Thesis Title

Author

Degree

Capability Assessment of Roadside Tree on Nitrogen Dioxide Removal from Chiang Mai Urban Air Mrs. Wasana Farrelly

Master of Science (Environmental Science)

Thesis Advisory Committee

Asst. Prof. Dr. Somporn Chantara	Advisor
Asst. Prof. Dr. Wanaruk Saipunkaew	Co-advisor
Dr. Sutthathorn Chairuangsri	Co-advisor

ABSTRACT

Motor vehicles have been shown to be the major emitters of NO₂ in urban areas. Fortunately, vegetation has also been shown to be the most significant sink area for NO₂, thereby improving air quality. This study was conducted to measure and compare NO₂ concentrations inside and outside roadside tree canopies as well as to assess amounts of NO₂ removal by roadside trees within the selected urban areas. The two sampling sites in this study were Chiang Mai Moat (CMM) represented a high polluted area and Chiang Mai University (CMU) represented a low polluted area. Two common tree species, Bullet wood (*Mimusops elengi* L.) and Queen's flower (*Lagerstroemia speciosa* (L.) Pers), along roadsides were selected. Three individuals of both tree species were chosen in each sampling site. NO₂ was collected 24 hour a day, inside and outside tree canopies by tailor made tube type passive samplers. The samplers were attached in a protective shelter and hung 2.0-2.5 m above the ground to the leading shoot (inside the canopy). NO₂ outside the canopies was also collected by placing the samplers at the same height on poles approximately 0.3-1.0 m away from the edge of the tree canopies. The NO_2 samples were extracted by de-ionized water and Saltzmann reagent and analyzed by spectrophotometry. The concentrations of NO_2 inside and outside tree canopies were compared by using paired *t*-test. The results show that NO₂ concentrations inside canopies were significantly less than outside canopies especially in high pollution areas. Concentrations of NO₂ inside and outside the canopy at the same study site were subtracted to get NO₂ uptake by each individual tree. The NO₂ uptake by Bullet wood trees revealed higher NO₂ absorption than Queen's flower trees. The NO₂ uptake by Bullet wood and Queen's flower at high polluted area were 6.2-46.1 and 0.4-18.3 ppbv, respectively. Whereas, those at low polluted area were 3.2-10.3 and 0.7-13.3 ppbv, respectively. However, the NO₂ uptake linearly depended on atmospheric concentrations of NO₂, therefore the amounts of NO₂ uptake increased when ambient NO₂ increased. It must also be noted that the Bullet wood tree is an evergreen species while Queen's flower is a deciduous tree that undergoes annual senescence resulting in low NO₂ uptake at certain times of the year. Additionally, Bullet wood's stomata are larger than Queen's flower's stomata, thus allowing increased NO₂ uptake by Bullet wood canopies. The overall conclusion suggested that Bullet wood trees removed NO₂ from the air to a greater degree than Queen's flower (~1.3-4.5 times in low pollutant area and 2.5-15.5 times in high pollutant area).

ชื่อเรื่องวิทยานิพนธ์

การประเมินความสามารถของต้นไม้ริมถนนในการดึงไนโตรเจนได ออกไซด์จากอากาศในเขตเมืองเชียงใหม่

ผู้เขียน

นางวาสนา แฟเรลลี่

ปริญญา

วิทยาศาสตรมหาบัณฑิต (วิทยาศาสตร์สิ่งแวคล้อม)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผู้ช่วยศาสตราจารย์ คร. สมพร จันทระ ผู้ช่วยศาสตราจารย์ คร. วนารักษ์ ไซพันธ์แก้ว อาจารย์ คร. สุทธาธร ไชยเรืองศรี อาจารย์ที่ปรึกษาหลัก อาจารย์ที่ปรึกษาร่วม อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

ยานพาหนะเป็นแหล่งมลพิษหลักที่ปล่อยในโตรเจนไดออกไซด์สู่ชั้นบรรยากาศในเขต เมือง และเป็นที่ทราบกันว่าต้นไม้เป็นแหล่งดูดซับไนโตรเจนไดออกไซด์ที่สำคัญซึ่งส่งผลให้ กุณภาพอากาศดีขึ้น ในการศึกษานี้มีวัตถุประสงค์เพื่อวัดและเปรียบเทียบปริมาณไนโตรเจนได ออกไซด์ภายในพุ่มและนอกพุ่มไม้ที่ปลูกบริเวณริมถนน และประเมินปริมาณการกำจัดไนโตรเจน ใดออกไซด์โดยด้นไม้ริมถนนภายในพื้นที่ศึกษาสองพื้นที่ คือ พื้นที่รอบดูเมืองเซียงใหม่ซึ่งเป็น ด้วแทนของพื้นที่ที่มีมลพิษทางอากาศสูง และพื้นที่ภายในมหาวิทยาลัตเชียงใหม่เป็นตัวแทนพื้นที่ที่ มีมลพิษทางอากาศต่ำ โดยใช้ด้นไม้ในการทดสอบ 2 ชนิด คือ พิถุล (*Mimusops elengi* L.) และ อินทนิลน้ำ (*Lagerstroemia speciosa* (L.) Pers) เนื่องจากเป็นด้นไม้ที่พบมากในบริเวณริมถนนของ พื้นที่ศึกษา โดยเลือกมาชนิดละ 3 ด้นในแต่ละพื้นที่ศึกษา ทำการเก็บไนโตรเจนไดออกไซด์ด้วย อุปกรณ์เก็บตัวอย่างแบบแพสซีฟชนิดหลอดเป็นเวลา 24 ชั่วโมงทั้งภายในและภายนอกพุ่ม โดยทำ

การติดหลอดเก็บตัวอย่างในกล่องป้องกันและแขวนชุดเก็บตัวอย่างที่กิ่งด้านล่างของพุ่มที่ระดับ ้ความสูงประมาณ 2.0–2.5 เมตรจากพื้น ส่วนภายนอกพุ่มทำการติดอุปกรณ์เก็บตัวอย่างที่เสาไฟฟ้า ห่างจากทรงพุ่มของต้นไม้ประมาณ 0.3–1.0 เมตร หลังจากครบ 24 ชั่วโมง หลอดเก็บตัวอย่างจะถูก นำไปสกัดด้วยน้ำปราศจากไอออนและทำให้เกิดสีด้วยสารละลายซอลท์ซมันน์และวิเคราะห์หา ปริมาณในโตรเจนใดออกไซด์ด้วยเทคนิคสเปกโทรโฟโตเมตรี ทำการเปรียบเทียบปริมาณ ในโตรเจนไดออกไซด์ระหว่างภายในและภายนอกพุ่มด้วยสถิติ pair *t*-test พบว่าในโตรเจนได ้ออกไซด์ภายในพุ่มมีค่าน้อยกว่านอกพุ่มอย่างมีนัยสำคัญโดยเฉพาะอย่างยิ่งบริเวณที่มีมลพิษทาง อากาศสูง เมื่อใช้ก่าความแตกต่างระหว่างปริมาณในโตรเจนใดออกไซด์ในพุ่มและนอกพุ่มเป็น ปริมาณการดูคซับในโตรเจนใดออกไซด์โดยต้นไม้แต่ละต้น พบว่าปริมาณการดูคซับในโตรเจนใด ออกไซด์โดยต้นพิกุลสูงกว่าต้นอินทนิลน้ำ โดยที่ปริมาณการดูคซับโดยต้นพิกุลและอินทนิลน้ำใน ้พื้นที่ที่มีมลพิษทางอากาศสูง คือ 6.2-46.1 และ 0.4-18.3 ส่วนในพันล้านส่วน ตามลำคับ ในขณะที่ ้ปริมาณดุคซับในพื้นที่ที่มีมลพิษต่ำ คือ 3.2-10.3 และ 0.7-13.3 ส่วนในพันล้านส่วน ตามลำคับ ้อย่างไรก็ตามปริมาณการดูคซับนั้นขึ้นอยู่กับปริมาณความเข้มข้นของไนโตรเจนไคออกไซด์ใน ้บรรยากาศ โดยพบว่าปริมาณการดูคซับเพิ่มขึ้นเมื่อความเข้มข้นของในโตรเจนไดออกไซด์ใน บรรยากาศสูงขึ้น นอกจากนี้ด้วยเหตุที่พิกุลเป็นไม้ไม่ผลัดใบในขณะที่อินทนิลน้ำนั้นมีการผลัดใบ ซึ่งในช่วงที่มีการผลัคใบส่งผลให้การคูคซับก๊าซลคลง ปัจจัยเรื่องขนาคของปากใบยังอาจส่งผลให้ การดูดซับก๊าซของต้นไม้แต่ละชนิดแตกต่างกัน ปากใบของพิกุลมีขนาดใหญ่กว่าปากใบของ ้อินทนิลน้ำซึ่งส่งผลให้พิกุลดุดซับในโตรเจนใดออกไซด์ได้มากกว่า ซึ่งจากการศึกษาสามารถสรุป ใด้ว่าต้นพิกุลดูคซับในโตรเจนไคออกไซค์ได้ดีกว่าต้นอินทนิลน้ำในอัตราส่วนประมาณ 1.3-4.5 เท่า ในพื้นที่ที่มีมลพิษทางอากาศต่ำและประมาณ 2.5-15.5 เท่าในพื้นที่ที่มีมลพิษสูง