
CHAPTER 3 

 

COMPUTATIONAL FLUID DYNAMICS AND NUMERICAL MODELING  

OF PROTON EXCHANGE MEMBRANCE FUEL CELL 

 

 

 

3.1 Introduction of Fluid Mechanics 

 

 3.1.1 Fluid as a Continuum 

In our definition of a fluid, no mention was made of the molecular structure of 

matter. All fluids are composed of molecules in constant motion. However, in most 

engineering applications we are interested in the average or macroscopic effects of 

many molecules. It is these macroscopic effects that we ordinarily perceive and 

measure. We thus treat a fluid as an infinitely divisible substance, a continuum, and 

do not concern ourselves with the behavior of individual molecules. 

The concept of a continuum is the basis of classical fluid mechanics. The 

continuum assumption is valid in treating the behavior of fluids under normal 

conditions. However, it breaks down whenever the mean free path of the molecules l 

becomes the same order of magnitude as the smallest significant characteristic 

dimension of the problem. In problems such as rarefied gas flow (e.g., as encountered 

in flights into the upper reaches of the atmosphere), we must abandon the concept of a 

continuum in favor of the microscopic and statistical points of view. 

As a consequence of the continuum assumption, each fluid property is 

assumed to have a definite value at every point in space. Thus fluid properties such as 

density, temperature, velocity, and so on, are considered to be continuous functions of 

position and time. 

To illustrate the concept of a property at a point, consider the manner in which 

we determine the density at a point. A region of fluid is shown in figure 3.1. We are 

interested in determining the density at the point C, whose coordinates are xo, yo, and 

zo Density is defined as mass per unit volume. Thus the mean density within volume V 

would be given by   = m/V. In general, this will not be equal to the value of the 

density at point C. To determine the density at point C, we must select a small 

volume,  V, surrounding point C and determine the ratio  m/ V. The question is, 

how small can we make the volume  V? Let us answer this question by plotting the 

ratio  m/ V, and allowing the volume to shrink continuously in size. Assuming that 

volume  V is initially relatively large (but still small compared with the volume, V) a 

typical plot of  m/ V might appear as in figure 3.1b. In other words,  V must be 

sufficiently large to yield a meaningful, reproducible value for the density at a 

location and yet small enough to be able to resolve spatial variations in density. The 

average density tends to approach an asymptotic value as the volume is shrunk to 

enclose only homogeneous fluid in the immediate neighborhood of point C. When 

 V becomes so small that it contains only a small number of molecules, it becomes 
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impossible to fix a definite value for  m/ V; the value will vary erratically as 

molecules cross into and out of the volume. Thus there is a lower limiting value of 

 V, designated  V ' in figure 3.1b, allowable for use in defining fluid density at a 

point.2 The density at a "point" is then defined as  

 

V

m

Vv 




 '
lim


                          (3.1) 

 

 
(a)                                                           (b) 

 

Figure 3.1 Definition of density at a point 

 

Since point C was arbitrary, the density at any point in the fluid could be 

determined in a like manner. If density determinations were made simultaneously at 

an infinite number of points in the fluid, we would obtain an expression for the 

density distribution as a function of the space coordinates,   =   (x, y, z), at the 

given instant. 

Clearly, the density at a point may vary with time as a result of work done on 

or by the fluid and/or heat transfer to the fluid. Thus the complete representation of 

density (the field representation) is given by 

 

                     =   (x, y, z, t)              (3.2) 

 

Since density is a scalar quantity, requiring only the specification of a 

magnitude for a complete description, the field represented by equation 3.2 is a scalar 

field. 

 

 3.1.2 Velocity Field 

 

In dealing with fluids in motion, we shall necessarily be concerned with the 

description of a velocity field. Refer again to figure 3.la. Define the fluid velocity at 

point C as the instantaneous velocity of the center of gravity of the volume,  V ', 

instantaneously surrounding point C. If we define a fluid particle as a small mass of 

fluid of fixed identity of volume  V ', then the velocity at point C is defined as the 
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instantaneous velocity of the fluid particle which, at a given instant, is passing though 

point C. The velocity at any point in the flow field is defined similarly. At a given 

instant the velocity field, V


, is a function of the space coordinates x, y, z. The velocity 

at any point in the flow field might vary from one instant to another. Thus the 

complete representation of velocity (the velocity field) is given by 

 

    VV


 (x, y, z, t)                (3.3) 

 

Velocity is a vector quantity, requiring a magnitude and direction for a complete 

description, so the velocity field is a vector field.  

The velocity vector, ii, also can be written in terms of its three scalar 

components Denoting the components in the x, y, and z directions by u, v, and w, then 

 

    V


 u î  + v ĵ  + w k̂              (3.4) 

 

In general, each component, u, v, and w, will be a function of x, y, z, and t.  

If properties at every point in a flow field do not change with time, the flow is 

termed steady. Stated mathematically, the definition of steady flow is 
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where   represents any fluid property. For steady flow, 
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       or      =   (x, y, z,) 

and 
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V
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       or    VV
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  (x, y, z,) 

 

Thus, in steady flow, any property may vary from point to point in the field, but all 

properties remain constant with time at every point. 

 

 3.1.3 One-Two-, and Three-Dimensional Flows 

 

 A flow is classified as one-, two-, or three-dimensional depending on the 

number of space coordinates required to specify the velocity field.  Equation 3.3 

indicates that the velocity field may be a function of three space coordinates and time. 

Such a flow field is termed three-dimensional (it is also unsteady) because the 

velocity at any point in the flow field depends on the three coordinates required to 

locate the point in space. 

Although most flow fields are inherently three-dimensional, analysis based on 

fewer dimensions is frequently meaningful. Consider, for example, the steady flow 

through a long straight pipe of constant cross section. Far from the entrance to the 

pipe the velocity distribution may be described by 
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   u = umax 
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This profile is shown in figure 3.2, where cylindrical coordinates r,  , and x 

are used to locate any point in the flow field. The velocity field is a function of r only; 

it is independent of coordinates x and  . Thus this is a one-dimensional flow. 

An example of a two-dimensional flow is illustrated in figure 3.3; the velocity 

distribution is depicted for a flow between diverging straight walls that are imagined 

to be infinite in extent (in the z direction). Since the channel is considered to be 

infinite in the z direction, the velocity field will be identical in all planes 

perpendicular to the z axis. Consequently, the velocity field is a function only of space 

coordinates x and y; the flow field is classified as two-dimensional. 

As you might suspect, the complexity of analysis increases considerably with 

the number of dimensions of the flow field. For many problems encountered in 

engineering, a one-dimensional analysis is adequate to provide approximate solutions 

of engineering accuracy. 

 

 
 

Figure 3.2 Example of one-dimensional flow. 

 
 

Figure 3.3 Example of two-dimensional flow. 
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Figure 3.4 Example of uniform flow at a section. 

 

 

Since all fluids satisfying the continuum assumption must have zero relative 

velocity at a solid surface (to satisfy the no-slip condition), most flows are inherently 

two or three-dimensional. For purposes of analysis it often is convenient to introduce 

the notion of uniform flow at a given cross section. In a flow that is uniform at a given 

cross section, the velocity is constant across any section normal to the flow. Under 

this assumption, the two-dimensional flow of figure 3.3 is modeled as the flow shown 

in figure 3.4. In the flow of figure 3.4, the velocity field is a function of x alone, and 

thus the flow model is one-dimensional. (Other properties, such as density or 

pressure, also may be assumed uniform at a section, if appropriate.) 

The term uniform flow field (as opposed to uniform flow at a cross section) is 

used to describe a flow in which the magnitude and direction of the velocity vector 

are constant, i.e., independent of all space coordinates, throughout the entire flow 

field. 

 

3.1.4 Laminar and Turbulent Flows 

 

Viscous flow regimes are classified as laminar or turbulent on the basis of 

flow structure. In the laminar regime, flow structure is characterized by smooth 

motion in laminar, or layers. Flow structure in the turbulent regime is characterized by 

random, three-dimensional motions of fluid particles in addition to the mean motion. 

In laminar flow there is no macroscopic mixing of adjacent fluid layers. A thin 

filament of dye injected into a laminar flow appears as a single line; there is no 

dispersion of dye throughout the flow, except the slow diffusion due to molecular 

motion. On the other hand, a dye filament injected into a turbulent flow disperses 

quickly throughout the flow field; the line of dye breaks up into myriad entangled 

threads of dye. This behavior of turbulent flow is caused by the velocity fluctuations 

present; the macroscopic mixing of fluid particles from adjacent layers of fluid results 

in rapid dispersion of the dye. The straight filament of smoke rising from a cigarette 

in still surroundings gives a clear picture of laminar flow. As the smoke continues to 

rise, it breaks up into random, haphazard motions; this is an example of turbulent 

flow.  

One can obtain a more quantitative picture of the difference between laminar 

and turbulent flow by examining the output from a sensitive velocity-measuring 

device immersed in the flow. If one measures the x component of velocity at a fixed 

location in a pipe for both laminar and turbulent steady flow, the traces of velocity 
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versus time appear as shown in figure 3.5. For steady laminar flow, the velocity at a 

point remains constant with time. In turbulent flow the velocity trace indicates 

random fluctuations of the instantaneous velocity, u, about the time mean velocity, u . 

We can consider the instantaneous velocity, u, as the sum of the time mean velocity, 

u , and the fluctuating component, u', 

 

    u = u  + u'                (3.6) 

 

Because the flow is steady, the mean velocity, u, does not vary with time 

 

 
Figure 3.5 Variation of axial velocity with time. 

 

Although many turbulent flows of interest are steady in the mean (u is not a 

function of time), the presence of the random, high-frequency velocity fluctuations 

makes the analysis of turbulent flows extremely difficult. In a one-dimensional 

laminar flow, the shear stress is related to the velocity gradient by the simple relation 

 

dy

du
yx                            (3.7) 

 

For a turbulent flow in which the mean velocity field is one-dimensional, no 

such simple relation is valid. Random, three-dimensional velocity fluctuations (u', v', 

and w') transport momentum across the mean flow streamlines, increasing the 

effective shear stress. Consequently, in turbulent flow there is no universal 

relationship between the stress field and the mean velocity field. Thus in turbulent 

flows we must rely heavily on semi-empirical theories and on experimental data. 

 

3.1.5 Reynolds Number 

 

In fluid mechanics, the Reynolds number Re is a dimensionless number that 

gives a measure of the ratio of inertial forces to viscous forces and consequently 

quantifies the relative importance of these two types of forces for given flow 

conditions. Reynolds numbers frequently arise when performing dimensional analysis 

of fluid dynamics problems, and as such can be used to determine dynamic similitude 

between different experimental cases. They are also used to characterize different 

flow regimes, such as laminar or turbulent flow: laminar flow occurs at low Reynolds 
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numbers, where viscous forces are dominant, and is characterized by smooth, constant 

fluid motion; turbulent flow occurs at high Reynolds numbers and is dominated by 

inertial forces, which tend to produce chaotic eddies, vortices and other flow 

instabilities. 

Reynolds number can be defined for a number of different situations where a 

fluid is in relative motion to a surface (the definition of the Reynolds number is not to 

be confused with the Reynolds Equation or lubrication equation). These definitions 

generally include the fluid properties of density and viscosity, plus a velocity and a 

characteristic length or characteristic dimension. This dimension is a matter of 

convention – for example a radius or diameters are equally valid for spheres or 

circles, but one is chosen by convention. For aircraft or ships, the length or width can 

be used. For flow in a pipe or a sphere moving in a fluid the internal diameter is 

generally used today. Other shapes (such as rectangular pipes or non-spherical 

objects) have an equivalent diameter defined. For fluids of variable density (e.g. 

compressible gases) or variable viscosity (non-Newtonian fluids) special rules apply. 

The velocity may also be a matter of convention in some circumstances, notably 

stirred vessels. 

 

                       


 VLVL
Re                 (3.7) 

 

where  V  is  the mean velocity of the object relative to the fluid (SI units: m/s) 

 L is a characteristic linear dimension, (travelled length of the fluid; hydraulic    

     diameter when dealing with river systems) (m) 

  is  the density of the fluid (kg/m³) 

 μ  is  the dynamic viscosity of the fluid (Pa•s or N•s/m² or kg/(m•s)) 

 ν  is  the kinematic viscosity (ν = μ /  ) (m²/s) 

 

For flow in a pipe or tube, the Reynolds number is generally defined as: 

 

A
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e
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
               (3.8) 

  

where DH  is the hydraulic diameter of the pipe (m). 

Q    is the volumetric flow rate (m
3
/s) 

A    is the pipe cross-sectional area (m²). 

 

For shapes such as squares, rectangular or annular ducts (where the height and 

width are comparable) the characteristic dimension for internal flow situations is 

taken to be the hydraulic diameter, DH, defined as 4 times the cross-sectional area (of 

the fluid), divided by the wetted perimeter. The wetted perimeter for a channel is the 

total perimeter of all channel walls that are in contact with the flow. This means the 

length of the water exposed to air is NOT included in the wetted perimeter 

  

                     
P

A
DH

4
               (3.9) 
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For a circular pipe, the hydraulic diameter is exactly equal to the inside pipe diameter, 

as can be shown mathematically. 

 In boundary layer flow over a flat plate, experiments can confirm that, after a 

certain length of flow, a laminar boundary layer will become unstable and become 

turbulent. This instability occurs across different scales and with different fluids, 

usually when, where x is the distance from the leading edge of the flat plate, and the 

flow velocity is the freestream velocity of the fluid outside the boundary layer. For 

flow in a pipe of diameter D, experimental observations show that for fully developed 

flow, laminar flow occurs when Re < 2300 and turbulent flow occurs when Re > 4000. 

In the interval between 2300 and 4000, laminar and turbulent flows are possible 

'transition flows, depending on other factors, such as pipe roughness and flow 

uniformity. This result is generalized to non-circular channels using the hydraulic 

diameter, allowing a transition Reynolds number to be calculated for other shapes of 

channel. These transitions Reynolds numbers are also called critical Reynolds 

numbers. Pressure drops seen for fully developed flow of fluids through pipes can be 

predicted using the Moody diagram (in figure 3.6) which plots the Darcy–Weisbach 

friction factor f against Reynolds number Re and relative roughness ε / D. The 

diagram clearly shows the laminar, transition, and turbulent flow regimes as Reynolds 

number increases. The nature of pipe flow is strongly dependent on whether the flow 

is laminar or turbulent 

 

 

 
Figure 3.6 moody diagram (Fox & McDonald, 1998) 
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 3.1.6 Bernoulli Equation and Darcy’s Equation 

 

 Bernoulli's principle can be applied to various types of fluid flow, resulting in 

what is loosely denoted as Bernoulli's equation. In fact, there are different forms of 

the Bernoulli equation for different types of flow. The simple form of Bernoulli's 

principle is valid for incompressible flows (e.g. most liquid flows) and also for 

compressible flows (e.g. gases) moving at low Mach numbers. More advanced forms 

may in some cases be applied to compressible flows at higher Mach numbers (see the 

derivations of the Bernoulli equation). Bernoulli's principle can be derived from the 

principle of conservation of energy. This states that, in a steady flow, the sum of all 

forms of mechanical energy in a fluid along a streamline is the same at all points on 

that streamline. This requires that the sum of kinetic energy and potential energy 

remain constant. Thus an increase in the speed of the fluid occurs proportionately with 

an increase in both its dynamic pressure and kinetic energy, and a decrease in its static 

pressure and potential energy. If the fluid is flowing out of a reservoir the sum of all 

forms of energy is the same on all streamlines because in a reservoir the energy per 

unit volume (the sum of pressure and gravitational potential ρ g h) is the same 

everywhere. Equation of Bernoulli is generally defined as: 
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          (3.10) 

 

where Z    is level at point i (m). 

hL   is head loss  (m) 

  

Darcy’s equation can be applied to flow of liquid through a pipe is resisted by 

viscous shear stresses within the liquid and the turbulence that occurs along the 

internal walls of the pipe, created by the roughness of the pipe material. This 

resistance is usually known as pipe friction and is measured is feet or meters head of 

the fluid, thus the term head loss is also used to express the resistance to flow. The 

flow of liquid through a pipe is resisted by viscous shear stresses within the liquid and 

the turbulence that occurs along the internal walls of the pipe, created by the 

roughness of the pipe material. This resistance is usually known as pipe friction and is 

measured is feet or meters head of the fluid, thus the term head loss is also used to 

express the resistance to flow. Head loss can be divided in major loss and minor loss. 

Major loss due to friction and it can be calculated with 
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Where  (hL)major  is major head loss due to friction (m) 

    L         is the length of the pipe (m) 

    DH      is the hydraulic diameter of the pipe  (m) 

    V         is the average velocity of the fluid flow (m/s) 

    f          is a dimensionless coefficient called the Darcy friction factor 
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Which friction factor formula may be applicable depends upon the type of 

flow that exists: 

 Laminar flow 

 Transition between laminar and turbulent flow 

 Fully turbulent flow in smooth conduits 

 Fully turbulent flow in rough conduits 

 Free surface flow. 

 

Laminar flow 

The Darcy friction factor for laminar flow (Reynolds number less than 2000) 

is given by the following formula: 

eR
f

64
                                                        (3.12) 

 

Where   f     is the Darcy friction factor 

 Re   is the Reynolds number. 

 

Transition flow 

Transition (neither fully laminar nor fully turbulent) flow occurs in the range 

of Reynolds numbers between 2300 and 4000. The value of the Darcy friction factor 

may be subject to large uncertainties in this flow regime. 

 

Turbulent flow in smooth conduits 

Empirical correlations exist for this flow regime. Such correlations are 

included in the ASHRAE Handbook of Fundamentals. 

 

Turbulent flow in rough conduits 

The Darcy friction factor for fully turbulent flow (Reynolds number greater 

than 4000) in rough conduits is given by the Colebrook equation. 

 

Free surface flow 

The last formula in the Colebrook equation section of this article is for free 

surface flow. The approximations elsewhere in this article are not applicable for this 

type of flow. 

 

Minor loss due to change of velocity in bends, valves and similar and it can be 

calculated with 

                                                     
g
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Where  (hL)minor  is minor head loss due to friction (m) 

    K         is coefficient in head loss, 
H

e

t
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L
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 ft  can be find in Moody diagram and Le is Equivalent Length. 



 

 

47 

3.2 Conservation Laws of Fluid Motion and Boundary Conditions 

 

The mathematical basis can be develop for a comprehensive general purpose 

model of fluid flow and heat transfer from the basic principles of conservation of 

mass, momentum and energy. This leads to the governing equations of fluid flow and 

a discussion of the necessary auxiliary conditions -initial and boundary conditions. 

 The governing equations of fluid flow represent mathematical statements of 

the conservation laws of physics. The fluid will be regarded as a continuum. For the 

analysis of fluid flows at macroscopic length scales (say 1  m and larger) the 

molecular structure of matter and molecular motions may be ignored. We describe the 

behavior of the fluid in terms of macroscopic properties, such as velocity, pressure, 

density and temperature, and their space and time derivatives. These may be thought 

of as averages over suitably large numbers of molecules. A fluid particle or point in a 

fluid is then the smallest possible element of fluid whose macroscopic properties are 

not influenced by individual molecules. 

 

 3.2.1 Mass Conservation  

 The first step in the derivation of the mass conservation equation is to write 

down a mass balance for the fluid element. 

 

Rate of increase of mass in fluid element = Net rate of flow of mass into fluid element 

 

The rate of increase of mass in the fluid element is 
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Next we need to account for the mass flow rate across a face of the element which is 

given by the product of density, area and the velocity component normal to the face. 

From Figure 2.2 it can be seen that the net rate of flow of mass into the element across 

its boundaries is given by 
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Flows which are directed into the element produce an increase of mass in the element 

and get a positive sign and those flows that are leaving the element are given a 

negative sign. 
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Figure 3.7 Mass flows in and out of fluid element 

 

The rate of increase of mass inside the element is now equated to the net rate 

of flow of mass into the element across its faces. All terms of the resulting mass 

balance are arranged on the left hand side of the equals sign and the expression is 

divided by the element volume zyx   

 

This yields 
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or in more compact vector notation 
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When  kwjviuV ˆˆˆ 
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Equation 3.12 is the unsteady, three-dimensional mass conservation or continuity 

equation at a point in a compressible fluid. The first term on the left hand side is the 

rate of change in time of the density (mass per unit volume). The second term 

describes the net flow of mass out of the element across its boundaries and is called 

the convective term. 
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or in longhand notation 
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 3.2.2 Momentum Conservation 

 

 Newton's second law states that the rate of change of momentum of a fluid 

particle equals the sum of the forces on the particle. 

 

Rate of increase of momentum of fluid particle = Sum of forces on fluid particle 

 

The rates of increase of x-, y- and z-momentum per unit volume of a fluid particle are 

given by 
t
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We distinguish two types of forces on fluid particles: 

• surface forces  - pressure forces  

- viscous forces 

• body forces   - gravity force  

- centrifugal force  

- Coriolis force  

- electromagnetic force 

 

It is common practice to highlight the contributions due to the surface forces 

as separate terms in the momentum equation and to include the effects of body forces 

as source terms. 

The state of stress of a fluid element is defined in terms of the pressure and the 

nine viscous stress components shown in figure 3.8. The pressure, a normal stress, is 

denoted by p. Viscous stresses are denoted by  . The usual suffix notation  ij is 

applied to indicate the direction of the viscous stresses. The suffices i and j in  ij 

indicate that the stress component acts in the j-direction on a surface normal to the i-

direction. 

 
Figure 3.8 Stress components on three faces of fluid element 
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 First we consider the x-components of the forces due to pressure and stress 

components  xx   yx and  zx  shown in figure 3.9. The magnitude of a force resulting 

from a surface stress is the product of stress and area. Forces aligned with the 

direction of a co-ordinate axis get a positive sign and those in the opposite direction a 

negative sign. The net force in the x-direction is the sum of the force components 

acting in that direction on the fluid element. 

 

 
Figure 3.9 Stress components in the x-direction 

 

 

On the pair of faces (E, W) we have  
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 (3.19) 

 

The net force in the x-direction on the pair of faces (N, S) is  
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Finally the net force in the x-direction on faces T and B is given by 
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The total force per unit volume on the fluid due to these surface stresses is equal the 

sum equations 3.19, 3.20, 3.21 divided by the volume  
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Without considering the body forces in further detail their overall effect can be 

included by defining a source SMx of x-momentum per unit volume per unit time.  

The x-component of the momentum equation is found by setting the rate to 

change of x-momentum of the fluid particle equal to the total force in the x-direction 

on the element due to surface stresses plus the rate of increase of x-, y-, z-momentum 

due to sources 

 

x- axis    
Mx

zxyxxx S
zyxx

p

t

u
























 
 

y- axis    
My

zyyyxy
S

zyxy

p

t

v
























 
         (3.23) 

z- axis   
 

Mz
zzyzxz S
zyxz

p

t

w
























 
 

 

The sign associated with the pressure is opposite to that associated with the normal 

viscous stress, because the usual sign convention takes a tensile stress to be the 

positive normal stress so that the pressure, which is by definition a compressive 

normal stress, has a minus sign. 

The effects of surface stresses are accounted for explicitly; the source terms 

SMx, SMy and SMz in equation 3.23 include contributions due to body forces only. For 

example, the body force due to gravity would be modeled by SMx = 0, SMy = 0 and SMz 

= -  g. 

 

3.2.3 Energy Conservation 

 

The energy equation is derived from the first law of thermodynamics which 

states that the rate of change of energy of a fluid particle is equal to the rate of heat 

addition to the fluid particle plus the rate of work done on the particle. 

 

Rate of increase of energy of fluid particle = [Net rate of heat added to fluid particle + 

      Net rate of work done on fluid particle] 

 

As before we will be deriving an equation for the rate of increase of energy of a fluid 

particle per unit volume which is given by 
Dt

DE
  

 

The rate of work done on the fluid particle in the element by a surface force is equal 

to the product of the force and velocity component in the direction of the force. For 

example, the forces given by equation 3.19-3.21 all act in the x-direction. The work 

done by these forces is given by 
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The net rate of work done by these surface forces acting in the x-, y-, z-direction is 

given by 
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The total rate of work done per unit volume on the fluid particle by all the surface 

forces is given by the sum of equation 3.24 divided by the volume  x y z. The 

term containing pressure can be collected together and written more compactly in 

vector form 
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This yields the following total rate of work done on the fluid particle by surface 

stresses: 
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 Energy flux due to heat conduction vector q has three component qx, qy, qz. 

Fourier's law of heat conduction relates the heat flux to the local temperature gradient. 

So  
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Thus far we have not defined the specific energy E of a fluid. Often the energy 

of a fluid is defined as the sum of internal (thermal) energy e, kinetic energy 
2

1
(u

2
 + 

y
2
 + w

2
) and gravitational potential energy. This definition takes the view that the 

fluid element is storing gravitational potential energy. It is also possible to regard the 

gravitational force as a body force which does work on the fluid element as it moves 

through the gravity field. 

Here we shall take the latter view and include the effects of potential energy 

changes as a source term. As before we define a source of energy SE per unit volume 

per unit time. Conservation of energy of the fluid particle is ensured by equating the 

rate of change of energy of the fluid particle to the sum of the net rate of work done 

on the fluid particle and the net rate of heat addition to the fluid and the rate of 

increase of energy due to sources. The energy equation is 
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In equation 3.24 we have E = e + 
2

1
(u

2
 + v

2
 + w

2
) 

 

Although equation 3.28 is a perfectly adequate energy equation it is common 

practice to extract the changes of the (mechanical) kinetic energy to obtain an 

equation for internal energy or temperature. The part of the energy equation 

attributable to the kinetic energy can be found by multiplying the x-momentum by 

velocity component u, the y-momentum by v and the z-momentum by w from 

equation 3.19 and adding the results together. It can be shown that this yields the 

following conservation equation for the kinetic energy 
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 3.2.4 Navier-Stokes Equation 

 

 The governing equations contain as further unknowns the viscous stress 

components. The most useful forms of the conservation equations for fluid flows are 

obtained by introducing a suitable model for the viscous stresses. In many fluid flows 

the viscous stresses can be expressed as functions of the local deformation rate (or 

strain rate). In three-dimensional flows the local rate of deformation is composed of 

the linear deformation rate and the volumetric deformation rate. 

All gases and many liquids are isotropic. Liquids which contain significant 

quantities of polymer molecules may exhibit anisotropic or directional viscous stress 

properties as a result of the alignment of the chain-like polymer molecules with the 

flow. Such fluids are beyond the scope of this introductory course and we shall 

continue the development by assuming that the fluids are isotropic. 

The rate of linear deformation of a fluid element has nine components in three 

dimensions, six of which are independent in isotropic fluids. They are denoted by the 

symbol eij. The suffix system is identical to that for stress component. There are three 

linear elongating deformation components:
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There are also six shearing linear deformation components: 
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The volumetric deformation is given by 
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In a Newtonian fluid the viscous stresses are proportional to the rates of 

deformation. The three-dimensional form of Newton's law of viscosity for 

compressible flows involves two constants of proportionality: the (first) dynamic 
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viscosity, to relate stresses to linear deformations, and the second viscosity, to relate 

stresses to the volumetric deformation. The nine viscous stress components, 9f which 

six are independent, are 
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Not much is known about the second viscosity, because its effect is small in practice. 

For gases a good working approximation can be obtained by taking the value λ -

3

2
 . Liquids are incompressible so the mass conservation equation is   0V


and 

the viscous stresses are just twice the local rate of linear deformation times the 

dynamic viscosity. 

Substitution of the above shear stresses in equation 3.32 into equation 3.23 

yields the so-called Navier-Stokes equations derived them independently 
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Often it is useful to re-arrange the viscous stress terms as follows 
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   (3.34) 

 

The viscous stresses in the y-and z-component equations can be re-cast in a similar 

manner. We clearly intend to simplify the momentum equations by 'hiding' the two 

smaller contributions to the viscous stress terms in the momentum source. Defining a 

new source by 

 

SM = SM + sM            (3.35) 

 

the Navier-Stokes equations can be written in the most useful fonn for the 

development of the finite volume method: 

 

x-axis    MxSu
x

p

Dt

Du





   

y-axis    MySv
y

p

Dt

Dv





           (3.36) 

z-axis    MzSw
z

p

Dt

Dw





   

 

 3.2.5 Heat Transfer and Fourier Law 

 The law of heat transfer, also known as Fourier's law, states that the time rate 

of heat transfer through a material is proportional to the negative gradient in the 

temperature and to the area, at right angles to that gradient, through which the heat is 

flowing. We can state this law in two equivalent forms: the integral form, in which we 

look at the amount of energy flowing into or out of a body as a whole, and the 

differential form, in which we look at the flow rates or fluxes of energy locally, 

through which the heat is flowing 

 

 
Zd

TCd pρ
A

zq                                           (3.37) 

 

 3.2.6 Fick's Laws of Diffusion 

 Fick's laws of diffusion describe diffusion and can be used to solve for the 

diffusion coefficient, which relates the diffusive flux to the concentration, by 

postulating that the flux goes from regions of high concentration to regions of low 
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concentration, with a magnitude that is proportional to the concentration gradient 

(spatial derivative). In one (spatial) dimension, this is 

                                  dZ
dc

DJ A
ABAZ                (3.38) 

 

where     JAZ   is flux of component A in z-direction (kgmolA/s.m
2
) 

                DAB  is diffusion coefficient of component molecule A in component B 

(m
2
/s)  

    cA    is concentrate of A (kgmolA/m
3
) 

  

3.2.7 The Stefan-Maxwell Equation 

The Stefan-Maxwell equation is the only diffusion equation that separates 

diffusion from convection in a simple way. The flux equation is replaced by the 

difference in species velocities. The Stefan-Maxwell model is more rigorous, is 

commonly used in multi component species systems, and is employed quite 

extensively in the literature. The main disadvantage is that it is difficult to solve 

mathematically. It may be used to define the gradient in the mole fraction of 

components 
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where yi is the gas phase mol fraction of species i, and Ni is the superficial gas phase 

flux of species i averaged over a differential volume element which is small with 

respect to the overall dimensions of the system, but large with respect to the pore size. 
eff

ijD is the binary diffusion coefficient, and can be defined by 
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where Tc and pc are the critical temperature and pressure of species i and j, M is the 

molecular weight of species. 

 

 3.2.8 Darcy‘s Equation 

 Darcy‘s Equation for fluid flow through porous media, which has Continuity 

equations and transport, and can be defined by  

  

 Continuity Equation     0v


 




t
          (3.41) 

 Darcy‘s Equation    gpv 



0           (3.42) 

 

where   is porous of material  and  is permeability  



 

 

58 

 Darcy’s equation was come from experimental for explain to slow permeable 

of particles when combine equation 3.41 and 3.42 can be defined by 
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3.3. Computational Fluid Dynamics of PEMFC 

 

Modeling plays a significant and important role in fuel cell design and 

development process. Because of its importance, modeling is initiated early into a fuel 

cell development cycle, as shown in figure 3.10. The flowchart illustrates a typical 

procedure in fuel cell development, where the process begins with a set of 

requirements. Requirements include power and energy requirements, environmental 

operating conditions, size and volume limitations, safety specifications, and others. 

Along with the requirements, knowledge of materials, processes, and material 

interactions is necessary to properly construct a fuel cell stack. Once several designs 

are down selected, modeling of the designs is performed to determine how well the 

candidate systems satisfy requirements. The modeling helps the designer further 

down-select designs to fabricate and test. The tests performed on the final designs can 

either result in a final prototype or result in an iteration of existing designs for 

improvement. Reliable diagnostics are needed not only to find out what is wrong with 

the existing design so that it can be improved, but also to calibrate and verify the 

models and assumptions used in developing them.  

This design iteration loop can be quite lengthy and frequent, especially when 

stringent requirements or poor modeling capabilities exist. On the contrary, 

improvements in modeling capability can help the designer find and improve on 

existing designs that satisfy stringent requirements. Hence, modeling has a critical 

role in the fuel cell design and development process. A designer can use an accurate 

and robust model to design and develop fuel cell stacks more efficiently and often 

with better performance and lower manufacturing cost.  

Using fuel cell modeling as a successful design tool requires the model to be 

robust, accurate, and able to provide usable answers quickly. In terms of robustness, 

the model should be able to predict fuel cell performance under a large range of 

operating conditions. For example, a PEM fuel cell can be operating at different 

temperature, humidity level, and fuel mixture. A robust model should be able to 

predict fuel cell performance under varying conditions. The model must also predict 

fuel cell performance accurately. It should be mentioned here that accuracy does not 

necessarily mean that a model should accurately predict the absolute value of all the 

physical phenomena being modeled at any point in space and time. Instead, a model 

should accurately predict the relative values or the trends (e.g., an increase in value of 

one parameter should result in either no, low, moderate, or significant increase or 

decrease of another parameter). Accuracy can be contributed to using the correct 

assumptions, using the correct properties and other numerical input parameters, 

predicting the correct physical phenomena by using the correct governing equations, 

and being able to match the modeling results with experimental data. However, 

enhancing model robustness and accuracy often trades off with computational 
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efficiency. To provide answers quickly, the designer must select a model that balances 

robustness, accuracy, and computational effort. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Role of modeling and diagnostics in the fuel cell development process. 

 

3.3.1 Modeling Equation  

 

The PEMFC modeling includes the flow field plate, gas diffusion, catalyst 

layer, membranes and bipolar plate. The numerical calculations are based on solution 

of the conservation equations of mass, momentum, energy, current and species 

transport on a computational grid using CFD. The key elements to modeling fuel cells 

are the transport phenomena in flow channel on polar plate, through porous media, 

heterogeneous reactions within porous electrodes and the coupling between mass 

transports, electrochemical reactions and current–potential fields. The result of model 

can be used to a new flow filed in PEMFC. The model has major assumptions of the 

modeling are (Fang-Bor Weng et al., 2005): 
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1. steady state because it was collected data of operating in steady of 

temperature, voltage and current density,  

2. laminar flow which this research used max velocities in 500 cm
3
/min and 

Reynolds number has not over 2300,   

3. all gases are treated as ideal gas. At normal conditions such as standard 

temperature and pressure, most real gases behave qualitatively like an ideal gas. 

Generally, a gas behaves more like an ideal gas at higher temperature and lower 

density (i.e. lower pressure) as the work performed by intermolecular forces becomes 

less significant compared with the particles' kinetic energy, and the size of the 

molecules becomes less significant compared to the empty space between them. 

4. gas phase flow in catalyst layer, gas diffusion layer and channel flow field,     

without the effects of vaporization and condensation,  

5. the Stefan–Maxwell equations for multi-species diffusion, 

6. Butler–Volmer equation is used to describe electrochemical reactions within 

the catalyst layers, 

7. Nerst–Planck equation is used for the transport of protons through the  

 membrane, 

8. Ohm’s law is applied across whole region of the polarization curve, 

9. gravity effect is neglected because modeling is small size cause mass is 

neglected. 

 

Also, empirical equations, particularly those describing water behavior in the 

polymer membrane and related phenomena, are often used in modeling, in absence of 

equations that describe the actual physical phenomena. Any model is as good as the 

assumptions that it is built upon. Assumptions are needed to simplify the model. It is 

important to understand the assumptions in order to understand the model's limitations 

and to accurately interpret its results. Common assumptions used in fuel cell modeling 

are: 

 

• ideal gas properties, 

• ideal gas mixtures, 

• incompressible flow, 

• laminar flow, 

• isotropic and homogeneous membrane and electrode structures, 

• negligible ohmic potential drop in solid components, 

• the mass and energy transport through porous structures of porosity is 

modeled from macroperspective using the volume-averaged 

conservation equations. 

 

 Channel flow field 

According to assumptions, the conservation equations of mass, momentum 

and species in flow channel can be written as: 

  

 Mass conservation: 

  0



U

t





    (3.44) 

   

http://en.wikipedia.org/wiki/Standard_temperature_and_pressure
http://en.wikipedia.org/wiki/Standard_temperature_and_pressure
http://en.wikipedia.org/wiki/Gas
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        Momentum conservation: 
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where    

   = the fluid density, p the pressure and is the   dynamic viscosity. 

 

 Species conservation: 
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where  

Yi    = the mass-fraction of ith species and Ji is the diffusive flux. 

  

The species diffusion flux may be written as: 
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where  

M   = the mixture molecular weight and Di is the effective mass diffusion 

coefficient of species i. 

 



FSiDiD ,            (3.48) 

 

where  

Di,FS  = the free stream diffusion coefficient of the ith species, 

     = porosity of the medium, 

     = the tortuosity of the medium.  

 

It is a common practice to use tortuosity value of 1.5 in Equation 3.48, 

resulting in the so-called Bruggeman model. 
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 Gas diffusion layer 

 The main assumption is isotropic porous media, their mass and momentum 

equations are effected by porosity   and permeability . These equations are showed 

as: 

 Mass conservation: 
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Momentum conservation: 

 

     

k

U
B

UU
t






2

           

           








   (3.50) 

 

where  

     =  shear force tensor, 

U


   =  the flow velocity vector, 

     =  porosity of the medium, 

 B    =  the body force vector,  

     =  a quantity representing the square of the effective volume to surface 

area ratio of the porous matrix. 

 

 The last term in equation 3.51 represents Darcy’s drag force imposed by pore 

walls on the fluid within the pores, and usually results in a significant pressure drop 

across the porous medium. Species conservation equation in the gas diffusion layer is 

the same as in flow field. The continuity of current within any material under electro 

neutral conditions leads to: 

  

0 i             (3.51) 

 

where  

i   = the current density vector. 

  

 Catalyst layer 

 The mass and momentum equation in the catalyst layer is the same in the gas 

diffusion layer. The mass conservation equations for individual gas phase species 

(i.e., for i=1, . . .) may be written as: 
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where  

Yi    = the mass fractions of the ith species,  

i  = the production rates of the ith species in the gas phase.  

The species diffusion flux may be written same equation 3.52. In the case of 

electrochemical reaction, the volumetric production rate of a given species is 

expressed by the ratio of the transfer current, jT, and the Faraday constant, F: 

 

 
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iii

'"
     (3.53) 

 

where  

a”i and a’i = the stoichiometric coefficients of the products and reactants, 

respectively,  

          jT         = obtained from the Butler–Volmer condition. 

 

The continuity of current within any material under electroneutral conditions 

leads to: 

 

0 i             (3.54) 

 

where  

i   =the current density vector. 

 

 Proton exchange membrane 

In the proton exchange membrane, governing equations are the same as in the 

catalyst layer, but without any chemical reaction. The membrane proton conductivity 

is correlated by the experimental data, which are dependent on temperature and water 

content. 

The numerical model describe a detailed three-dimensional of transport 

phenomena and performance within the PEMFC including gas channel, gas diffusion 

layer, catalyst layer and membrane.  

 

3.3.2 Potential Drop Across the Cell 

 

The goal in this section is to model the potential losses in the gas diffusion 

layers and membrane, so that the activation overpotential can be accurately predicted. 

 

  Ohmic Loss in Gas Diffusion Layers 

The potential loss due to current conduction through the gas diffusion layer 

can be modeled by an equation similar to the Laplace equation. The potential 

boundaries are setup to drive the current through these regions, 

 

 .( λe V) = Se                                                    (3.55) 

 

Where Se is the electron source term equals to the anode and cathode currents 

for each side respectively. The ohmic loss is then calculated as, 
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ηohmic=VCL−Vref                                                   (3.56) 

  

Where VCL is the potential at the catalyst layer and Vref is the reference 

potential set at the interface between the gas diffusion layer and the bipolar plate. 

 

  Ohmic Loss in Membrane 

Potential loss in the membrane is due to resistance to proton transport across 

the membrane. This potential loss distribution is also modeled by the Laplace 

equation similar to the potential loss in the gas diffusion layer regions, 

 

 .( λm V)  = Sm                                                (3.57) 

 

Where Sm is source and sink of protons in the anode catalyst layer and cathode 

catalyst layer respectively. The protonic loss is then calculated as, 

 

ηprotonic=VCL,c−VCL,a                                              (3.58) 

 

Where VCL,c is the potential at the cathode catalyst layer and VCL,a is the 

potential at the anode catalyst layer. 

 

   Activation Over-potential 

After the ohmic losses in the membrane and gas diffusion electrodes are 

calculated, activation over-potential can be calculated from the reversible potential 

and cell potential, 

 

ηact,c=Erev−Ecell −ηohmic,gdl −η protonic,mem                             (3.59) 

 

The cell reversible potential, Erev, is a thermodynamic property and can be 

calculated based on Nernst equation. The cell potential, Ecell, is the input parameter 

based on the desired loading condition. Therefore the cathode activation over-

potential can be determined. The anode activation over-potential is small and 

considered negligible in this model. 

 

3.3.3 Electrochemical Kinetics 

 

The local current density is calculated based on the well known Butler-Volmer 

equation which couples the reactant concentration with the activation over-potential: 

Cathode current, 
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where , ref

coi ,  is the cathode reference exchange current density, αa and αc are 

the cathode anodic and cathodic charge transfer coefficients respectively. 
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Anode current,  
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However, the anode current is simplified in this model. Since the anode 

activation overpotential is very small and the hydrogen concentration distribution at 

the catalyst layer is quite uniform, the local anode current density is set equal to the 

average cathode current density with the condition that charge must be conserved, 
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Where Nc and Na are the total number of cells in the cathode and anode catalyst 

layers respectively; Vj is the cell volume. 

 
3.3.4 Boundary Conditions  

Boundary conditions are specified at all external boundaries of the 

computational domain as well as boundaries for various mass transport and scalar 

equations inside the computational domain.  

 

  Inlets  

At the anode and cathode several Dirichlet boundary conditions of velocity, 

inlet gas stream temperature, mass fraction of each gas component are applied as 

follows: the inlet velocity is a function of the cell current and stoichiometric flow 

ratio, MEA area, and channel cross-section area. In other words, the inlet mass flow 

must be sufficient to supply the amount of reacting species required for a specific 

current density and stoichiometric flow ratio. In this model, the cell current is 

predicted from a specified cell voltage, therefore cell current is changing at every 

iteration, and hence the inlet velocity must be updated at every iteration to keep up 

with the changing cell current.  

 

  Outlets 

Pressure boundary conditions are specified at the anode and cathode outlets. 

The desired cell operating pressures are specified at the anode and cathode outlets. 

Neumann boundary conditions are applied for other variables, i.e. zero normal 

gradients are imposed on velocity, temperature, species mass fractions, and the 

additional scalar equations of the potential fields.  

 

  External Surfaces 

Symmetry boundary conditions are applied at the surfaces of the 

computational domain in the z-direction. All variables are mathematically symmetric, 

with no flux across the boundary. At the external surfaces in the y-direction, (top and 

bottom surfaces of the cell), temperature is specified and zero heat flux. 
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  Boundary Conditions at the Interfaces inside the Computational  

 Domain 

 

At the boundary between the gas channel and the bipolar plate, conducting 

boundary condition is applied to account for heat transfer between these two 

materials. Perhaps the most difficult boundary conditions to apply are the boundary 

conditions required for the mass fraction equations and the potential equations at the 

interfaces between different regions of the cell. 

For the oxygen mass fraction equation, a boundary condition must be specified 

at the interface between the cathode catalyst layer and the membrane to keep the 

oxygen from entering the membrane.  

Similarly, a Neumann type boundary condition was applied at the interface 

between the anode catalyst layer and the membrane to stop hydrogen from entering 

the membrane 

The potential equations also required a combination of Dirichlet and Neumann 

boundary conditions at the interfaces in the y-direction. Dirichlet boundary conditions 

are applied at the interface between the bipolar plates and the gas diffusion layers. 

More specifically, a zero potential boundary is specified at this interface. Neumann 

boundary conditions are applied at the interface between the gas channels and the gas 

diffusion layers to give zero potential flux into the gas channels. Mathematically at 

these interfaces the potential gradient is zero. 

Similarly, the protonic potential field requires a set of potential boundary 

condition and zero flux boundary condition at the anode catalyst layer interface and 

cathode catalyst layer interface respectively. 

 

3.4 Summary  

 This chapter ahs presented the theory of computation fluid dynamics (CFD), 

which used to as a tool in this studied. These included governing equations of fluid 

flow, heat transfer modeling, chemical reaction and electric modeling. CFD was used 

for describe to affect parameters of gas flow and chemical reaction in cell. There were 

gave data used to design flow field for a better performance and building prototypes 

flow field for experiment. The results was validated with others research and 

experimental.  


