TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (THAI)	v
ABSTRACT (ENGLISH)	vii
LIST OF TABLES	XV
LIST OF FIGURES	xvi
CHAPTER 1 INTRODUCTION	1
1.1 Overview	1
1.2 Objectives of this work	4
1.3 Methodology and Analyses	4
CHAPTER 2 BACKGROUND AND LITERATURE REVIEW	7
2.1 Piezoelectric ceramics	7
2.1.1 Background and basis for piezoelectricity theory	7
2.1.2 Piezoelectricity in ferroelectric ceramics	8
2.1.3 Hysteresis loops	12
2.1.4 Poling	16
2.1.5 Lead zirconate titanate, PZT	18
2.2 Organic ferroelectric materials	24
2.2.1 Polyvinylidene fluoride films	25

2.2.2 Structure and piezoelectricity of PVDF	25
2.3 Portland cement	32
2.3.1 Portland cement: general	32
2.3.2 Compound composition of anhydrous Portland cement	33
2.3.3 The hydration of Portland cement	34
2.3.4 Rate of hydration	37
2.3.5 Volume change during hydration	38
2.3.6 Summary of the hydration of Portland cement	39
2.3.7 Aggregate and the aggregate/cement bond	40
2.3.8 Aggregate particle characteristics	41
2.4 Carbon graphite	42
2.5 Composite materials	44
2.5.1 Properties of composite materials	47
2.5.2 Connectivity	49
2.5.3 Piezoelectric composites	51
2.5.4 Percolation in composites	53
2.6 Requirement and background of piezoelectric-cement based composites	55
CHAPTER 3 EXPERIMENTAL PROCEDURE	75
3.1 Materials and Fabrication	75
3.1.1 Piezoelectric ceramics fabrication	75
3.1.2 Lead zirconate titanate, PZT	78
3.1.3 Composite fabrications	79
3.1.4 Electrode making	82

3.2 Poling process	82
3.3 Physical and Microstructure characterization	83
3.3.1 X-ray diffractometry	83
3.3.2 Scanning electron microscopy, SEM	84
3.3.3 Piezoresponse Force microscopy, PFM	85
3.4 Electrical properties measurements	88
3.4.1 Dielectric measurement	88
3.4.2 Ferroelectric measurement	89
3.4.3 Piezoelectric measurement	90
CHAPTER 4 RESULTS AND DISCUSSION	92
Part I: 0-3 connectivity cement-based piezoelectric ceramic composite	92
4.1 Phase formation	92
4.2 Dielectric properties	93
4.2.1 Effect of piezoelectric ceramic content	93
4.2.2 Effect of particle size of piezoelectric ceramic	97
4.3 Piezoelectric properties	98
4.3.1 The degree of poling	98
4.3.2 Effect of PZT content on piezoelectric properties	101
4.3.3 Effect of PZT particle size on piezoelectric properties	103
4.3.4 Effect of hydration ages on piezoelectric properties	105
4.4 Ferroelectric properties	108
4.4.1 Ferroelectric hysteresis behavior in 0-3 ceramic-cement composites:	108
Effects of frequency and electric field	

4.4.2 Effects of PZT content on ferroelectric hysteresis behavior of 0–3	111
PZT-Portland cement composites	
4.5 Interfacial morphology and Microstructure	113
4.5.1 SEM micrograph	113
4.5.2 Domain configurations using PFM	116
4.6 Summary	121
Part II: Effect of third phase on microstructure and properties of PZT-PC	124
composites	
4.7 Dielectric properties	125
4.7.1 Dielectric properties of PZT-PC composites with added	125
carbon graphite	
4.7.2 Dielectric properties of PZT-PC composites with added PVDF	128
4.8 Piezoelectric properties	130
4.8.1 Piezoelectric properties of PZT-PC composites with added	130
carbon graphite	
4.8.2 Piezoelectric properties of PZT-PC composites with added PVDF	131
4.8.3 Effect of hydration ages on piezoelectric properties	135
4.9 Ferroelectric properties	138
4.9.1 Ferroelectric properties of PZT-PC composites with added	138
carbon graphite	
4.9.2 Ferroelectric properties of PZT-PC composites with added PVDF	139
4.10 Interfacial morphology and Microstructure	141

4.10.1 Microstructure of PZT-PC composites with added PVDF	141
4.11 Summary	149
CHAPTER 5 CONCLUTIONS AND SUGGESTIONS FOR	151
FURTHER WORK	
5.1 Conclusions	151
5.2 Suggestions for further work	153
REFERENCES	155
VITA	167

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Tab	le	Page
2.1	Piezoelectric and pyroelectric coefficients of polymer films at	25
	room temperature	
2.2	Typical oxide and compound compositions of Portland cements	34
2.3	Depth of hydration product (μ m) on 30-55 μ m grains	37
2.4	Examples of product properties	49
2.5	The basic properties of the PZT ceramics, cement paste and concrete	58
2.6	Properties of composites	64
2.7	Piezoelectric parameter of the 0-3 nano-PZT/cement composites	65
2.8	The electromechanical coupling properties of the composites	68
3.1	Specifications of the starting materials used in this study	76
3.2	Composition of ceramic- cements composites	80
3.3	Composition of ceramic- cements composites with third phase adding	80
3.4	Poling condition of the ceramic-cement composites	83
5.1	Electrical properties of cement piezoelectric composites	153

LIST OF FIGURES

Figu	ires a set in a set	Page
1.1	Flow chart of preparation and characterization of cement-based	6
	PZT composites	
2.1	Piezoelectric effects in ferroelectric ceramics	10
2.2	Typical hysteresis loops from various ferroelectric ceramics:	13
	(a) BaTiO ₃ capacitor, (b) soft (easily switchable) PZT,	
	(c) PLZT relaxor, and (d) PSZT antiferroelectric material	
2.3	Hysteresis loops and longitudinal strain curves for (a) ferroelectric	15
	memory ceramic and (b) SFE nonmemory relaxor ceramic	
2.4	Schematic drawing of the poling process for piezoelectric ceramics	17
2.5	Morphotropic phase boundary in the Pb(Zr,Ti)O ₃ system	18
2.6	Composition dependence of dielectric constant and electromechanical	20
	coupling factor in PZT ceramic	
2.7	P-E loops with increasing peak field strengths at 50 Hz for a ceramic	22
	Ferroelectric	
2.8	(a) variations, at room temperature of piezoelectric coefficient d_{ij} and	23
	(b) remanent polarization P_r with composition of PZT near the	
	morphotropic phase boundary	

2.9	Schematic illustration showing random stacks of amorphous and crystal	27
	lamellae in PVDF polymer. Figure (a) represents the morphology after	
	the film is melt cast; (b) is after orientation of the film by mechanically	
	stretching to several times its original length; (c) is after depositing metal	
	electrodes and poling through the film thickness	
2.10	Elementary cell of the PVDF crystal structure in phase β	29
2.11	Projections of four crystal structures of PVDF viewed along the	30
	molecular axes. Dipole moments are shown by arrows. Large	
	circles represent fluorine atoms, small circles represent carbon atom;	
	hydrogen atom are not shown	
2.12	Schematic picture of a liquid-crystal stack showing the chain and dipole	31
	directions in the crystals	
2.13	The strength developed by Portland cement compounds	35
2.14	The interface between the aggregate and cement paste	40
2.15	The structure of graphite	43
2.16	Chart illustrating design considerations for optimizing the performance	46
	of solid state devices. The task of the materials engineer is to find the	
	materials, processing methods, and connectivity patterns which	
	maximize the figure of merit	
2.17	Connectivity patterns in a diphasic composite system	50
2.18	The series (a) and parallel (b) model used in estimating the piezoelectric	52
	effect of diphasic solid	

2.19	Site percolation on the square lattice: The small circles represent the	54
	occupied sites for three different concentrations. Nearest-neighbor	
	cluster sites are connected by lines representing the bonds. Filled	
	circles are used for finite clusters, while open circles mark the large	
	infinite cluster	
2.20	Aging influence on piezoelectric factor (d_{33}) for cement-based	65
	piezoelectric composites and ceramic/polymer composites	
2.21	The piezoelectric strain factor (d_{33}) of the composites as a function	66
	of the poling field E	
2.22	The piezoelectric strain factor (d_{33}) of the composites as a function	66
	of the poling time <i>t</i>	
2.23	The piezoelectric strain factor (d_{33}) of the composites as a function	67
	of the poling temperature T	
2.24	Dependence of the piezoelectric constants on the content of PZT	67
2.25	Effect of PLN particle size on piezoelectric properties of the	68
	composites; (a) Pieoelectric strain factor (d_{33}) , and (b) Pieoelectric	
	voltage factor (g ₃₃)	
2.26	The interfacial bonding of the PZT ceramic particle and the cement	69
	matrix	
2.27	The influence of ages on the piezoelectric strain factor (d_{33}) constant	69
	of the composites	
2.28	Variation of piezoelectric strain constant (d_{33}) (a), and piezoelectric	70
	voltage constant (g_{33}) (b), of the composites with carbon black content	

2.29	Variation of dielectric constant (a), and dielectric loss (b), of the	71
	composites with carbon black content	
2.30	Dependence of the piezoelectric strain factor (d_{33}) of the carbon	72
	black /PZT/cement composites on the poling field (a), and on the	
	poling duration	
2.31	Variations of piezoelectric strain factor (d_{33}) of the composites with	73
	the aging time	
2.32	Dependence of (a); the dielectric constant (ε_r) and dielectric loss (tan δ)	74
	and (b); the piezoelectric strain factor (d_{33}) and piezoelectric voltage	
	factor (g_{33}) of the carbon black/PZT/cement composites on the carbon	
	content	
3.1	Mixing and calcination processes for powder and ceramic preparation	77
3.2	Two-stage processing route for PZT powders and ceramic	78
3.3	The model for fabricating cement-based piezoelectric ceramic	81
	composites samples	
3.4	The curing chamber	81
3.5	X-ray diffractometer (Philips Model X-pert)	84
3.6	Scanning electron microscope (SEM, JEOL JSM-840A, Japan)	85
3.7	The schematic of piezoresponse force microscopy	87
3.8	Piezoresponse force microscope (SPA 400, Seiko Inc., Japan)	88
3.9	The experiment set up for dielectric properties measurements at	89
	room temperature	
3.10	Schematic circuit of Sawyer-Tower Bridge for the observation of	90
	P-E characteristics in ferroelectrics	

3.11	The d ₃₃ meter model PM25	91
4.1	XRD pattern of PZT-PC composites	93
4.2	Effect of ceramic piezoelectric content on (a) dielectric constant and	94
	(b) dielectric loss	
4.3	Model of composite (a) Series model; (b) Parallel model; (c) Cube model	96
4.4	Relative dielectric constant versus ceramic content	96
4.5	Effect of particle size of ceramic piezoelectric on (a) dielectric constant	97
	and (b) dielectric loss	
4.6	Relationship between the d_{33} and the poling temperature	99
4.7	The effect of poling time on the piezoelectric coefficient (d_{33})	100
4.8	The effect of PZT content on the piezoelectric coefficient (d_{33})	103
4.9	The effect of PZT particle size on the piezoelectric coefficient	104
4.10	The effect of hydration age on the piezoelectric coefficient (d_{33}) 10	06-107
	of composite for (a) 10 days; (b) 90 days of 30,40,50%PZT;	
	(c) 90 days of 60,70,80,90%PZT; (d) 1 year	
4.11	Effects of electric field (a); and frequency (b); on the ferroelectric	110
	(P-E) hysteresis loops of PZT-PC composites (with fixed f of 60 Hz)	
4.12	Effects of PZT content on the ferroelectric (P-E) hysteresis loops of	112
	PZT-PC composites (with fixed f of 20 Hz) of external electric field	
	amplitude at 20kV/cm	
4.13	SEM micrographs at interfacial zone of PZT-PC composites;	114
	(a) magnification 20× and 50×, (b) magnification 500× and	
	1500× and (c) magnification 1000 × and 2000 ×	

4.1	4 SEM micrographs of PZT-PC composites (a) magnification ×500	115
	and (b) magnification $\times 1,500$	
4.1	5 The topography image (a) and the corresponding piezoresponse	116
	image (b) for scanning area of 10 x $10\mu m^2$ of Portland cement (PC)	
4.1	6 The topography image (a) and the corresponding piezoresponse	117
	image (b) for scanning area of 10 x $10\mu m^2$ of Lead zirconate titanate	
	(PZT)	
4.1	7 The topography image (a) and the corresponding piezoresponse	118
	image (b) for scanning area of 60 x $60\mu m^2$ at interfacial zone of	
	PZT-PC composites	
4.1	8 The topography image (a) and the corresponding piezoresponse	119
	image (b) for scanning area of 30 x $30\mu m^2$ at interfacial zone of	
	PZT-PC composites	
4.1	9 The topography image (a) and the corresponding piezoresponse	119
	image (b) for scanning area of 10 x $10\mu m^2$ at interfacial zone of	
	PZT-PC composites	
4.2	D Effect of carbon addition on dielectric properties of PZT-PC	126
	composites; (a) dielectric constant; (b) dielectric loss	
4.2	1 Model of electrical transport of PZT-PC composites with added	127
	carbon by Chiang Mai Unive	
4.2	2 Effect of PVDF addition on dielectric properties of PZT-PC	129
	composites; (a) dielectric constant; (b) dielectric loss	
4.2	3 The piezoelectric charge coefficient (d_{33}) of PC-PZT composites with	130
	various PVDF and carbon graphite additions	

4.24	The poling period of PC-PZT composites with various PVDF and	132
	carbon graphite additions	
4.25	The dielectric permittivity (ε_{33}) of PC-PZT composites with various	133
	PVDF and carbon graphite additions	
4.26	The piezoelectric voltage coefficient (g_{33}) of PC-PZT composites	133
	with various PVDF and carbon graphite additions	
4.27	The effect of hydration age on the piezoelectric charge	135
	coefficient (d_{33}) of composite for 30 days of PVDF addition	
4.28	The effect of hydration age on the piezoelectric voltage	136
	coefficient (g_{33}) of composite for 30 days of PVDF addition	
4.29	The effect of hydration age on the dielectric permittivity (ε_{33}) of	136
	composite for 30 days of PVDF addition	
4.30	Effects of carbon graphite content on the ferroelectric (<i>P</i> - <i>E</i>)	139
	hysteresis loops of PZT-PC composites (with fixed f of 50 Hz)	
	of external electric field amplitude at 20kV/cm	
4.31	Effects of PVDF content on the ferroelectric (P-E) hysteresis loops	140
	of PZT-PC composites (with fixed f of 50 Hz) of external electric	
	field amplitude at 20kV/cm	
4.32	SEM micrographs of PVDF powder (a) magnification ×3,000,	142
	(b) magnification $\times 10,000$, (c) magnification $\times 20,000$ and	
	(d) EDX spectrum	
4.33	The topography image for scanning area of (a) $70 \times 70 \mu m^2$,	143
	(b) $30 \times 30 \mu m^2$, (c) $10 \times 10 \mu m^2$ of PVDF	

4.34	The topography image (a) and the corresponding piezoresponse	144
	Image, (b) for scanning area of $30 \times 30 \mu m^2$ at interfacial zone	
	of PZT-PC composites	
4.35	The topography image (a) and the corresponding piezoresponse	145
	image, (b) for scanning area of $10 \times 10 \mu m^2$ at interfacial zone	
	of PZT-PC composites	
4.36	SEM micrographs of PZT-PVDF-PC composites (a) magnification	146
	\times 5,500, (b) magnification \times 10,000, (c) magnification \times 20,000 and	
	(d) EDX spectrum	
4.37	The topography image for scanning area of 30 x $30\mu m^2$ (a),	147
	(b and c), of PZT-PVDF-PC composite150	
4.38	The corresponding piezoresponse image for scanning area of	148
	$30 \times 30 \mu m^2$ (a), $10 \times 10 \mu m^2$ (b and c) of PZT-PVDF-PC composite	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved