TABLE OF CONTENTS

	Page
Acknowledgement	iii
Abstract (Thai)	iv
Abstract (English)	v
List of Tables	viii
List of Figures	х
Abbreviations and symbols	xii
Chapter 1 Introduction	
1.1 Statement of the problem	202 1
1.2 Literature review	6
1.3 Research objective	12
1.4 Research outcome	12
1.5 Scope of research	12
1.6 Research outline	14
Chapter 2 Theory	
2.1 Fiber-reinforced composite materials	17
2.2 Fiber-reinforced composite plates	28
2.3 Vibration of fiber-reinforced composite plates	38
Chapter 3 Materials and Methods	
3.1 Research method	60
3.2 Study the extended Kantorovich method	60
3.3 Study the Rayleigh-Ritz method	73
3.4 Study the finite element method	78
3.5 Comparison of the mode shapes and the natural frequenc	ies 82

TABLE OF CONTENTS (CONTINUED)

	Page
Chapter 4 Results and Discussion	
4.1 Results	84
4.2 Discussion	140
Chapter 5 Conclusions and Recommendations	
5.1 Conclusions	143
5.2 Recommendations	146
Bibliography	147
Appendices	149
Appendix A Ply properties	150
Appendix B Results of the mode shapes and the natural frequencies	153
of straight nodal lines	
Appendix C Results of the mode shapes and the natural frequencies	199
of curved nodal lines	
Appendix D Results of the first hundred natural frequencies	212
of straight nodal lines	

advita nấu hông nguyên ng

LIST OF TABLES

Table		Page
1.1	Comparison of the approximate methods.	5
1.2	Conclusion of literature review of the extended Kantorovich method.	13
1.3	The scope of research.	15
2.1	Illustration of the coupling term.	34
3.1	Schematic of numerical examples of each study.	61
3.2	Common boundary conditions for the transverse vibration of a beam.	64
3.3	The elements of the stiffness matrix.	76
3.4	The elements of the mass matrix.	77
3.5	The finite element steps.	80
3.6	The convergence of the number of element of the first natural	81
	frequency of [0/90/90/0] laminated composite square plates.	
4.1	Schematic of numerical results of each study.	88
4.2	The first nine frequency parameters $\omega ab\sqrt{m/D}$ of isotropic	90
	rectangular plates.	
4.3	The first hundred frequency parameters $\omega ab\sqrt{m/D}$ of isotropic	92
	square plates with CCCC boundary conditions.	
4.4	The first nine frequency parameters $\omega ab \sqrt{m/D_{22}}$ of orthotropic	93
	rectangular plates.	
4.5	The first frequency parameters $(\omega ab / \pi^2) \sqrt{m / D_{22}}$ of [0/90/90/0]	95
	laminated composite rectangular plates with SSSS	
	boundary conditions.	
4.6	The first nine mode shapes of [0/90/90/0] laminated composite	96
	square plates.	
4.7	The first five mode shapes of [45/-45/-45/45] laminated composite	115
	square plates.	
4.8	The first hundred mode shapes of [0/90/90/0] laminated composite	127
	square plate.	
5.1	The conclusion of research.	145

LIST OF TABLES (CONTINUED)

Table		Dogo
Table		Page
A.1	Ply properties.	151
B.1	The first nine mode shapes of [0/0/0/0] laminated composite	154
	square plates.	
B.2	The first nine mode shapes of [90/90/90] laminated composite	169
	square plates.	
B.3	The first nine natural frequencies of [0/0/0/0] laminated composite	184
	rectangular plates.	
B.4	The first nine natural frequencies of [90/90/90] laminated	189
	composite rectangular plates.	
B.5	The first nine natural frequencies of [0/90/90/0] laminated	194
	composite rectangular plates.	
C.1	The first five mode shapes of [45/45/45] laminated composite	200
	square plates.	
C.2	The first five natural frequencies of [45/45/45/45] and [45/-45/-45/45]	208
	laminated composite square plates.	
D.1	The first hundred natural frequencies of [0/90/90/0] laminated	213
	composite rectangular plate with CCCC boundary conditions.	

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1.1	Use of plates in construction industry.	2
1.2	Use of plates in aerospace structures.	3
1.3	Use of plates in shipbuilding.	3
1.4	Use of plates in automobile industry	4
1.5	The research outline.	16
2.1	Phases of a composite materials.	17
2.2	Classification of composite materials.	17
2.3	The levels of analysis for a structure made of laminated composite.	18
2.4	Illustrations of possible fiber orientations.	19
2.5	A laminate made up of lamina with different fiber orientations.	26
2.6	A lamina with material and problem coordinate systems.	26
2.7	Undeformed and deformed geometries of an edge of a plate	29
	under Kirchhoff hypothesis.	
2.8	Stresses on plate element.	31
2.9	Force and moment resultants on a plate element.	32
2.10	Type of the lamination schemes.	36
2.11	The CFCS boundary conditions.	38
2.12	Discrete and continuous systems.	39
2.13	First and second modes of simply supported plate.	40
2.14	The rectangular plate.	41
2.15	Iteration procedures.	49
2.16	Two-dimensional continuum domain.	53
3.1	[0/90/90/0] square plates with CCCC boundary conditions.	62
3.2	The extended Kantorovich calculation procedures.	66
3.3	The eigenvalue of modal parameters q_1 on the first iteration.	67
3.4	The eigenvalue of modal parameters p_1 on the second iteration.	69
3.5	The eigenvalue of modal parameters q_1 on the third iteration.	70
3.6	The eigenvalue of modal parameters p_1 on the fourth iteration.	72

LIST OF FIGURES (CONTINUED)

Figure		Page
3.7	[45/-45/-45/45] square plates with CCCC boundary conditions.	72
3.8	Mesh element by ANSYS.	81
3.9	The straight nodal lines of square plates with CCCC	83
	boundary conditions.	
4.1	The first nine natural frequencies of [0/90/90/0] laminated	111
	composite square plates.	
4.2	The first five natural frequencies of [45/-45/-45/45] laminated	123
	composite square plates.	
4.3	The first hundred natural frequencies of [0/90/90/0] laminated	137
	composite square plate.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

A_{ij}	Arbitrary coefficients
$[A_{ij}]$	The element of extensional stiffness
$\{A\}$	Arbitrary coefficients vector
area _f	Area of the distributed resistance
area _p	Area over which pressure acts
[<i>B</i>]	Strain-displacement matrix
$[B_{ij}]$	The element of coupling stiffness
<i>C</i> , <i>S</i>	$\cos\theta$ and $\sin\theta$, respectively
[C]	Stiffness matrix
$[C_{ij}]$	The element of stiffness in x_1 - x_2 - x_3 coordinate system
$[\overline{C}_{ij}]$	The element of stiffness in x-y-z coordinate system
$[D_{ij}]$	The element of bending stiffness
$\{d\}$	Nodal displacement
$\{\ddot{a}\}$	Acceleration vector
E	Modulus of elasticity in tension and compression of isotropic
	material
E_{1}, E_{2}, E_{3}	Modulus of elasticity in tension and compression in x_1 , x_2 , and x_3
	direction, respectively
f_i	The i th natural frequency
$f_i(x)$	Functions which satisfy the boundary conditions along the x
	coordinate direction
$f_{i,x}, g_{j,y}$	The first differentiation with respect to the subscripted variable
$f_{i,xx}, g_{j,yy}$	The second differentiation with respect to the subscripted variable
${F^a}$	Acceleration (D'Alembert) force vector
$\left\{ F_{e}^{nd} ight\}$	Nodal forces applied to the element
$\left\{ F_{e}^{\ pr} ight\}$	Element pressure vector
$\left\{ F_{e}^{th} ight\}$	Element thermal load vector
G_{12}, G_{13}, G_{23}	Modulus of elasticity in shear in the x_1 - x_2 , x_1 - x_3 , and x_2 - x_3 ,
	respectively

$g_j(y)$	Functions which satisfy the boundary conditions along the y
	coordinate direction
h	Thickness of a plate
Κ	Kinetic energy
k	Foundation stiffness in units of force per length per unit area
[<i>K</i>]	The structure stiffness matrix
[K]	Stiffness matrix
	Element stiffness
$[K_e^f]$	Element foundation stiffness matrix
M_x, M_y	Bending moments per unit length of sections of a plate perpendicular to x and y directions, respectively
M _{xy}	Twisting moment per unit length of section of a plate perpendicular to r direction
m	Mass per unit area of plate
[M]	Mass matrix
$\begin{bmatrix} M \end{bmatrix}$	Flement mass matrix
$\begin{bmatrix} I & I \\ e \end{bmatrix}$	Normal forces per unit length of sections of a plate perpendicular to
1•x, 1•y	r and v directions respectively
N	Shearing force per unit length of section of a plate perpendicular to
l v xy	r direction
[N]	Element shape functions or interpolation functions
$\begin{bmatrix} N \end{bmatrix}$	Matrix of shape functions
$\begin{bmatrix} N \end{bmatrix}$	Matrix of shape functions for normal motions at the surface
$\{P\}$	Applied pressure vector
	Shearing forces parallel to z direction per unit length of sections of a
$\mathfrak{L}_x, \mathfrak{L}_y$	plate perpendicular to x and y directions respectively
	The element of plane stress_reduce stiffness
$[\mathfrak{L}_{ij}]$	The element of compliance in $x_1 - x_2 - x_3$ coordinate system
$\begin{bmatrix} \mathbf{S}_{ij} \end{bmatrix}$	The element of compliance in $x_1 x_2 x_3$ coordinate system The element of compliance in $x_1 x_2 x_3$ coordinate system
[_{ij}]	Time
ι I I	Strain energy
	Components of displacements in x y and - directions, respectively
u, v, w	Components of displacements in x , y , and z diffections, respectively

u_0, v_0, W_0	Components of displacements of middle surface in x , y , and z
	directions, respectively
$\{u\}$	Displacement vector
V	External work
vol	Volume of element
$\{w_n\}$	Motion normal to the surface
z	Distance from middle surface
$\gamma_{23}, \gamma_{13}, \gamma_{12}$	Shearing strain components in x_1 - x_2 - x_3 coordinate system
$\gamma_{yz}, \gamma_{xz}, \gamma_{xy}$	Shearing strain components in x-y-z coordinate system
δ	Virtual operator
$\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$	Normal strains in x_1 , x_2 , and x_3 direction, respectively
$\mathcal{E}_x, \mathcal{E}_y, \mathcal{E}_z$	Normal strains in x , y , and z directions, respectively
$\varepsilon_x^0, \varepsilon_y^0, \gamma_{xy}^0$	Normal strains of middle surface in x , y , and z directions,
	respectively
$\{\varepsilon\}$	Strain vector
K_x, K_y, K_{xy}	Curvatures of middle surface of plate
ν	Poisson's ratio of isotropic material
ν_{ij}	Poisson's ratio, defined as the ratio of transverse strain in the j^{th}
	direction to the axial strain in the i^{th} direction when stressed in the i^{th}
	direction, and
П	Potential energy
ho	Density
$\sigma_1, \sigma_2, \sigma_3$	Normal components of stress parallel to x_1 , x_2 , and x_3 direction,
	respectively
$\sigma_x, \sigma_y, \sigma_z$	Normal components of stress parallel to x , y , and z directions,
	respectively
$\{\sigma\}$	Stress vector
$\{\sigma\}$	Stress carried by the surface
$ au_{23}, au_{13}, au_{12}$	Shearing stress components in x_1 - x_2 - x_3 coordinate system
$\tau_{yz}, \tau_{xz}, \tau_{xy}$	Shearing stress components in x-y-z coordinate system
$\{\phi\}_i$	Eigenvector representing the mode shape of the i th natural frequency
ω	Natural circular frequency
ω_i	The i th natural circular frequency

 $[\partial]$

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved