
 

 

CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1  Results 

The mode shapes and the natural frequencies of some lamination schemes of 

each study (Table 4.1) are evaluated to achieve the research objective.  The results can 

be divided into three parts 

(1) The mode shapes and the natural frequencies of straight nodal lines of 

symmetrically laminated composite rectangular plates with various 

boundary conditions. 

(2) The mode shapes and the natural frequencies of curved nodal lines of 

symmetrically laminated composite rectangular plates with various 

boundary conditions. 

(3) The higher mode shapes and the higher natural frequencies of straight 

nodal lines of symmetrically laminated composite rectangular plates with 

CCCC boundary conditions. 

Before considering the above results (Topic 4.1.2-4.1.4), which are applied 

by the extended Kantorovich method, it is necessary to consider the accuracy of the 

extended Kantorovich method.  To establish the accuracy of the extended 

Kantorovich method, the results of the validation of the frequency parameters of 

isotropic, orthotropic and laminated composite rectangular plates are presented in 

Topic 4.1.1.  

 

       4.1.1  Results of the comparison of the extended Kantorovich method with the 

known solutions 

 The frequency parameters of isotropic, orthotropic, and laminated composite 

rectangular plates with various boundary conditions are evaluated by the extended 

Kantorovich method, and the results obtained are compared with the corresponding 

results by Sakata et al (1996), Rajalingham et at (1997) and Reddy (2004), as 

illustrated in Tables 4.2-4.5.  As expected for the special case, the bending stiffness of 

the composite plate are considered as DDDDD =+== )( 66122211  for isotropic 
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rectangular plates, and 2211 DD = , 116612 5.0)( DDD =+  for orthotropic rectangular 

plates.  For [0/90/90/0] laminated composite rectangular plates, the mechanical 

properties are 212 5.0 EG =  and 25.012 =ν .  By Table 4.3, the lateral displacement is 

divided into 4 categories as SS, AS, SA and AA, the first and second character 

presents property of the mode about the x and y coordinate direction respectively.  

The character “S” presents the lateral displacement symmetry with the coordinate 

direction and “A” presents the lateral displacement antisymmetry with the coordinate 

direction.  The results of frequency parameters demonstrated that 

(1) The maximum difference percentage of the frequency parameters of 

isotropic rectangular plates with various boundary conditions (Table 4.2) 

obtained by the extended Kantorovich method and Sakata et al (1996) is 

0.230%. 

(2) The maximum difference percentage of the first hundred frequency 

parameters of isotropic square plates with CCCC boundary conditions 

(Table 4.3) obtained by the extended Kantorovich method and 

Rajalingham et al (1997) is 0.002%. 

(3) The maximum difference percentage of the frequency parameters of 

orthotropic rectangular plates with various boundary conditions (Table 

4.4) obtained by the extended Kantorovich method and Sakata et al 

(1996) is 0.042%. 

(4) The maximum difference percentage of [0/90/90/0] laminated composite 

rectangular plates with SSSS boundary conditions (Table 4.5) obtained 

by the extended Kantorovich method and Reddy (2004) is zero. 

 

       4.1.2  Results of the mode shapes and the natural frequencies of straight nodal 

lines 

The first nine mode shapes and the first nine natural frequencies of 

[0/90/90/0] laminated composite square plates with various boundary conditions 

obtained by the extended Kantorovich method and the finite element method are 

illustrated in Table 4.6 and Figure 4.1, respectively.  The graph of Figure 4.1 is lines 

on 2 axes, the left axe is the natural frequencies and the right axe is the difference 

percentage of the extended Kantorovich method from the finite element method.  The 

results of mode shapes and the natural frequencies demonstrate that 
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(1) The first nine mode shapes of [0/90/90/0] laminated composite square 

plates with various boundary conditions (Table 4.6) obtained by the 

extended Kantorovich method are similar to the finite element method.  

The nodal lines, the contour represent the zero lateral displacement, are 

parallel to the x and y coordinate direction. 

(2) The difference percentage of the first nine natural frequencies of 

[0/90/90/0] laminated composite square plates with various boundary 

conditions (Figure 4.1) obtained by the extended Kantorovich method 

and the finite element method tend to have direct proportional with 

natural frequency-order.  The minimum difference percentage occurs at 

the (1, 1) mode shape is approximately 0.128%.  The maximum 

difference percentage occurs at the (3, 3) mode shape is approximately 

6.244%. 

Additional the first nine mode shapes and the first nine natural frequencies of 

[0/0/0/0] and [90/90/90/90] laminated composite rectangular plates with various 

boundary conditions are illustrated in Appendix B. 

 

       4.1.3  Results of the mode shapes and the natural frequencies of curved nodal 

lines 

The first five mode shapes and the first five natural frequencies of [45/-45/-

45/45] laminated composite square plates with various boundary conditions obtained 

by the combination of the extended Kantorovich method and the Rayleigh-Ritz 

method and the finite element method are illustrated in Table 4.7 and Figure 4.2, 

respectively.  The results of mode shapes and the natural frequencies demonstrate that 

(1) The first five mode shapes of [45/-45/-45/45] laminated composite 

square plates with various boundary conditions (Table 4.7) obtained by 

the combination of the extended Kantorovich method and the Rayleigh-

Ritz method are similar to the finite element method.  The nodal lines are 

parallel and perpendicular to the fiber orientation. 

(2) The difference percentage of the first five natural frequencies of [45/-

45/-45/45] laminated composite square plates with various boundary 

conditions (Figure 4.2) obtained by the combination of the extended 

Kantorovich method and the Rayleigh-Ritz method and the finite 
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element method tend to have direct proportional with natural frequency-

order.  The minimum difference percentage occurs at the first mode 

shape is approximately 1.431%.  The maximum difference percentage 

occurs at the fifth mode shape is approximately 11.727%. 

Additional the first five mode shapes and the first five natural frequencies of 

[45/45/45/45] laminated composite square plates with various boundary conditions 

are illustrated in Appendix C. 

 

       4.1.4  Results of the higher mode shapes and the higher natural frequencies of 

straight nodal lines 

The first hundred mode shapes and the first hundred natural frequencies of 

[0/90/90/0] laminated composite square plates with CCCC boundary conditions by the 

extended Kantorovich method and the finite element method are illustrated in Table 

4.8 and Figure 4.3, respectively.  The results of the mode shapes and the natural 

frequencies demonstrate that 

(1) The first hundred mode shapes of [0/90/90/0] laminated composite 

square plates with CCCC boundary conditions (Table 4.8) obtained by 

the extended Kantorovich method are similar to the finite element 

method.  The nodal lines are parallel to the x and y coordinate direction. 

(2) The difference percentage of the first hundred natural frequencies of 

[0/90/90/0] laminated composite square plates with CCCC boundary 

conditions (Figure 4.3) obtained by the extended Kantorovich method 

and the finite element method tend to have direct proportional with 

natural frequency-order.  The minimum difference percentage occurs at 

the (1, 2) mode shape is approximately 0.488%.  The maximum 

difference percentage occurs at the (10, 1) mode shape is approximately 

13.002%. 

Additional the first hundred mode shapes and the first hundred natural 

frequencies of [0/90/90/0] laminated composite rectangular plates with CCCC 

boundary conditions are illustrated in Appendix D. 



 

Table 4.1  Schematic of numerical results of each study.  

 

Study  Numerical results 

No. Detail  Chapter 4 Appendix 

1 

 

 

 

 

Lamination schemes 

 

 

 

 

  

 

 

 

      [0/90/90/0] 

 

 

 

 

      [0/0/0/0] 

 

 

 

 

       [90/90/90/90] 

 Boundary conditions        15  CCCC, CCCS, CCSS, CFCC, CFCF, CFCS, CFSC, CFSF, CFSS,  CSCS, CSSS, FSCS, 

FSFS, SSFS, SSSS 

 Number of frequency  9 
    

2 Lamination schemes 

 

 

 

 

  

 

 

 

      [45/-45/-45/45] 

 

 

 

 

      [45/45/45/45] 

 

 Boundary conditions        15  CCCC, CCCS, CCSS, CFCC, CFCF, CFCS, CFSC, CFSF, CFSS,  CSCS, CSSS, FSCS, 

FSFS, SSFS, SSSS 

 Number of frequency  5 
    

Cross-ply Unidirectional 0° Unidirectional 90° 

Angle-ply 45° Unidirectional 45° 
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Table 4.1  Schematic of numerical results of each study (Continued).  

 

Study  Numerical results 

No. Detail  Chapter 4 Appendix 

3 

 

 

 

 

Lamination schemes 

 

 

 

 

  

 

 

 

      [0/90/90/0] 

 

 

 

 

   

 

 

 

 

 

 Boundary conditions       CCCC 

 

 CCCC 

 Number of frequency      100  100 
    

 

 

 

 

 

 

 

Cross-ply 
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Table 4.2  The first nine frequency parameters Dmab /ω  of isotropic rectangular 

plates. 

 

(1)  Boundary conditions CCCC 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 98.324 98.324  35.999 35.999  24.581 24.581 

(1, 2) 255.937 255.939  73.405 73.405  31.833 31.833 

(1, 3) 492.994 492.996  131.902 131.902  44.779 44.779 

(2, 1) 127.333 127.333  73.405 73.405  63.985 63.985 

(2, 2) 284.324 284.325  108.236 108.236  71.081 71.081 

(2, 3) 521.416 521.414  165.023 165.023  83.281 83.281 

(3, 1) 179.115 179.115  131.902 131.902  123.250 123.249 

(3, 2) 333.125 333.125  165.023 165.023  130.353 130.353 

(3, 3) 569.511 569.510  220.059 220.059  142.377 142.377 

 

(2)  Boundary conditions CCCS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 73.405 73.405  31.833 31.833  24.144 24.144 

(1, 2) 210.526 210.526  63.340 63.340  30.253 30.253 

(1, 3) 427.358 427.357  116.367 116.366  41.756 41.756 

(2, 1) 108.236 108.236  71.081 71.081  63.742 63.742 

(2, 2) 242.668 242.667  100.803 100.803  70.145 70.143 

(2, 3) 458.533 458.531  151.906 151.906  81.484 81.296 

(3, 1) 165.023 165.023  130.353 130.353  123.080 123.081 

(3, 2) 296.368 296.366  159.486 159.487  129.704 129.693 

(3, 3) 510.650 510.647  209.335 209.336  140.996 140.937 

 

(3)  Boundary conditions CCSS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 71.081 71.081  27.059 27.059  17.770 17.770 

(1, 2) 209.374 209.373  60.667 60.667  25.201 25.201 

(1, 3) 426.598 426.596  114.632 114.633  37.977 37.977 

(2, 1) 100.803 100.803  60.667 60.667  52.343 52.343 

(2, 2) 238.347 238.347  92.844 92.844  59.600 59.587 

(2, 3) 455.604 455.578  145.938 145.937  71.944 71.886 

(3, 1) 151.906 151.906  114.632 114.633  106.649 106.649 

(3, 2) 287.772 287.542  145.938 145.937  113.901 113.894 

(3, 3) 504.478 504.312  198.151 198.116  126.119 126.078 
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Table 4.2  The first nine frequency parameters Dmab /ω  of isotropic rectangular 

plates (Continued). 

 

(4)  Boundary conditions CSCS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 54.743 54.743  28.951 28.951  23.816 23.816 

(1, 2) 170.347 170.346  54.743 54.743  28.951 28.951 

(1, 3) 366.818 366.817  102.216 102.216  39.089 39.089 

(2, 1) 94.585 94.585  69.327 69.327  63.535 63.535 

(2, 2) 206.698 206.697  94.585 94.585  69.327 69.327 

(2, 3) 401.081 401.079  140.205 140.205  79.525 79.525 

(3, 1) 154.777 154.776  129.096 129.096  122.929 122.930 

(3, 2) 265.196 265.196  154.777 154.776  129.096 129.096 

(3, 3) 457.440 457.439  199.811 199.811  139.623 139.622 

 

(5)  Boundary conditions CSSS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 51.674 51.674  23.646 23.646  17.332 17.332 

(1, 2) 168.959 168.959  51.674 51.674  23.646 23.646 

(1, 3) 365.951 365.950  100.270 100.270  35.051 35.051 

(2, 1) 86.134 86.134  58.646 58.646  52.098 52.098 

(2, 2) 201.726 201.725  86.134 86.134  58.646 58.646 

(2, 3) 397.770 397.768  133.791 133.791  69.913 69.913 

(3, 1) 140.845 140.846  113.227 113.228  106.479 106.479 

(3, 2) 255.470 255.469  140.845 140.846  113.227 113.228 

(3, 3) 450.483 450.482  188.114 188.113  124.633 124.633 

 

(6)  Boundary conditions SSSS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 49.348 49.348  19.739 19.739  12.337 12.337 

(1, 2) 167.784 167.783  49.348 49.348  19.739 19.739 

(1, 3) 365.177 365.175  98.696 98.696  32.076 32.076 

(2, 1) 78.957 78.957  49.348 49.348  41.946 41.946 

(2, 2) 197.393 197.392  78.957 78.957  49.348 49.348 

(2, 3) 394.786 394.784  128.305 128.305  61.685 61.685 

(3, 1) 128.305 128.305  98.696 98.696  91.294 91.294 

(3, 2) 246.741 246.740  128.305 128.305  98.696 98.696 

(3, 3) 444.134 444.132  177.653 177.653  111.033 111.033 



 

Table 4.3  The first hundred frequency parameters Dmab /ω  of isotropic square plates with CCCC boundary conditions. 

 

SS  SA  AS  AA 
i 

EKM Rajalingham (1997)  EKM Rajalingham (1997)  EKM Rajalingham (1997)  EKM Rajalingham (1997) 

1 35.999 35.998  73.405 73.405  73.405 73.405  108.236 108.235 

2 131.902 131.902  165.023 165.023  165.023 165.023  242.670 242.667 

3 131.902 131.902  210.526 210.526  210.526 210.526  242.670 242.667 

4 220.059 220.058  296.366 296.366  296.366 296.366  371.376 371.375 

5 309.036 309.037  340.590 340.590  340.590 340.590  458.533 458.531 

6 309.036 309.037  427.359 427.356  427.359 427.356  458.533 458.531 

7 393.357 393.355  467.291 467.290  467.291 467.290  583.745 583.748 

8 393.357 393.355  510.645 510.647  510.645 510.647  583.745 583.748 

9 562.177 562.178  596.363 596.366  596.363 596.366  754.034 754.035 

10 565.452 565.452  677.744 677.745  677.744 677.745  754.034 754.035 

11 565.452 565.452  720.483 720.486  720.483 720.486  792.461 792.462 

12 648.021 648.020  723.306 723.308  723.306 723.308  877.329 877.329 

13 648.021 648.020  805.348 805.350  805.348 805.350  877.329 877.329 

14 813.746 813.747  927.708 927.706  927.708 927.706  1083.300 1083.301 

15 813.746 813.747  931.500 931.503  931.500 931.503  1083.300 1083.301 

16 900.913 900.917  969.996 969.994  969.996 969.994  1128.750 1128.751 

17 900.913 900.917  1054.160 1054.163  1054.160 1054.163  1128.750 1128.751 

18 982.562 982.561  1098.270 1098.275  1098.270 1098.275  1250.910 1250.915 

19 982.562 982.561  1179.610 1179.610  1179.610 1179.610  1250.910 1250.915 

20 1062.230 1062.226  1217.160 1217.163  1217.160 1217.163  1371.470 1371.470 

21 1146.340 1146.348  1259.110 1259.105  1259.110 1259.105  1455.010 1455.006 

22 1146.340 1146.348  1342.710 1342.710  1342.710 1342.710  1455.010 1455.006 

23 1392.390 1392.385  1546.110 1546.110  1546.110 1546.110  1740.980 1740.982 

24 1392.390 1392.385  1587.780 1587.780  1587.780 1587.780  1740.980 1740.982 

25 1720.190 1720.193  1914.540 1914.550  1914.540 1914.550  2108.400 2108.395 
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Table 4.4  The first nine frequency parameters 22/ Dmabω  of orthotropic 

rectangular plates. 

 

(1)  Boundary conditions CCCC 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 95.391 95.391  33.917 33.917  23.848 23.848 

(1, 2) 251.966 251.965  69.687 69.687  29.626 29.625 

(1, 3) 488.703 488.701  127.613 127.613  41.396 41.396 

(2, 1) 118.502 118.502  69.687 69.687  62.991 62.991 

(2, 2) 269.987 269.987  98.440 98.440  67.497 67.497 

(2, 3) 505.072 505.073  151.291 151.290  76.419 76.419 

(3, 1) 165.584 165.583  127.613 127.613  122.175 122.175 

(3, 2) 305.675 305.677  151.291 151.290  126.269 126.268 

(3, 3) 535.625 535.624  197.291 197.290  133.906 133.906 

 

(2)  Boundary conditions CCCS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 69.687 69.687  29.626 29.625  23.447 23.447 

(1, 2) 205.994 205.994  59.270 59.270  28.057 28.057 

(1, 3) 422.631 422.632  111.711 111.711  38.276 38.276 

(2, 1) 98.440 98.440  67.497 67.497  62.794 62.794 

(2, 2) 226.799 226.800  90.838 90.838  66.672 66.672 

(2, 3) 440.758 440.757  137.574 137.574  74.533 74.532 

(3, 1) 151.291 151.290  126.269 126.268  122.045 122.045 

(3, 2) 267.125 267.127  145.991 145.990  125.677 125.730 

(3, 3) 474.395 474.396  186.338 186.337  132.680 132.654 

 

(3)  Boundary conditions CCSS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 67.497 67.497  24.610 24.610  16.874 16.874 

(1, 2) 205.044 205.045  56.700 56.700  22.710 22.710 

(1, 3) 422.039 422.040  110.188 110.189  34.394 34.394 

(2, 1) 90.838 90.838  56.700 56.700  51.261 51.261 

(2, 2) 222.923 222.923  82.584 82.584  55.731 55.731 

(2, 3) 438.331 438.325  131.767 131.766  64.637 64.637 

(3, 1) 137.574 137.574  110.188 110.189  105.510 105.510 

(3, 2) 258.547 258.547  131.767 131.766  109.581 109.581 

(3, 3) 468.869 468.802  174.753 174.753  117.216 117.201 
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Table 4.4  The first nine frequency parameters 22/ Dmabω  of orthotropic 

rectangular plates (Continued). 

 

(4)  Boundary conditions CSCS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 50.349 50.349  26.809 26.809  23.173 23.172 

(1, 2) 165.148 165.147  50.349 50.349  26.809 26.809 

(1, 3) 361.599 361.598  97.171 97.171  35.547 35.547 

(2, 1) 84.652 84.652  65.989 65.989  62.635 62.635 

(2, 2) 189.301 189.300  84.652 84.652  65.989 65.989 

(2, 3) 381.751 381.750  125.380 125.380  72.902 72.901 

(3, 1) 141.681 141.682  125.236 125.263  121.934 121.933 

(3, 2) 234.630 234.629  141.681 141.682  125.263 125.263 

(3, 3) 418.843 418.842  176.791 176.791  131.549 131.548 

 

(5)  Boundary conditions CSSS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 47.325 47.325  21.163 21.163  16.497 16.497 

(1, 2) 163.988 163.988  47.325 47.325  21.163 21.163 

(1, 3) 360.921 360.919  95.437 95.437  31.345 31.345 

(2, 1) 75.783 75.783  54.927 54.927  51.073 51.073 

(2, 2) 184.718 184.717  75.783 75.783  54.927 54.927 

(2, 3) 378.989 378.987  119.030 119.030  62.774 62.774 

(3, 1) 127.025 127.026  109.055 109.055  105.383 105.384 

(3, 2) 224.931 224.930  127.025 127.026  109.055 109.055 

(3, 3) 412.583 412.581  164.600 164.600  115.967 115.966 

 

(6)  Boundary conditions SSSS 
b = 0.5a  b = a  b = 2a 

(i, j) 
EKM Sakata (1996)  EKM Sakata (1996)  EKM Sakata (1996) 

(1, 1) 45.228 45.228  17.095 17.095  11.307 11.307 

(1, 2) 163.073 163.073  45.228 45.228  17.095 17.095 

(1, 3) 360.344 360.342  94.150 94.150  28.455 28.455 

(2, 1) 68.379 68.379  45.228 45.228  40.768 40.768 

(2, 2) 180.914 180.913  68.379 68.379  45.228 45.228 

(2, 3) 376.602 376.600  113.822 113.822  54.114 54.114 

(3, 1) 113.822 113.822  94.150 94.150  90.086 90.085 

(3, 2) 216.458 216.457  113.822 113.822  94.150 94.150 

(3, 3) 407.056 407.054  153.852 153.852  101.763 101.763 
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Table 4.5  The first frequency parameters 22
2 /)/( Dmab πω  of [0/90/90/0] 

laminated composite rectangular plates with SSSS boundary conditions. 

 
E1 = 10E2  E1 = 20E2  E1 = 40E2 

a/b 
EKM Reddy (2004)  EKM Reddy (2004)  EKM Reddy (2004) 

0.5 8.515 8.515  9.355 9.355  9.917 9.917 

1.0 2.519 2.519  2.638 2.638  2.721 2.721 

1.5 1.531 1.531  1.536 1.536  1.539 1.539 

2.0 1.246 1.246  1.229 1.229  1.216 1.216 

2.5 1.138 1.138  1.119 1.119  1.105 1.105 

3.0 1.087 1.087  1.071 1.071  1.059 1.059 

 



 

Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates. 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CCCC 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CCCS 

FEM 

    

 

97 



 

Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CSCS 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CFCC 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CFCS 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CFCF 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CCSS 

FEM 

    

 

102 



 

Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CSSS 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CFSC 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CFSS 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

CFSF 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

SSSS 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

SSFS 

FEM 
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Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM 

(2, 3) (3, 1) (3, 2) (3, 3) 

 

FSCS 

FEM 

    

 

109 



 

Table 4.6  The first nine mode shapes of [0/90/90/0] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) 

FEM 

     

EKM (2, 3) (3, 1) (3, 2) (3, 3)  
FSFS 

FEM      
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The natural frequencies of [0/90/90/0] square plate with CCCC
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Figure 4.1  The first nine natural frequencies of [0/90/90/0] laminated composite 

square plates. 
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The natural frequencies of [0/90/90/0] square plate with CFCS
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Figure 4.1  The first nine natural frequencies of [0/90/90/0] laminated composite 

square plates (Continued). 
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The natural frequencies of [0/90/90/0] square plate with CFSC
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Figure 4.1  The first nine natural frequencies of [0/90/90/0] laminated composite 

square plates (Continued). 
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The natural frequencies of [0/90/90/0] square plate with SSFS
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Figure 4.1  The first nine natural frequencies of [0/90/90/0] laminated composite 

square plates (Continued). 

 

 

 

 

 

 

 

 



 

Table 4.7  The first five mode shapes of [45/-45/-45/45] laminated composite square plates. 

 

BCs Method Plate mode 

RRM 

1st 2nd 3rd 4th 5th 

CCCC 

FEM 

     

RRM 

1st 2nd 3rd 4th 5th 

CCCS 

FEM 
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Table 4.7  The first five mode shapes of [45/-45/-45/45] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

RRM 

1st 2nd 3rd 4th 5th 

CSCS 

FEM 

     

RRM 

1st 2nd 3rd 4th 5th 

CFCC 

FEM 
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Table 4.7  The first five mode shapes of [45/-45/-45/45] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

RRM 

1st 2nd 3rd 4th 5th 

CFCS 

FEM 

     

RRM 

1st 2nd 3rd 4th 5th 

CFCF 

FEM 
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Table 4.7  The first five mode shapes of [45/-45/-45/45] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

RRM 

1st 2nd 3rd 4th 5th 

CCSS 

FEM 

     

RRM 

1st 2nd 3rd 4th 5th 

CSSS 

FEM 
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Table 4.7  The first five mode shapes of [45/-45/-45/45] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

RRM 

1st 2nd 3rd 4th 5th 

CFSC 

FEM 

     

RRM 

1st 2nd 3rd 4th 5th 

CFSS 

FEM 
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Table 4.7  The first five mode shapes of [45/-45/-45/45] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

RRM 

1st 2nd 3rd 4th 5th 

CFSF 

FEM 

     

RRM 

1st 2nd 3rd 4th 5th 

SSSS 

FEM 
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Table 4.7  The first five mode shapes of [45/-45/-45/45] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

RRM 

1st 2nd 3rd 4th 5th 

SSFS 

FEM 

     

RRM 

1st 2nd 3rd 4th 5th 

FSCS 

FEM 
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Table 4.7  The first five mode shapes of [45/-45/-45/45] laminated composite square plates (Continued). 

 

BCs Method Plate mode 

RRM 

1st 2nd 3rd 4th 5th 

FSFS 

FEM 
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Figure 4.2  The first five natural frequencies of [45/-45/-45/45] laminated composite 

square plates. 
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The natural frequencies of [45/-45/-45/45] square plate with CFCS
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Figure 4.2  The first five natural frequencies of [45/-45/-45/45] laminated composite 

square plates (Continued). 
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The natural frequencies of [45/-45/-45/45] square plate with CFSC
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Figure 4.2  The first five natural frequencies of [45/-45/-45/45] laminated composite 

square plates (Continued). 
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The natural frequencies of [45/-45/-45/45] square plate with SSFS
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Figure 4.2  The first five natural frequencies of [45/-45/-45/45] laminated composite 

square plates (Continued). 

 

 

 

 

 

 

 

 



 

Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate. 

 

BCs Method Plate mode 

EKM 

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) 

FEM 

     

EKM 

(1, 6) (1, 7) (1, 8) (1, 9) (1, 10) 
CCCC 

FEM 
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Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate (Continued). 

 

BCs Method Plate mode 

EKM 

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) 

FEM 

     

EKM 

(2, 6) (2, 7) (2, 8) (2, 9) (2, 10) 
CCCC 

FEM 
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Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate (Continued). 

 

BCs Method Plate mode 

EKM 

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) 

FEM 

     

EKM 

(3, 6) (3, 7) (3, 8) (3, 9) (3, 10) 
CCCC 

FEM 
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Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate (Continued). 

 

BCs Method Plate mode 

EKM 

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) 

FEM 

     

EKM 

(4, 6) (4, 7) (4, 8) (4, 9) (4, 10) 
CCCC 

FEM 
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Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate (Continued). 

 

BCs Method Plate mode 

EKM 

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) 

FEM 

     

EKM 

(5, 6) (5, 7) (5, 8) (5, 9) (5, 10) 
CCCC 

FEM 
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Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate (Continued). 

 

BCs Method Plate mode 

EKM 

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) 

FEM 

     

EKM 

(6, 6) (6, 7) (6, 8) (6, 9) (6, 10) 
CCCC 

FEM 
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Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate (Continued). 

 

BCs Method Plate mode 

EKM 

(7, 1) (7, 2) (7, 3) (7, 4) (7, 5) 

FEM 

     

EKM 

(7, 6) (7, 7) (7, 8) (7, 9) (7, 10) 
CCCC 

FEM 
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Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate (Continued). 

 

BCs Method Plate mode 

EKM 

(8, 1) (8, 2) (8, 3) (8, 4) (8, 5) 

FEM 

     

EKM 

(8, 6) (8, 7) (8, 8) (8, 9) (8, 10) 
CCCC 

FEM 
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Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate (Continued). 

 

BCs Method Plate mode 

EKM 

(9, 1) 

 
 
 

(9, 2) (9, 3) (9, 4) (9, 5) 

FEM 

     

EKM 

(9, 6) (9, 7) (9, 8) (9, 9) (9, 10) 
CCCC 

FEM 
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Table 4.8  The first hundred mode shapes of [0/90/90/0] laminated composite square plate (Continued). 

 

BCs Method Plate mode 

EKM 

(10, 1) (10, 2) (10, 3) (10, 4) (10, 5) 

FEM 

     

EKM 

(10, 6) (10, 7) (10, 8) (10, 9) (10, 10) 
CCCC 

FEM 

     

136 



137 

The natural frequencies of [0/90/90/0] square plate with CCCC
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Figure 4.3  The first hundred natural frequencies of [0/90/90/0] laminated composite 

square plate. 
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The natural frequencies of [0/90/90/0] square plate with CCCC
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Figure 4.3  The first hundred natural frequencies of [0/90/90/0] laminated composite 

square plate (Continued). 
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The natural frequencies of [0/90/90/0] square plate with CCCC
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Figure 4.3  The first hundred natural frequencies of [0/90/90/0] laminated composite 

square plate (Continued). 
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4.2  Discussion 

       4.2.1  Dicussion of the comparison of the extended Kantorovich method with the 

known solutions 

The frequency parameters obtained by the extended Kantorovich method and 

the known solutions are good agreement due to the fact that  

(1) All methods derived governing equation of plates from the reliable 

principle:  Newton’s second law for Sakata et al (1996) and Rajalingham 

et al (1997), the principle of virtual displacements for Reddy (2004) and 

the extended Kantorovich method. 

(2) The comparison range based on the identical assumptions:  the classical 

Kirchhoff thin plate theory. 

 

       4.2.2  Discussion of the mode shapes and the natural frequencies of straight nodal 

lines 

The mode shapes and the natural frequencies obtained by the extended 

Kantorovich method and the finite element method are good agreement due to the fact 

that  

(1) Both methods derived governing equation of plates from the reliable 

principle:  the principle of virtual displacements for the extended 

Kantorovich method and the finite element method. 

(2) The comparison range based on the identical assumptions:  the classical 

Kirchhoff thin plate theory. 

The finite element method solves the problem with relative ease in a very 

short time however it provides no closed-form solution that permits analytical study 

of the effect of changing various parameters such as plate dimensions, material 

properties of plates, or boundary conditions of plates. 

The extended Kantorovich method which provides a closed-form solution is 

modified to evaluate the mode shapes and the natural frequencies of plate which 

described by the partial differential equation.  In the modification the extended 

Kantorovich method assumed the solution as )()(),(0 yYxXyxw =  and used the 

variational method in order to reduce the partial differential equations to ordinary 

differential equations in x and y coordinate directions with a constant coefficient as 

equation (2.41) and (2.38), respectively.  The ordinary differential equations can be 
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solved exactly in terms of four unknown modal parameters, equation (2.45) and 

(2.48).  The iterative calculation is applied to the extended Kantorovich method to 

evaluate the modal parameters and force the final solution needed to satisfy the 

boundary conditions.  By the numerical example of topic 3.1.2, it is demonstrated that 

the final solution is obtained from the fourth iteration. 

The arbitrary function can be used as a basis function in the iterative 

calculation, however, the convergence of the final solution of the basis function which 

satisfied the boundary conditions is faster than the other.  In this study the beam 

functions is used as a basis function due to the fact that the beam function is satisfied 

the boundary conditions and the natural frequencies of the beam modes is closed to 

the plate modes which bring the evaluation of the particular mode shape and natural 

frequency of plates. 

 

       4.2.3  Discussion of the mode shapes and the natural frequencies of curved nodal 

lines 

The extended Kantorovich method alone can not be provided for the mode 

shapes and the natural frequencies of curved nodal lines of plates, because the 

governing differential equations (2.38) and (2.41) do not contain the stiffness terms 

16D  and 26D  due to the assuming a closed-form approximate solution as 

)()(),(0 yYxXyxw = .  The stiffness terms 16D  and 26D  are the bending-twist (Table 

2.1) of the plates which provided a curved nodal lines of plates.  The Rayleigh-Ritz 

method can be applied to find the mode shapes and the natural frequencies for more 

general plates however the disadvantages of the Rayleigh-Ritz method are as follows: 

(1) The basis functions are required to satisfy the boundary conditions.  In 

general, a large number of basis functions provide a better approximation 

of the solution. 

(2) The numerical solution of a matrix eigenvalue problem as equation (2.54) 

yields an arrangement in ascending frequency order therefore the 

particular natural frequency can not be obtained separately.  Moreover, a 

higher natural frequency involves a large number of basis functions 

which yields a higher order matrix eigenvalue problem. 

Note that the difference percentage obtained by the combination of the 

extended Kantorovich method and the Rayleigh-Ritz method and the finite element 
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method increases as the natural frequency increases due to the fact that the Rayleigh-

Ritz method, larger numbers of basis functions are used if a higher natural frequency 

is required.  In this study, nine basis functions in each coordinate direction obtained 

by the extended Kantorovich method are used in the Rayleigh-Ritz method.  To 

remove this discrepancy, more basis functions in the Rayleigh-Ritz method has to be 

considered. 

 

       4.2.4  Discussion of the higher mode shapes and the higher natural frequencies of 

straight nodal lines 

The difference percentage obtained by the extended Kantorovich method and 

the finite element method increases as the natural frequency increases may be results 

of 

(1) In the extended Kantorovich method, during vibration a plate (Figure 

2.7) performs not only a translatory motion but also rotates.  The angle of 

rotations, which are equal to the slope of the displacement curve, are 

expressed by )/( 0 xwz ∂∂−  and )/( 0 ywz ∂∂− .  The corresponding kinetic 

energy will be given by 
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In the case of composite plates, these terms become more and more 

important with higher-order vibration which cause the natural 

frequencies become over predicted in comparing to the solutions 

obtained with the rotate motion. 

(2) In the finite element method, the actual structure are divided into 

elements, these elements are not infinitely small as in the case of 

derivation of system equations.  This phenomenon is obvious in the 

higher natural frequency. 

 


