CHAPTER 3
MATERIALSAND METHODS

3.1 Research method

To achieve the research objective, the research method is divided into four

parts

(1) Study the extended Kantorovich method to evaluate the mode shapes and
the natural frequencies of symmetrically laminated composite
rectangular plates with various boundary conditions.

(2) Study the Rayleigh-Ritz method to evaluate the mode shapes and the
natural frequencies of symmetrically laminated composite rectangular
plates with various boundary conditions.

(3) Study the finite element method to evaluate the mode shapes and the
natural frequencies of symmetrically laminated composite rectangular
plates with various boundary conditions.

(4) Comparison the mode shapes and the natural frequencies obtained by the
extended Kantorovich method and the Rayleigh-Ritz method with the
finite element method.

The numerical examples of some lamination schemes (Table 3.1) are

explained in each study to gain understanding.

3.2 Study the extended Kantorovich method

The extended Kantorovich method is applied to the first natural frequency of
[0/90/90/0] laminated composite square plates with CCCC boundary conditions
(Figure 3.1). The extended Kantorovich method can be divided into three steps:

(1) Bending stiffness calculation for [0/90/90/0]

(2) Assume a basis function

(3) The extended Kantorovich calculation
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Table 3.1 Schematic of numerical examples of each study

Study Numerical method
No. Detall Chapter 3 Method
1 Lamination | | | 0 EKM
schemes
Cross-ply Unidirectional 0 Unidirectional 90 [0/90/90/0]
Boundary 15 CCcCC
conditions
Number of 1
frequency
2 Lamination | 1 | EKM+RRM
schemes
Angle-ply 45 Unidirectional 48 [45/-45/-45/45]
Boundary 15 CCcCC
conditions
Number of 5
frequency
3 Lamination | | FEM
schemes
Cross-ply [0/90/90/0]
Boundary CCCC CCccC
conditions
Number of 100 100
frequency

3.2.1 Bending stiffness calculation for [0/90/90/0]
The bending stiffness calculation of plate concerns with the material
properties and the fiber orientations. Combination equation (2.7) with equation (2.9),
the compliance matrix can be written as
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inverting equation (3.1) the elements of the stiffness can be written as

C, =138800 GPa
C,=2704 GPa
C,=9013  GPa
Ce= 7100  GPa

(3.2)

combining equation (3.2), (2.15) and (2.20), the elements of the plane stress-reduce

stiffness matrices ofl = 0° and 90° can be written as

138800 2704 O

[Q]°=| 2704 9013 O GPa
0 0 7100
Yy
b
2
/
» g

nolo

(3.3)

Figure 3.1 [0/90/90/0] square plates with CCCC boundary conditions.
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901000 2704 O

[Q]*=| 2704 138 0 GPa (3.4)
0 0 7100

substituting equation (3.3) and (3.4) into equation (2.27), the elements of the bending
stiffness matrices of [0/90/90/0], can be written as

138800 2704 O
2704 9013 O
0 0 7100

/2 - (h/4)°®

[D]=

o] 2% 16 27010 0
i w 276 186 13810 0
0 0  710x10°

90% 160 270x10° 0
276 10 138<10° 0
0 0 710x10°

L (0= (h/4y

138 160 270<10 0

3 3
+(_h/4)_(_h/2) 276 16 901x10° 0

3

0 0 710x10°
10210 0225 O
[D]=| 0225 2103 O |h® Gr;a (3.5)

0 0 0591

3.2.2 Assume a basis function
A basis function in the extended Kantorovich method is neither required to
satisfy the geometric nor the force boundary conditions because the iterative
procedure will force the solution to satisfy all boundary conditions eventually. By
Table 3.2, the transverse vibration of a beam is used as a basis function. The first

iteration chooses the first natural frequency of the clamped-clamped beam as a basis
function, equation (3.6).
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Table 3.2 Common boundary conditions for the transverse vibration of a beam.
(Source: Rao, 1999)

End conditions Frequency Equation Mode shape (Normal function) Value of 3,
of beam

W, (x) = C,[sin ,X

Simply-Simply sing,l =0 pl=x
Bl =27
Bl =37
Bl =4
W, (x) = C,[sin B,x+sinh 3, X
Free-Free cosp,| - coshg,l =1 Bl = 4730041
+a,(cosp,x +coshg x)]
where Bl = 7853205
_ [ sing 1 -sinhg|
\ _(coshé’nl —cosﬂnlj fil = 10895608
B = 1437165
W, (x)=C,[sinh 8, ,x—sin g,x
Clamped-Clamped  cosg,| - coshg,| =1 Bl = 4730041
+a, (coshp,x—cosf,X)]
where Bl = 7853205
_ [ sinhg I -sing |
4 _(cosﬂnl —coshﬂnlj Sl = 1095608
B = 14137165
W, (x) = C,[sin B,x—sinh g, X
Clamped-Free cosg,l -coshg, | =-1 B = 1875104
—a, (cosp,x—coshp, X)]
where pl = 4694091
_ [ sing l+sinhg|
\ _(cosﬂnl +cosh/3nIJ Pil = 1854757
B = 10995541
. W, (x) = C,[sin B,x—sinh g, X
Clamped-Simply tang,| — tanhg, | =0 Bl = 3926602
+a, (coshp,x—cosp,X)]
where Sl = 1068583
_ [ sing 1 =sinhg|
n _(cosﬂnl —coshﬂnlj psl = 1®10176
Bl = 13351768
/ W, (x) = C,[sin B,x+ «, sinh 3, x
Simply-Free tang,| — tanhg, | =0 Bl = 3926602
where S = 7068583
[ sing,l
“n =l sinhgl Bl = 1210176

Bl = 1351768
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3.2.3 The extended Kantorovich calculation

X, = cos@.730) — cosh@.730x) (3.6)

In the extended Kantorovich calculation procedures (Figure 3.2), starting
with substitute equation (3.6) into equation (2.40) to calcuigtehroughS,,

al2
0°X 02X
= dx = 254699 < dx=-6260
s (5] s 1[5

-al2

al2 al2 X 2
= [ X?dx= 0509 Su= | (—j dx = 6260 (3.7)
-al2 -al2 X

apply the clamped edges boundary conditions from equation (248).,,,, =0 and

(a_vvj =0, into the solution equation (2.51), yields
ay y=tb/2

Y, =C,, cos@,y) + C,, cosh@,y)

Y., =Csy co{ le +C, cosl{q;j 0 (3.8)
oY, qu I—(qu

=-C,,g,sin +C sin 0 3.9
ay L 2yq1 ( 2 4yq2 2 ( )

by equation (3.8) and (3.9), the solution equation can be written as equation (3.10)
and the eigenvalue problem can be written as equation (3.11)

Y, =C,, cos@,y) +C,, —coshqsy) (3.10)
q sin)—(q"’j
? 2
d; tan){qz"’j+qltar(qzlj 0 (3.11)

Substitute equation (3.7) and (3.5) into equation (2.52) t@uses a function ofy,
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! Iteration no.1

i Define Woy(x,y) = Xo(X) Ya(y)

|

! Assume X(x) solution

dv +'[2SZXDH—4SAXDEB a2 #( S,Dp — S, Mo’
oy S0, o i S.D,

| !

|
: | General solution |

' VL

i | Boundary conditions |

| '

| Nontrivial solution |

| y

i | Natural frequency: @, |~ ---1

| '

! | Y(y) solution |

Ordinary differential equations; X

d*X {25, D48, Dy fd?X i S, Dyi-S,,me’
yahs YBRE
dx S;,Dy dx S;, Dy

| Iteration no.2
Define W1i(x,y) = X1(X) Y1(y)

| General solution |

A\

| Boundary conditions |

\

| Nontrivial solution |

\

=== | Natural frequency: o, |

\

| Xi(x) solution |

| ; !

! End Iteration no.3
| Define Wiz(x,y) = X1(X) Y2(y)
S R PSPPI J

Figure 3.2 The extended Kantorovich calculation procedures.
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Qs = \/qf ~ 2D = 45:Des _ 164804+ 2 (3.12)

E;Zs’x[)ZZ

combining equation (3.12) with (3.11) to find the eigenvalue of modal parameter
By Figure 3.3, the first eigenvalue of modal paramefes 44155, substitutingg;
into equation (3.12) obtaineg, = 5998Bubstituteq, and g, into equation (3.10)
can be written the solution equation as

Y, = co0s@41y5+) 0059toshb9981ly) (3.13)

In the second iteration, the solution equation (3.13) from the first iteration is
substituted into equation (2.47) to calculaigt®ough &,

b/2 o2y 2 b/2 o2y
S, = j (_Zj dy= 227116 S, = j (Y 2j<:|y=—5.46309
-b/2 -b/2 oy
b/2 b/2 aY 2
%y: .[dey: 0452145 S4y = (—] dy = 546309 (3.14)
-b/2 -b/2

apply the clamped edges boundary conditions from equation (248),.(,3+ andO

(a—wj =0, into the solution equation (2.58), yields
x=tal2

oy

200

100

2F68 12 14

-100

Figure 3.3 The eigenvalue of modal paramegei@n the first iteration.
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X, =C,, cos(p,X) + C,, cosh(p,x)

Xy|.,, =Ca co{ Zl'j-f- C.y cosl{ 23j 0 (3.15)
X, plj ’_( Dsj

=-C sin +C sin 0 3.16
6)( 2 2X pl ( 2 4x p2 2 ( )

by equation (3.15) and (3.16), the solution equation can be written as equation (3.17)
and the eigenvalue problem can be written as equation (3.18)

plsm( plj
X, =C,, cos(p,X) + C,, ————cosh(p,x) (3.17)

P, sinl—(%j
pstan){ %j pltar( le 0 (3.18)

Substitute equation (3.14) and (3.5) into equation (2.49) tqoyses a function ofp,

2S. D, —4S, D
p3=\/pf— Zy 12 Y78 ] 333223+ p? (3.19)
S.D
3y 11

combining equation (3.19) with equation (3.18) to find the eigenvalue of modal
parametep;. By Figure 3.4, the first eigenvalue of modal paramegies 465436,
substitutingp, into equation (3.19) obtained, =  499953ubstitutep, and p, into

equation (3.17) can be written the solution equation as
X, = €0s@65436 } 0111941cosh@9995%) (3.20)

In the third iteration, the solution equation (3.20) from the second iteration is
substituted into equation (2.40) to calcul&g throughS,,

al2
0°X 92X
= dx = 246299 = dx=- 606841
s (%] s 1[5 )
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al2 al2
S, = J'dex= 0491969 S, = I(a@xj dx= 602841  (3.21)
-al2 -al2 X

apply the clamped edges boundary conditions from equation (248),,,, =0 and

(a—wj =0, into the solution equation (2.51), yields
ay y=tb/2

Y, = C2y COSQly H C4y COSthy)

Y|, = czyco{qzlj+c4y cosr(q;j 0 (3.22)
oY. q q
Ez y = —Czyqlsm( zlj +C,,0, smr{ 23j 0 (3.23)

by equation (3.22) and (3.23), the solution equation can be written as equation (3.24)
and the eigenvalue problem can be written as equation (3.25)

(o} sm(qzlj
Y, =C,, cos@y) + C,, ————*-cosh@y) (3.24)
d, sinr{%j
2
(o8 tank(qzstrql tar'(célj 0 (3.25)

Substitute equation (3.21) and (3.5) into equation (2.52) to e & function of g

200
150
100

» J
2 4 6 8 12 14
-50

-100
-150

Figure 3.4 The eigenvalue of modal paramgtermn the second iteration.
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Qs = \/qf _ 255D, ~45,Dg; _ \ 164148+ ¢} (3.26)

S3XD22

combining equation (3.26) with (3.25) to find the eigenvalue of modal parameter
By Figure 3.5, the first eigenvalue of modal paramejer 44165, substitutingg;
into equation (3.26) obtained amg=  5993%ubstituteq, and g, into equation
(3.24) can be written the solution equation as

Y,= cos@41§5+) 005980sh§9933y) (3.27)

In the fourth iteration, the solution equation (3.27) from the third iteration is
substituted into equation (2.47) to calculaigt®ough &,

Sly:J- 2

-b/2

bi2 / A2n \2 b/2 2
(a Yj dy= 227172 S, = j (Yngdy=—5.46496

2
-b/2

b/2 b/2 oY 2
S, = jYZdyz 0452272 S, = (—j dy = 546496  (3.28)
-b/2 -b/2

apply the clamped edges boundary conditions from equation (248),.(,3+ andO

(a—wj =0, into the solution equation (2.57), yields
x=tal2

oy

100

2ﬁ 6 8 12 14

-100

Figure 3.5 The eigenvalue of modal paramegein the third iteration.
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X, =C,, cosp,x tC,, cosh(p,x)

X2|a/2 :CZX CO{ 21'j+C4x COS}{_Zgj =0 (329)
0X, - plj - { pgj

=-C sin +C sin =0 3.30
6)( 2 2X pl ( 2 4x p2 2 ( )

by equation (3.29) and (3.30), the solution equation can be written as equation (3.31)
and the eigenvalue problem can be written as equation (3.32)

o} sin(plj
X, =C,, cos(p,x) + C,, ————=-cosh(p,X) (3.31)

P, sim{g‘?’j
p, tan ){%) + P, tar(%j =0 (3.32)

Substitute equation (3.28) and (3.5) into equation (2.58) tqoyses a function ofp,

2S. D,,—4S, D
psz\/pf— 2 ;2 5 Y786 — | 333243¢ p? (3.33)

3y P11

combining equation (3.33) with (3.32) to find the eigenvalue of modal parapieter
By Figure 3.6, the first eigenvalue of modal paramgier 465436, substitutingp,
into equation (3.33) obtaineg, =  499955Substitute p, and p, into equation

(3.31) can be written the solution equation as
X,=  cos@65486r) 0111940sh@9995%) (3.34)

The fourth iteration is the end iteration, due to the modal parameter xn the
coordinate direction of the second and fourth iteration being identified, where
p, = 4654 and p, = 4999 The plate mode shape is the product of the eigenvector
in the x andy coordinate directions from the fourth and third iteration, respectively,

W(X,y) = Xz(x) Yz(Y) .
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The natural frequency is evaluated by substitutipgg,, S, and S,

obtained from the third iteration into equation (2.53)

2.2
(1 \/ (0%5)(SaD2) + SuPus _ 15015 Hy

2 S, /m

or by substitutingp,, p;,S,, andsS;, obtained from the fourth iteration, into equation

(2.59)

oL [PP)Ss P +80n _yos
272' SSym
200
150
100

0 J
2 4 6 8 12 14
-50

-100
-150

Figure 3.6 The eigenvalue of modal parametein the fourth iteration.

Yy
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Figure 3.7 [45/-45/-45/45] square plates with CCCC boundary conditions.
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3.3 Study the Rayleigh-Ritz method

For numerical calculation, the Rayleigh-Ritz method is applied to the first
nine natural frequencies of [45/-45/-45/45] laminated composite square plates with
CCCC boundary conditions (Figure 3.7). The Rayleigh-Ritz method can divide into
three steps:

(1) Bending stiffness calculation for [45/-45/-45/45]

(2) Assume a basis function

(3) The Rayleigh-Ritz calculation

3.3.1 Bending stiffness calculation for [45/-45/-45/45]
The bending stiffness calculation for [45/-45/-45/45] is similar to [0/90/90/0],
except substitution the fiber orientation. Combining equation (3.2), (2.15) and (2.20),
the elements of the plane stress-reduce stiffness matriags 46° and -45 can be
written as

45400 31200 32400
[Q]®=| 31200 45400 32400 GPa (3.35)
32400 32400 35600

45400 31200 — 32400
[QI'**=| 31200 45400 — 32400 GPa (3.36)
~ 32400- 32400 35600

substituting equation (3.35) and (3.36) into equation (2.27), the elements of the
bending stiffness matrices of [45/-45/-45/45], can be written as

54 16 312 16 324x10°
312 18 454 16 324x10°
324 10 324 16 356x10°

[D]

_ (h/2° - (h/4)®
- 3

454 16 312 160 - 324x10°

(h/4)°-(0)° 0
7 = 312 16 454 160 - 324x10"
3 0

- 324 16 - 324 1¢ 356x10"
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454 10 312 160 - 324x10°
312 19 454 160 - 324x10%
- 32416 - 324 1% 356x10°

L (0= (h/4y
3

54 10 312 16 324x10%
312 18 454 16° 324x10%
324 16 324 16° 356x10Y°

| Eni4P—(hr2y?
3

3783 2600 2028
[D]=| 2600 3783 2028|h?
2028 2028 2967

GPa
m3

(3.37)

3.3.2 Assume a basis function
The Rayleigh-Ritz method considers a linear combination of the several basis
functions satisfied the boundary conditions. The basis functions are obtained from the
first nine natural frequencies of [0/90/90/0] laminated composite square plates with
CCCC boundary conditions, using the extended Kantorovich method. By equation

(2.52) the solution is assume as

WX, Y) = A (0 9:(Y) + AL () 9, (Y) + Agsfa(X) 95 (Y) + A (X)9,(Y)
+ Ass 5 (X) 95 (Y) + A F6 () 96 (¥) + Ar, F,(X) 9, (V)
+ Aggfa(X) 9g (V) + Age o (X) 9o () (3.38)

where f, X €) cos@65431) 011120sh@999%)
f, x €) cos@47X0+) 007080shb714K)
f, X €) cos@2781) 0036€0oshE7451)
f, X E) sin(782%74) 0025%inh@0307x)
fs X &) sin(775994) 0018%inh@5231X)
fs X (=) sin(766524) 00123inh02664x)
f, x €) cos{09828-) 000580sh{11240x)
fg X €£) cos(094X1) 000440sh{14918x)
f

o, X £) cos(0B985) 000320sh{20659x) (3.39)
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cos@41§4+) 005980shB9933y)
sin(77337-) 0016%inh@7212y)
cos{093%7-) 0004@osh(16426y)
cos@99%2+) 0010&osh88061y)
sin(74937+) 0005Ginh108403y)
cos(078§3) 000160sh{33183y)
cos@74%24) 000180sh{21018y)
sin(726394) 0001Ginh136058y)
cos{0637-) 000040sh156487y)

3.3.3 The Rayleigh-Ritz calculation

(3.40)

In the Rayleigh-Ritz calculation, starting with substitute equation (3.38) and

(3.37) into equation (2.55), the elements of the stiffness matrix can be obtained as

Table 3.3. Similarly, substituting equation (3.38) into equation (2.56), the elements of

the mass matrix can be obtained as Table 3.4.

Combining the elements of the stiffness matrix and mass matrix into

equation (2

54)

[KJ{A}-@*M]{A}=0

where {A}

Ay
Ao
Ags
A
=1 A
Ase
A
Ay
Ay

(3.41)

(3.42)

Equation (3.41) leads to an algebraic eigenvalue problem, solving this eigenvalue

problem obtains nine circular natural frequencies as the following



Table 3.3 The elements of the stiffness matrix

Ki

1 2 3 4 5 6 7 8 9
1.40677x10 0 282614 0 -1.45804x16 0 388268 0 368227

0 5.77011x1% 0 1.27742x10 0 4.14230x16 0 1.47569x10 0

282614 0 1.67394x10 0 -3.72410x10 0 171154 0 2.99419x16
0 1.27742x19 0 5.38678x10 0 889441 0 3.80643x16 0

j -1.45804x16 0 -3.72410x10 0 1.46541x10 0 -3.54664x10 0 -9.72897x10
0 4.14230x10 0 889441 0 3.39847x10 0 8.90015x16 0

388268 0 171154 0 -3.54664x16 0 1.64780x10 0 1.55105x10
0 1.47569x19 0 3.80643x1H 0 8.90015x1H 0 3.29645x10 0

368227 0 2.99419x16 0 -9.72897x10 0 1.55105x10 0 6.44739x10

9/



Table 3.4 The elements of the mass matrix
i
M;
1 2 3 4 5 6 7 8 9
1 0.22250 0 -0.00004 0 0 0 -0.00003 0 0.00013
2 0 0.22389 0 0 0 0 0 -0.00005 0
3 -0.00004 0 0.21628 0 0 0 0.00012 0 -0.00003
4 0 0 0 0.21111 0 -0.00004 0 0 0
j 5 0 0 0 0 0.22848 0 0 0 0
6 0 0 0 -0.00004 0 0.23236 0 0 0
7 -0.00003 0 0.00012 0 0 0 0.21540 0 -0.00001
8 0 -0.00005 0 0 0 0 0 0.227619 0
9 0.00013 0 -0.00003 0 0 0 -0.00001 0 0.23417

LL
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w? = 55656<10° w? = 88665<10’
w? = 1799% 10 w? = 1085%10°
w? = 28105<10’ w; = 18767%10°
w? = 441710’ w?= 2851%1C°
w? = 7610210 (3.43)

substituting each circular natural frequency into equation (3.41) to obtain eigenvector.
For example, substitutingy? = 55656<10° into equation (3.41), the eigenvector can
be obtained as the following

100000
124174107
000829

— 33765X%107"

{A}=1 012054 (3.44)

— 23898107
000121
50190k10®
001232

substituting equation (3.44) into equation (3.38), the approximation solution of each
plate mode shape is obtained.

To obtain the natural frequency, the circular natural frequency is substituted
into the following equation

1 | 556560<10°

f,=—
Yoon m

= 93867 Hz

3.4 Study thefinite element method

For numerical calculation, the finite element method is applied to the natural
frequencies of [0/90/90/0] laminated composite square plates with CCCC boundary
conditions (Figure 3.1). The finite element method typically involves three steps
(Table 3.5):
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(1) Pre processing steps
(2) Processing steps
(3) Post processing steps

3.4.1 Pre processing step

The model generation is conducted in this processor, involving material
definition, creation of a model, and, finally, meshing. The important tasks within this
processor are:

(1) Specify the type of element

(2) Define the real constants

(3) Define Material properties

(4) Create the model geometry

(5) Generate the mesh

3.4.2 Processing step
This processor is used for obtaining the solution for the finite element model
that is generated within the Pre processing step. The important tasks within this
processor are:
(1) Define analysis type and analysis options
(2) Specify boundary conditions
(3) Obtain solution

3.4.3 Post processing step
In this step, the results over the entire or a portion of the model are reviewed.
This includes the plotting of contours, vector displays, deformed shapes, and listings
of the results.
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Table 3.5 The finite element steps.

Step

Detall

Description

Pre processing

Type of element:
Element
Geometry
Node
Degree of freedom
Real constants:
Number of layers
Lamination scheme
Layer thickness (m)
Material properties:
Young’s modulus (GPa)
Shear modulus (GPa)

Poisson’s ratio

Shell with 100 layers
Quadrilateral and Triangle
8

6

4
[0/90/90/0]
0.0025

E, =138, =8.96, E= 8.96
Gy =7.10, G, = 2.82, G, = 7.10
Vay = 0.30,v,, = 0.59,v,, = 0.30

Density (kg/r) 1600
Model geometry:

Width (m) 1

Length (m) 1
Number of element (Figure 3.8): 64x64

Processing Analysis type: Modal

Option for analysis:

Method Subspace

Number of modes to extract 100

Number of modes to expand | 100
Boundary conditions: CCcC
Solve the system: Current LS

Post processing

View natural frequencies:

View mode shapes:
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Figure 3.8 Mesh element by ANSYS.

Table 3.6 The convergence of the number of element of the first natural frequency of
[0/90/90/0] laminated composite square plates.

Boundary Number of element

conditions 2x2 4x4 8x8 16x16 32x32 64x64
CCcCcC 89.087 100.588 101.086 101.504 101.558 101.558
CCCS 86.286 95.144 96.431 96.872 96.927 96.927
CCSS 67.547 71.164 71.726 71.924 71.949 71.949
CFCC 78.816 87.636 89.978 90.526 90.605 90.605
CFCF 78.110 87.030 88.901 89.349 89.405 89.405
CFCS 78.664 87.383 89.556 90.062 90.132 90.132
CFSC 57.985 62.094 63.124 63.374 63.404 63.404
CFSF 57.651 60.838 61.570 61.748 61.771 61.771
CFSS 57.754 61.583 62.498 62.718 62.742 62.742
CSCs 83.499 91.839 93.552 94.004 94.059 94.059
CSSS 63.207 67.047 67.846 68.048 68.072 68.072
FSCS 24.904 25.671 25.971 26.047 26.063 26.063
FSFS 17.935 17.965 17.981 17.986 17.986 17.986
SSFS 19.866 20.534 20.702 20.744 20.752 20.752

SSSS 45.264 47.607 48.044 48.133 48.144 48.144
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By Table 3.6, the number of element is 64x64 elements. In general, a large
number of elements provide a better approximation of the solution. Therefore, it is
important that the mesh is adequately fine or coarse in the appropriate regions. An
analysis with an initial mesh is performed first and then reanalyzed by using twice as
many elements. The two solutions are compared. If the results are close to each
other, the initial mesh configuration is considered to be adequate. If there are
substantial differences between the two, the analysis should continue with a more-
refined mesh and a subsequent comparison until the convergence is established.
Table 3.5 shows the convergence of the number of element of the first natural

frequency of [0/90/90/0] laminated composite square plates.

3.5 Comparison of the mode shapes and the natural frequencies

The mode shapes and the natural frequencies are compared with the known
solutions and the finite element method. The comparison is divided into 2 steps

(1) The comparison of the extended Kantorovich method with the known

solutions such as Sakath al (1996), Rajalinghanet at (1997) and
Reddy (2004).

(2) The comparison of the application of the extended Kantorovich method

with the finite element method.

The first step is used to verify the accuracy of the extended Kantorovich
method, if the difference satisfies the specified tolerance level, the extended
Kantorovich method can be applied to the interesting work. After that the extended
Kantorovich method is compared with the finite element method to verify the
accuracy of the interesting work.

As a matter of the fact that the exact mode shapes of plates have straight
nodal lines and curved nodal lines. The nodal line is the zero lateral displacement
which is defined by the dashed line. For straight nodal lines (Figure 3.9), the notation
of mode shape is (i, j) which is a number 8fand | sine waves in the andy
coordinate direction, respectively. For curved nodal lines, it is complicated to classify
the number of sine waves in tlkeor y coordinates direction. Therefore their mode

shapes are conventionally ordered as 1, 2, 3,... .
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Figure 3.9 The straight nodal lines of square plates with CCCC boundary conditions.



