain discrete points in the system. 

(2) Continuous systems are systems with varying distributions of mass, 

damping, and elasticity. 
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Figure 2.12  Discrete and continuous systems. 

(Source:  Rao, 1999) 

 

       2.3.1  Continuous systems 

The continuous systems are designated by infinite number of degrees of 

freedom (DOFs).  Displacement of continuous systems is described by a continuous 

function of position and time, and consequently will be governed by partial 

differential equations (PDEs).  The behavior of discrete systems, by contrast, is 

defined by finite number of DOFs and the corresponding equation is ordinary 

differential equations (ODEs).  In general, the equations of motion for continuous 

system are a transcendental equation that yields an infinite number of natural 

frequencies and mode shapes.  The vibration frequencies and their modes are 

conventionally ordered as a sequence ω1, ω2, ω3… with ωn+1 > ωn.  The lowest 

frequency of vibration is denoted ω1.  A mode shape is a specific pattern of vibration 

executed by a mechanical system at a specific frequency and the lowest natural 

frequencies tends to have a long wavelength; the wavelength decreases for higher 

frequency modes.  As illustrated in Figure 2.13, the first and second mode shapes of 

simply supported plate has a single and double sine waves in x coordinate direction, 

respectively. 

 

(b) Continuous systems:  Cantilever beam 

(a) Discrete systems 

Slider-crank-
spring mechanism 

Torsional system Spring-mass system 



40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13  First and second modes of simply supported plate. 

(Source:  Rudolph, 2004) 

 

Most of time, continuous systems are approximated as discrete systems due 

to the fact that the ordinary differential equation is easier to be solved than the partial 

differential equation.  Although the treatment of a system as continuous gives exact 

results, the exact methods available for dealing with continuous systems are limited to 

a narrow selection of problems.  Hence most of the continuous systems are studied by 

treating them as an approximate method or a numerical method.  In this regard, many 

methods exist.  But here, only three methods are addressed for solving the free 

vibration of symmetrically laminated composite rectangular plates with various 

boundary conditions. 

(1) The extended Kantorovich method 

(2) The Rayleigh-Ritz method 

(3) The finite element method  
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       2.3.2  The extended Kantorovich method 

The extended Kantorovich method is an approximate method which used a 

separable function in the form of function X(x) and function Y(y).  A separable 

function is applied to the dynamic system energy equation which yields the partial 

differential equation.  The variation method is used to reduce the partial differential 

equations to ordinary differential equations in the x and y coordinates direction, with a 

constant coefficient.  The iterative calculation is used to evaluate the natural 

frequency from the ordinary differential equation, and to force the final solution 

required to satisfy the boundary conditions.  These iterations are repeated until the 

result converges to a desired degree. 

Hamiton’s principle is a generalization of the principle of virtual 

displacement within the dynamics of a system.  The principle assumes that the system 

under consideration is characterized by two energy functions: the potential energy and 

the kinetic energy. 

 

[ ] 0=−Π Kδ                 (2.31) 

 

where Π  Potential energy 

K  Kinetic energy 

 

The potential energy of the symmetrically laminated composite rectangular plate 

(Figure 2.14) can be written as 

 

 

 

 

 

 

 

 

 

Figure 2.14  The rectangular plate. 
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substitute equation (2.23) into equation (2.32)  
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By the in-plane forces-stress relationship and the moment-stress relationship, the 

potential energy can be written as 
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Based upon the first assumption of the Kirchhoff hypothesis, the 0
xε , 0

yε , and 0
xyγ  are 

zero.  Thus, combining equation (2.25) with equation (2.33) 
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The kinetic energy of the symmetrically laminated composite rectangular plate 

(Figure 2.15) can be written as 
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a b
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0 0

2
02

1
ω       (2.35) 

 

where m   Mass per unit area of plate  

ω   Natural circular frequency 

 

substitute equation (2.34) and (2.35) in the application of Hamiton’s principle as 

equation (2.31) 



43 

 

( )∫ ∫−
a b

dxdywm
0 0

2
02

1
ω =







0
















∂∂
∂















∂
∂

+








∂
∂










∂
∂

+








∂
∂

∫ ∫
a b

yx

w

x

w
D

y

w

x

w
D

x

w
D

0 0

0
2

2
0

2

162
0

2

2
0

2

12

2

2
0

2

11 42
2

1
δ  

dxdy
yx

w
D

yx

w

y

w
D

y

w
D















∂∂
∂

+








∂∂
∂










∂
∂

+








∂
∂

+
2

0
2

66
0

2

2
0

2

26

2

2
0

2

22 44  

  
         (2.36) 
 

 

Assume the solution as 
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substitute equation (2.37) into equation (2.36) 
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If X(x) is defined as priori, equation (2.38) can be rewritten as 
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The variational method and integration by parts equation (2.39) yields 
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The fourth order ordinary differential equations and the boundary conditions along y  

sides, as shown in equations (2.41)-(2.43), are obtained by setting the coefficients of 

Yδ  and )/( yY ∂∂δ  to zero separately.  
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Similarly when Y(y) is defined as priori, the fourth order ordinary differential 

equations can be written as equation (2.44) and the boundary conditions along 0=x  

and ax =  as equations (2.45) and (2.46) 
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The fourth order ordinary differential equations in equation (2.41) can be 

rewritten in a simple form as 
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The characteristic equation of equation (2.48) is 

 

 02 2
2

1
4 =++ nqnq       (2.49) 

 

whose four roots are 

 

 2
2
114,3,2,1 nnnq −±−±=      (2.50) 

 

From equation (2.50) it follows that the nature of the solution depends on whether the 

expression under the inner square root is positive, zero, or negative.  Thus, there are 

four distinct cases. 
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(1) If 01 >n  and 0)( 2
2
1 >− nn , all four roots are imaginary: 

 

2
2
112,1 nnniq −+±=  

 

2
2
114,3 nnniq −−±=  

 
)cos()sin()cos()sin()( 34331211 yqCyqCyqCyqCyY yyyy +++=   

 

(2) If 01 <n  and 02 <n , two roots are imaginary and the other are real: 

 

12
2
12,1 nnniq +−±=  

 

12
2
14,3 nnnq −−±=  

 
)cosh()sinh()cos()sin()( 34331211 yqCyqCyqCyqCyY yyyy +++=   

 

(3) If  01 <n  and 0)( 2
2
1 <− nn , roots are in complex conjugate pairs: 

 

12122,1
22

1
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i
nnq +±−=  

12124,3
22

1
nn

i
nnq +±−−=  

 
 )cosh()]sin()cos([)( 13231 yqyqCyqCyY yy +=  

)sinh()]sin()cos([ 13433 yqyqCyqC yy ++  

  

(4) If 01 <n  and 2
120 nn << , all four roots are real: 

 

2
2
112,1 nnnq −+−±=  

 

2
2
114,3 nnnq −−−±=  

 

)cosh()sinh()cosh()sinh()( 34331211 yqCyqCyqCyqCyY yyyy +++=   

 

In this study considering a case 2
3111 ωmSDS xx < , the solution can be written as 

follows: 
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)cosh()sinh()cos()sin()( 34331211 yqCyqCyqCyqCyY yyyy +++=  (2.51) 

 

where 1q  and 3q  Modal parameters in y coordinate direction, and 
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Similarly, the fourth order ordinary differential equations in equation (2.44) 

can be rewritten in a simple form as 
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The characteristic equation of equation (2.54) is 
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whose four roots are 

 

 2
2
114,3,2,1 mmmp −±−±=      (2.56) 

 

From equation (2.56) it follows that the nature of the solution depends on whether the 

expression under the inner square root is positive, zero, or negative.  Thus, there are 

four distinct cases. 
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(1) If 01 >m  and 0)( 2
2
1 >− mm , all four roots are imaginary: 

 

2
2
112,1 mmmip −+±=  

 

2
2
114,3 mmmip −−±=  

 
)cos()sin()cos()sin()( 34331211 xpCxpCxpCxpCxX xxxx +++=   

 

(2) If 01 <m  and 02 <m , two roots are imaginary and the other are real: 

 

12
2
12,1 mmmip +−±=  

 

12
2
14,3 mmmp −−±=  

 
)cosh()sinh()cos()sin()( 34331211 xpCxpCxpCxpCxX xxxx +++=   

 

(3) If  01 <m  and 0)( 2
2
1 <− mm , roots are in complex conjugate pairs: 
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i
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 )cosh()]sin()cos([)( 13231 xpxpCxpCxX xx +=  

)sinh()]sin()cos([ 13433 xpxpCxpC xx ++  

  

(4) If 01 <m  and 2
120 mm << , all four roots are real: 

 

2
2
112,1 mmmp −+−±=  

 

2
2
114,3 mmmp −−−±=  

 

)cosh()sinh()cosh()sinh()( 34331211 xpCxpCxpCxpCxX xxxx +++=   

 

In this study considering a case 2
3221 ωmSDS yy < , the solution can be written as 

follows: 
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)cosh()sinh()cos()sin()( 34331211 xpCxpCxpCxpCxX xxxx +++=  (2.57) 

 

where  p1 and p2  Modal parameters in the x coordinate direction, and 
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The iterative calculation is used to evaluate the natural frequency and to 

develop a final solution to satisfy the boundary conditions.  

(1) The iterative calculation begins by choosing a basis function in the x or y 

coordinate direction, using the procedures shown in Figure 2.15, and 

choosing the )(0 xX  as a basis function.  xS1  through xS6  is calculated 

from )(0 xX . 

(2) In the first iteration, substitute the solution equation (2.51) in the 

boundary conditions and use 3q  as a function of 1q  , or 1q  as a function 

of 3q  from the relationship equation (2.52).  Then find the eigenvalue 1q  

or 3q , the eigenvector )(1 yY , and the natural circular frequency from 

equation (2.53).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15  Iteration procedures. 

Converged solution 

: Choose basis function 

: Iteration no.1 

: Iteration no.2 

: Iteration no.3 

: Iteration no.4 

W01 = X0 Y1 

X0 

W11 = X1 Y1 

W12 = X1 Y2 

W22 = X2 Y2 
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(3) In the second iteration, substitute the solution equation (2.57) in the 

boundary conditions and use 3p  as a function of 1p , or 1p  as a function 

of 3p  from the relationship equation (2.58); yS1  through yS6  is 

calculated from the eigenvector )(1 yY  obtained from step (2).  Then find 

the eigenvalue 1p  or 3p , the eigenvector )(1 xX , and the natural circular 

frequency from equation (2.59). 

(4) Compare the natural frequency from step (3) and (2).  If the difference 

satisfies the specified tolerance level, the last natural circular frequency 

can be taken as the final solution.  Otherwise continue the iterative 

calculation by repeating steps (2) to (4). 

 

       2.3.3  The Rayleigh-Ritz method 

The Rayleigh-Ritz method is an approximate method which can be 

considered an extension of Rayleigh’s method.  It is based on the premise that a closer 

approximation to the exact natural mode can be obtained by superposing a number of 

assumed functions than by using a single assumed function, as in Rayleigh’s method.  

If the assumed functions are suitably chosen, this method provides not only the 

approximate value of the fundamental frequency but also the approximate values of 

the higher natural frequencies and the mode shapes.  An arbitrary number of functions 

can be used, and the number of frequencies that can be obtained is equal to the 

number of functions used.  A large number of functions, although it involves more 

computational work, leads to more accurate results. 

By equation (2.36), the Lagrangian equation can be written as 
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Assume the solution as 

 

∑∑
= =

=
m

i

n

j
jiij ygxfAyxw

1 1
0 )()(),(      (2.61) 

 

where ijA   Arbitrary coefficients 

)(xfi  Functions which satisfy the boundary conditions along the 

x coordinate direction 

)(yg j  Functions which satisfy the boundary conditions along the 

y coordinate direction 

 

The arbitrary coefficients are to be determined so that the solution provides 

the best possible approximation to the natural frequency.  Substituting equation (2.61) 

into equation (2.60), the resulting expression is partially differentiated with respect to 

each of the arbitrary coefficients.  To make the natural frequency stationary, each of 

partial derivatives is equal to zero and obtain 

 

 0=
∂
∂

ijA

L
        (2.62) 

 

Equation (2.62) yields a set of linear algebraic equations in the arbitrary coefficients 

and also contains the undetermined natural circular frequency.  This defines an 

algebraic eigenvalue problem.  The solution of this eigenvalue problem generally 

gives n natural circular frequencies and n eigenvectors.  When this eigenvector is 

substituted into equation (2.61), the best possible approximation solution of the plate 

is obtained. 

 

[ ]{ } [ ]{ } 02 =− AMAK ω       (2.63) 

 

where [ ]K   Stiffness matrix 

 [ ]M   Mass matrix 

 { }A   Arbitrary coefficients vector, 
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yjxi gf ,, ,  The first differentiation with respect to the subscripted 

variable 

yyjxxi gf ,, ,  The second differentiation with respect to the subscripted 

variable 

 

       2.3.4  The finite element method 

 The finite element method is a numerical method used for analyzing 

structure and continuum.  Usually the problem addressed is too complicated to be 

solved satisfactorily by analytical methods.  The basic idea of the finite element 

method is to view a given domain as an assemblage of simple geometric shapes, 

called elements, (Figure 2.16).  These elements assemble through interconnection at a 

finite number of points on each element called nodes.  Within the domain of each 

element we assume a simple general solution to the governing equations.  The specific 

solution for each element becomes a function of unknown solution values at nodes.   

The application of the general solution form to all elements results in a finite set of 

algebraic equations is solved for unknown nodal values by using numerical 

procedures. 

 

 

where 
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F 

W 

Boundary 

 

 

 

 

 

 

 

 

Figure 2.16  Two-dimensional continuum domain. 

(Source: Knight, 1993) 

 

The principle of virtual work states that a virtual change of the internal strain 

energy must be offset by an identical change in external work due to the applied 

loads, 

 

 VU δδ =        (2.66) 

 

where U  Strain energy 

 V  External work 

 δ   Virtual operator 

 

The virtual strain energy is 

 

 { } { }∫=
vol

T voldU )(1 σδεδ       (2.67) 

 

where { }ε   Strain vector 

 { }σ   Stress vector 

 vol  Volume of element 

 

For linear elastic material, the stresses is related to the strains by 

 

 { } [ ]{ }εσ C=        (2.68) 
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where [ ]C   Stiffness matrix 

 

For small deformations, the strains is related to the displacements by 

 

  { } [ ]{ }u∂=ε        (2.69) 

 

where [ ]∂   Derivative operator matrix 

  { }u   Displacement vector 

 

By using an assumed displacement function to define the displacement of every 

material point in the element 

 

  { } [ ]{ }dNu =        (2.70) 

 

where [ ]N   Element shape functions or interpolation functions 

  { }d   Nodal displacement 

 

substituting equation (2.70) into (2.69), the strains may be related to the nodal 

displacement by 

 

  { } [ ][ ]{ }dN∂=ε  

 { } [ ]{ }dB=ε        (2.71) 

 

][ B  Strain-displacement matrix, based on the element shape 

functions 

 

substituting equation (2.71) into (2.68) 

 

  { } [ ][ ]{ }dBC=σ        (2.72) 

 

combining equation (2.72) with equation (2.71), and nothing that { }d  does not vary 

over the volume, equation (2.67) can be written as 

 

where 
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  { } [ ] [ ][ ]{ }∫=
vol

TT volddBCBdU )(1 δδ      (2.73) 

 

Another form of virtual strain energy is when a surface moves against a distributed 

resistance, as in a foundation stiffness.  This may be written as 

 

  { } { }∫=
farea

f
T

n areadwU )(2 σδδ      (2.74) 

 

where { }nw   Motion normal to the surface 

  { }σ   Stress carried by the surface 

  areaf  Area of the distributed resistance 

 

Both { }nw  and { }σ  will usually have only one non-zero component.  The point-wise 

normal displacement is related to the nodal displacements by 

 

  { } [ ]{ }dNw nn =        (2.75) 

 

][ nN  Matrix of shape functions for normal motions at the surface 

 

The stress, { }σ  is 

 

  { } { }nwk=σ        (2.76) 

 

k  Foundation stiffness in units of force per length per unit 

area 

 

substituting equation (2.75) into (2.76) into equation (2.74) 

 

  { } [ ] [ ]{ } )(2 fn

T

area

n
T areaddNNkdU

f

∫= δδ     (2.77) 

 

Next, the external virtual work will be considered.  The inertial effects will be studied 

first 

where 

where 
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  { } { }
)(1 vold

vol

F
wV

vol

a
T

∫−= δδ      (2.78) 

 

where { }aF   Acceleration (D�Alembert) force vector 

 

According to Newton�s second law 

 

  
{ } { }w

tvol

F a

2

2

∂
∂

= ρ        (2.79) 

 

where ρ   Density 

  t  Time 

 

The displacements with the element are related to the nodal displacements by 

 

  { } [ ]{ }dNw =        (2.80) 

 

where [ ]N   Matrix of shape functions 

 

combining equations (2.78), (2.79), and (2.80) and assuming that ρ  is constant over 

the volume 

 

  { } [ ] [ ] { }∫ ∂
∂

−=
vol

TT voldd
t

NNdV )(
2

2

1 ρδδ     (2.81) 

 

The pressure force vector formulation starts with 

 

  { } { }∫=
parea

p
T

n areadPwV )(2 δδ      (2.82) 

 

}{ P  Applied pressure vector (normally contains only one non-

zero component) 

  areap  Area over which pressure acts 

 

where 
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combining equation (2.80) and (2.82) 

 

  { } [ ] { }∫=
parea

p
T

n
T areadPNdV )(2 δδ      (2.83) 

 

Unless otherwise noted, pressures are applied to the outside surface of each element 

and are normal to curved surfaces, if applicable.  Nodal forces applied to the element 

can be accounted for by 

 

  { } { }nd
e

T FdV δδ =3        (2.84) 

 

where { }nd
eF   Nodal forces applied to the element 

 

All material properties for stress analysis elements are evaluated at the average 

temperature of each element.  Finally, equations (2.66), (2.73), (2.77), (2.81), (2.83) 

and (2.84) may be combined to give 

 

  { } [ ] [ ][ ]{ } { } [ ] [ ]{ } )()( voldeCBdvolddBCBd
vol

thTT

vol

TT

∫∫ − δδ  

  { } [ ] [ ]{ } { } [ ] [ ] { } )()(
2

2

voldd
t

NNdareaddNNkd
vol

TT
f

area

n
T

n
T

f

∫∫ ∂
∂

−=+ ρδδ  

   { } [ ] { } { } { }nd
e

T
p

T

area

n
T FdareadPNd

p

δδ ++ ∫ )(    (2.85) 

 

Noting that the { }Td  vector is a set of arbitrary virtual displacements common in all 

of the above terms, the condition required to satisfy equation (2.85) reduces to 

 

  [ ] [ ]( ){ } { } [ ]{ } { } { }nd
e

pr
ee

th
e

f
ee FFdMFdKK ++=−+ &&    (2.86) 

 

where [ ] [ ] [ ][ ]∫=
vol

T
e voldBCBK )(   Element stiffness 

  [ ] [ ] [ ] )( fn

T

area

n
f

e areadNNkK
f

∫=  Element foundation stiffness matrix  

  { } [ ] [ ]{ }∫=
vol

thTth
e voldCBF )(ε  Element thermal load vector 



58 

 

  [ ] [ ] [ ] )(voldNNM
T

vol

e ∫= ρ   Element mass matrix 

  { } { }d
t

d
2

2

∂
∂

=&&    Acceleration vector 

  { } [ ] { } )( p

T

area

n
pr

e areadPNF
p

∫=  Element pressure vector 

 

Equation (2.86) represents the equilibrium equation on a one element basis.  The 

equation of motion for an undamped system, expressed in matrix notation is 

 

  { } { } { }0][][ =+ dKdM &&       (2.87) 

 

where ][ K   The structure stiffness matrix 

 

For a linear system, free vibrations will be harmonic of the form: 

 

  { } { } )cos( td ii ωφ=       (2.88) 

 

i}{ φ  Eigenvector representing the mode shape of the ith natural 

frequency 

iω  The ith natural circular frequency 

 

Thus, equation (2.88) becomes: 

 

 ( ){ } { }0][][2 =+− ii KM φω       (2.89) 

 

This equality is satisfied if either { } { }0=iφ  or if the determinant of ( )][][ 2 MK ω−  is 

zero.  The first option is the trivial one and, therefore, is not of interest.  Thus, the 

second one gives the solution: 

 

 0][][ 2 =− MK ω       (2.90) 

 

This is an eigenvalue problem which may be solved for up to n values of 2ω  and n 

eigenvectors { }iφ  which satisfy equation (2.89) where n is the number of DOFs.  

where 
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Rather than outputting the natural circular frequencies )(ω , the natural frequencies 

)( f  are output; where: 

 

 
π

ω
2

i
if =         (2.91) 

 

where if   The ith natural frequency 

 

 


