TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract	iv
List of tables	Х
List of figures	xi
CHAPTER 1 INTRODUCTION	
1.1 Background and Problem Statement	
1.2 Literature Review	4
1.2.1 Biodiesel History	4
1.2.2 Biodiesel Production	4
a) Catalytic Method	7354
i) Alkaline Catalyst	5
ii) Acid Catalyst	5
iii) Heterogeneous Catalyst	6
b) Non-catalytic Method	6
1.2.3 Types of Input Material	8
1.2.4 Control Variables in Reaction Process	9
1.2.5 Products Analysis	10
1.2.6 Effect of Co-solvent	10
1.2.7 Effect of Free Fatty Acids	11
1.2.8 Summary	12
1.3 Objectives	12
1.4 Scope	13
1.5 Benefits of the Study	iverial ty
CHAPTER 2 THEORY	
2.1 Vegetable Oil	14
2.2 Biodiesel	15
2.2.1 Definition	15

2.2.2 Specification	15
2.2.3 Fuel Property	15
2.3 Biodiesel Production	17
2.3.1 Input Material	18
a) Fixed oil	18
b) Triglycerides	18
c) Fatty acids	19
d) Glycerol	19
e) Alcohol	20
2.3.2 Chemical Reaction	21
a) Alcoholysis	21
b) Transesterifiaction	21
c) Esterification	21
2.3.3 Catalytic and Non-catalytic Method	22
a) Catalytic Method	22
b) Non-catalytic Method	22
2.4 Supercritical Fluid	23
2.5 Percent Yield	25
2.6 Percent Conversion	25
2.7 Kinetics of Reaction	26
2.7.1 Kinetics Rate Law	26
2.7.2 Arrhenius Equation	26
a) Activation Energy	27
b) Pre-exponential Factor	28
2.7.3 Kinetics of Triglycerides to Methyl Esters	28
a) Diasakou Model	28
b) Kusdiana and Saka Model	29
c) Song Model	30
d) Joelianingsih Model	30

CHAPTER 3 EXPERIMENTAL METHODS

3.1	Input	Materials
-----	-------	-----------

32

vii

3.2 Experimental Setup	32
3.2.1 Cylinder Reactor	32
3.2.2.High Pressure Vessel	33
3.2.3 Nozzle	34
3.3 Experimental Procedure	35
3.3.2 Methanolysis of Palm Oil	35
 Temperature Survey Tests 	36
Fixed temperature Tests	37
3.3.3 Kinetics of Reaction	37
 Kinetics Modeling 	38
3.4 Sample Analysis	39
3.4.1 Thin-layer Chromatography	39
3.4.2 Gas Chromatography	40
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 Methanolysis of Palm Oil	42
4.1.1 Temperature Survey Tests	42
4.1.2 Effect of Temperature and Holding Time on Biodiesel	
Yield	42
4.1.3 Effect of Molar Ratio and Holding Time on Biodiesel	
Yield	44
4.1.4 Effect of Holding Time on Biodiesel Yield	45
4.2 Kinetics of Reaction	46
4.2.1 Reaction Order Principle	48
 Zero Order Reaction 	48
First order reaction	49
4.2.2.Rate Constant and Activation Energy	51
 Activation Energy by the Zero Order Model 	54
 Activation Energy by the First Order Model 	55

CHAPTER 5 CONCLUSION AND SUGGESTION FOR FURTHER WORKS

5.1 Conclusion	62
5.2 Suggestion for Further Works	61
5.2.1 Ethanolysis of Palm Oil	61
5.2.2 Co-solvent Effect	61
5.2.3 Crude Palm Oil as Feedstock	62
5.2.4 Development of Remote Reactor Using Robot	for
Sample Collecting	62
REFERENCES	63
APPENDICES	
Appendix A Calculation of Molar Ratio	68
Appendix B Calculation of the Fraction of Methyl Esters	69
Appendix C Calculation of the Activation Energy	-73
Appendix D Photograph of the Equipment	77
Appendix E Photograph of the Sample	79
Appendix F List of Publication	80
GLOSSARY	97
CURRICULUM VITAE	98

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

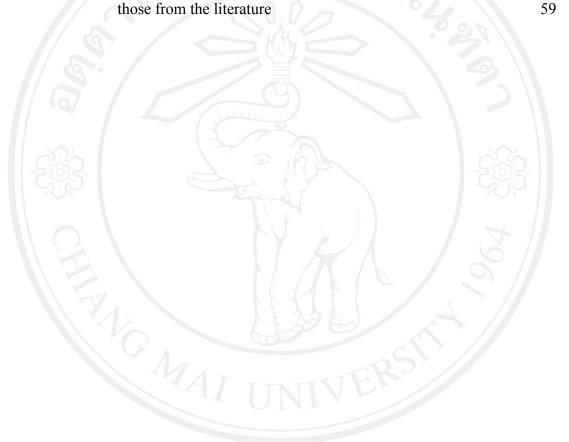

LIST OF TABLES

Table	Page
1.1 Thailand National Consumptions of B5-diesel During 2005-2008	1
1.1 Catalytic Method	7
1.2 Non-Catalytic Method	8
1.3 Input Material.	9
1.4 Product Analysis and Fuel Properties.	11
2.1 Specification of Biodiesel from Selected Countries.	16
2.2 Example of a Fatty Acid	19
2.3 Glycerol Structure	20
2.4 Glycerolysis of Fatty Acid Yields Triglycerol and Water	20
2.5 Examples of Straight-chain Primary Alcohols	21
2.6 Critical Temperature, Critical Pressure and Density of Some	
Substances	25
3.1 Input Materials	32
3.2 Specification of the St 35 Seamless Steel Pipe	33
3.3 Nozzle Specification	35
3.4 Methanolysis Temperature Survey Tests	36
3.5 Test Condition for the Kinetics Modeling	38
3.6 TLC Plate Details.	40
3.7 Solvent Mixture	40
3.8 Column and GC-MS Condition	41
4.1 Apparent Rate Constants (k1) Derived from the Zero Order Model	54
4.2 Apparent Rate Constants (k1) Derived from the First Order Model	56
4.3 Comparisons of Our Results with Literature	58

LIST OF FIGURES

Figure	Page
1.1 Annual biodiesel yield of selected vegetable oils per one hectare	
(6.25 rai) of oil crops cultivation	3
2.1 Fuel properties of various biodiesels	17
2.2 Outline of biodiesel production	18
2.3 Phase diagram of carbon dioxide	23
2.4 Density of carbon dioxide at various conditions	24
2.5 Critical points of methanol, ethanol, water and carbon oxide	25
2.6 Arrhenius plot of ln k and 1/T	28
3.1 Cylinder reactor	33
3.2. High Pressure Vessel	34
3.3 Nozzle	35
3.4 TLC plate cut into 3x7 cm ²	39
3.5 Solvent Tank	40
4.1 Temperature and pressure evolutions during the methanolysis	
reaction at different temperature and holding time (fixed molar	
ratio methanol-to-oil at 43:1, methanol 64 ml : oil 36 ml)	43
4.2 Effect of the temperature and the holding time on the biodiesel	
yield (fixed molar ratio of methanol-to-oil at 43:1, methanol 64	
ml : oil 36 ml) in the Cylinder reactor	44
4.3 Effect of the molar ratio of methanol-to-oil on the yield biodiesel	
production at 300 °C and 105 min. holding time	45
4.4 Effect of the reaction time on the biodiesel yield at molar ratio of	
methanol-to-oil 8:1, 22:1 and 42:1 (at 300°C)	46
4.5 A plot of biodiesel concentration (C_{ME}) and reaction time (t) for the	
zero order reaction	49
4.6 A plot of unmethyl esterified compound concentration (C_{uME}) and	
reaction time (t) for the first order reaction	50
4.7 A plot of $ln(1-x)$ and reaction time (t) for the first order reaction	51

4.8 Reactor temperature (T) during the reaction time (t)	53
4.9 Methyl esters fraction (x) of each sample during the reaction time	
(t)	53
4.10 Arrhenius plot for the zero order model (Temperature 170-200°C)	55
4.11 Arrhenius plot for the first order model (Temperature 170-200°C)	57
4.12 Comparison of various Arrhenius plots between present study and	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved