
CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

  Among the 32 crystallographic point groups describing all crystalline systems, 

11 are centrosymmetric and contain an inversion center. In that case polar properties 

become not possible because any polar vector may be inverted by an existing 

symmetry transformation. All other 21 point groups without an inversion center 

(except the point group 432) can exhibit piezoelectricity which describes the coupling 

between mechanical and electrical energies in a material. An external mechanical 

stress X leads to a change in the electric polarization P or dielectric displacement D 

respectively or an external electric field E causes an elastic strain x. The relation is 

given by the piezoelectric coefficient dijk being a third rank tensor: 

Di = dijkXjk Xij = dijkEk              (2.1) 

There are 10 polar groups with a unique polar axis among the 21 point groups 

without an inversion center. This class of crystals may show a spontaneous 

polarization parallel to the polar axis.  

Following Maxwell‟s equations, the spontaneous polarization is connected 

with surface charges Ps = ζ. The surface charges in general are compensated by 

charged defects. A temperature change changes the spontaneous polarization. This 

effect is called the pyroelectric effect [25]. 
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If it is possible to reorient the spontaneous polarization of a material between 

crystallographically equivalent configurations by an external electric field, then in 

analogy to ferromagnetic one speaks about ferroelectrics. Thus, it is not the existence 

of spontaneous polarization alone, but the “switchability” by an external field which 

defines a ferroelectric material. Figure 2.1 displays a characteristic hysteresis loop 

occurring during the reversal of the polarization in a ferroelectric [25]. 

 

Figure 2.1 Classification of the crystallographic groups by their electrical 

properties [25] 

2.2 Dielectric polarization 

2.2.1 Macroscopic and microscopic views 

In accordance to the Poisson equation, the source of the dielectric 

displacement  ⃑⃑  is given by the density of free (conducting) charges ρ: 

div ⃑⃑  = ρfree                           (2.2) 

The overall charge neutrality of matter in an external field is described by: 

 ⃑⃑  =    ⃑ +  ⃑                                (2.3) 



7 

The vacuum contribution caused by the externally applied electric field is 

represented by the term    ⃑ , and the electrical polarization of the matter in the system 

is described by  ⃑ , e.g. [26]. This relation is independent of the nature of the 

polarization which could be pyroelectric polarization, by piezoelectric polarization or 

dielectric polarization (by an external electric field). 

Considering a simple parallel plate capacitor filled with matter (see Figure 

2.2), two cases have to be distinguished: (i) If the applied voltage is kept constant (E = 

const, short circuit condition), additional free charges need to flow into the system to 

increase D according to Equation (2.2). If the charges on the plates are kept constant 

(D = const, open circuit condition), the electric field E and, hence, the voltage 

between the plates will decrease according to Equation (2.3). 

 

Figure 2.2 Parallel plate capacitor (a) without any dielectric, (b) filled with 

dielectric under short circuit condition (E = constant) and (c) filled with dielectric 

under open circuit condition (D = constant ) [25] 

For a pure dielectric response of the matter the polarization is proportional to 

the electric field in a linear approximation by  

P =       or  D =                   (2.4) 
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The dielectric susceptibility χ is related to the relative dielectric constant   by 

χ =   −1. Equations (2.4) are only valid for small fields. Large amplitudes of the ac 

field lead to strongnon-linearities in dielectrics, and to sub-loops of the hysteresis in 

ferroelectrics. Furthermore, the dielectric response depends on the bias fields as 

shown in Figure 2.3. From the device point of view this effect achieves the potential 

of a tunable dielectric behavior, e. g. for varactors. 

 

Figure 2.3 Bias field dependence of the dielectric constant of (a) dielectric 

and (b) ferroelectric materials [25] 

Equations (2.3) and (2.4) describe the mean properties of the dielectric. This 

macroscopic point of view does not consider the microscopic origin of the 

polarization [27]. The macroscopic polarization P is the sum of all the individual 

dipole moments pj of the material with the density Nj. 

  ∑                          (2.5) 

In order to find a correlation between the macroscopic polarization and the 

microscopic properties of the material a single (polarizable) particle is considered. A 
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dipole moment is induced by the electric field at the position of the particle which is 

called the local electric field Eloc 

p = αEloc                   (2.6) 

where α is the polarizability of an atomic dipole. If there is no interaction between the 

polarized particles, the local electric field is identical to the externally applied electric 

field Eloc = E0, resulting in a simple relation between the susceptibility and the 

polarizability   χ = Njαj. 

In condensed matters, the density and therefore the electrostatic interaction 

between the microscopic dipoles is quite high. Hence, the local field Eloc at the 

position of a particular dipole is given by the superposition of the applied 

macroscopic field E0 and the sum of all other dipole fields. For cubic structures and 

for induced dipoles (ionic and electronic polarization), the calculation reveals a 

relation between the atomic polarizability α and the macroscopic permittivity 

      which is referred to the Clausius-Mossotti equation [28]. 

  
        

       
                (2.7) 

2.2.2 Mechanisms of polarization 

In general, there are five different mechanisms of polarization which can 

contribute to the dielectric response [27]. 

• Electronic polarization exists in all dielectrics. It is based on the displacement of 

the negatively charged electron shell against the positively charged core. The 

electronic polarizability αel is approximately proportional to the volume of the electron 
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shell. Thus, in general αel is temperature-independent, and large atoms have a large 

electronic polarizability. 

• Ionic polarization is observed in ionic crystals and describes the displacement of 

the positive and negative sub-lattices under an applied electric field. 

• Orientation polarization describes the alignment of permanent dipoles. At ambient 

temperatures, usually all dipole moments have statistical distribution of their 

directions. An electric field generates a preferred direction for the dipoles, while the 

thermal movement of the atoms perturbs the alignment. The average degree of 

orientation is given by the Langevin function < αor > = p
2
/(3kBT) where kB denotes the 

Boltzmann constant and T the absolute temperature. 

• Space charge polarization could exist in dielectric materials which show spatial 

inhomogeneities of charge carrier densities. Space charge polarization effects are not 

only of importance in semiconductor field-effect devices, they also occur in ceramics 

with electrically conducting grains and insulating grain boundaries (so-called 

Maxwell-Wagner polarization). 

• Domain wall polarization plays a decisive role in ferroelectric materials and 

contributes to the overall dielectric response. The motion of a domain wall that 

separates regions of different oriented polarization takes place by the fact that favored 

oriented domains with respect to the applied field tends to grow. 

The total polarization of dielectric material results from all the contributions 

discussed above. The contributions from the lattice are called intrinsic contributions, 

in contrast to extrinsic contributions. 

                                     (2.8) 
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which                are intrinsic while                 are extrinsic. 

Each contribution stems from a short-range movement of charges that 

responds to an electric field on different time scales and, hence, through a Fourier 

transform, in different frequency regimes. If the oscillating masses experience a 

restoring force, a relaxation behavior is found (for orientation, domain walls, and 

space charge polarization). Resonance effects are observed for the ionic and electronic 

polarization. The dispersion of the dielectric function is shown in Figure 2.4, and 

holds the potential to separate the different dielectric contributions. 

The space charge polarization is caused by a drift of mobile ions or electrons 

which are confined to outer or inner interfaces. Depending on the local conductivity, 

the space charge polarization may occur over a wide frequency range from mHz up to 

MHz. The polarization due to the orientation of electric dipoles takes place in the 

frequency regime from mHz in the case of the reorientation of polar ligands of 

polymers up to a few GHz in liquids such as water. It is often possible to distinguish 

between space charge and orientation because of the temperature dependence of αor. 

In the infrared region between 1 and 10 THz, resonances of the molecular vibrations 

and ionic lattices constituting the upper frequency limit of the ionic polarization are 

observed. The resonance of the electronic polarization is around 10
15

 Hz. It can be 

investigated by optical methods. 
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Figure 2.4 Frequency dependence of real part of the dielectric function [25] 

The dispersion of the dielectric response of each contribution leads to 

dielectric losses of the matter which can be mathematically expressed by a complex 

dielectric permittivity: 

                         (2.9) 

Dielectric losses are usually described by the loss tangent: 

     
   

  
              (2.10) 

It should be taken into account that the general definition of the tan δ is related 

to the ratio of loss energy and reactive energy (per period), i. e. all measurements of 

the loss tangent also include possible contributions of conductivity ζ of a non-ideal 

dielectric given by tan δ = ζ/ω  . 

2.3 Normal ferroelectrics 

The relation between the net macroscopic polarization of a ferroelectric crystal 

and the externally applied electric field is given by a hysteresis loop. When an electric 

field is applied to a ferroelectric, these dipoles can be reoriented with respect to the 
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direction of the applied field. The major difference between ferromagnetic and 

ferroelectric is the fact that the polarization of the magnetic dipoles in ferromagnetics 

is attributed to the magnetic dipoles in each individual atom; in ferroelectrics, the 

polarization is due to the crystal structure as a whole and not of the individual atoms. 

As a crystal polarizes, a domain structure is formed. The domain will 

initially nucleate randomly with their polarization vectors along one of the allowed 

directions. In order to change the polarization direction, ferroelectric domain walls 

must be shifted. The driving force for this movement is free energy for the electronic 

dipole orientation. In ferroelectrics, the dipoles align with the applied electric field 

and assume a lower energy state compared to that for the spontaneously polarized 

direction. The energy required to reorient the domains can be seen in the area of the 

electric displacement versus applied field hysteresis loop, as seen in Figure 2.5 [29]. 

 

Figure 2.5 A typical ferroelectric hysteresis loop of single crystal (dashed 

line) and polycrystal sample (full line) [25] 
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The temperature at which the crystal structure transforms from the paraelectric 

state into the ferroelectric state is called the Curie point [30]. According to the Curie-

Weiss law, the dielectric constant obeys the equation:  

0( )1

ε

T T

C


               (2.11) 

where, C is the Curie-Weiss constant, T is the temperature and, T0 is the Curie-Weiss 

temperature that is less than TC. The Curie point is the actual transformation 

temperature, while the Curie-Weiss temperature is found by extrapolating the plot of 

the Curie-Weiss law, as shown in Figure 2.6 [31]. The Curie-Weiss temperature can 

be as much as ten degrees lower than the Curie point for first-order phase transitions 

and the two are equal for a second order phase transition. First-order phase transitions 

are those in which the first derivative of the free energy expansion with respect to 

temperature is discontinuous as shown in Figure 2.6(b).  In second-order phase 

transitions, the second derivation is continuous as shown in Figure 2.6(a). 

 

Figure 2.6 A general depiction of the temperature dependences of the 

spontaneous polarization, the dielectric constant, and the inverse dielectric constant 
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for a ferroelectric (a) second-order phase transitions and (b) first-order phase 

transitions [31] 

2.4 Ferroelectric domains 

When a ferroelectric single crystal is cooled below the phase transition 

temperature the electrical stray field energy caused by the non-compensated 

polarization charges is reduced by the formation of ferroelectric domains, see Figure 

2.7. The configuration of the domains follows a head-to-tail condition in order to 

avoid discontinuities in the polarization at the domain boundary, ∇ ⃑  = ζ. The built-up 

of domain walls, elastical stress fields as well as free charge carriers counteract the 

process of domain formation. In addition, an influence of vacancies, dislocations and 

dopants exists. 

 

Figure 2.7 Reduction of electrical stray field energy by domain formation [25] 
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Figure 2.8 Scheme of domain pattern of fine grained BaTiO3 ceramic (left) 

and coarse grained BaTiO3 ceramic (right) [25] 

In polycrystalline bulk ceramics the pattern of domains is quite different 

because the domain structure of each grain is formed under elastic clamped conditions 

by its surrounding neighbors, whereas a single crystal is free [32]. It should be noted 

that only non-180º domains, i.e. 90º domains (for tetragonal structures) or 71º and 

109º domains (for rhombohedral structures), have the potential to reduce elastic 

energy. There exists two types in coarse grained BaTiO3, called herringbone and 

square net pattern. The first one is by far the most common in unpoled ceramics. As 

shown in Figure 2.8, by decreasing the grain size the domain pattern changes from a 

banded to a laminar structure [33]. 
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Figure 2.9 Domain structures of tetragonal PZT with different orientations [25] 

Real ferroelectric thin films show polydomain patterns. In Figure 2.9 possible 

domain configurations of different textures of tetragonal films of PbZr1−xTixO3 with x 

>0.48 are depicted. For compressive stress the polarization is predominantly out-of-

plane, (001), oriented. 90º as well as 180º-domains are expected. Such orientation 

could be realized by deposition of tetragonal PZT on magnesium oxide substrates 

[34]. Under the influence of an electric field the number of 180º-domains is 

decreased. The resulting pattern predominantly consists in 90º domains. A (100)-

orientation, i. e. in-plane orientation of the polarization, is caused by tensile stress and 

is achieved by using a buffer layer of yttrium stabilized zirconium and an oxide 

electrode of lanthanum strontium cobaltate or by depositing on a (100)-SrTiO3-

substrate with SrRuO3 electrode [35]. The change of the domain structure by poling is 

similar to the (001)-orientation but, the a-axis orientation is still preferred. In standard 

systems for ferroelectric thin films, e.g. PZT with platinum electrodes on oxidized 

silicon wafers, the orientation of the crystallographic axes of PZT is in (111)-

direction. Poling should evoke the single domain state while the “head-to-tail” 
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configuration is required. However, there are a lot of indications that non-180º 

domain walls are generally immobile. It could be shown that these ferroelastic domain 

walls become able to move, when the 2-D clamping of the film on the substrate is 

annulled by patterning the ferroelectric film into discrete islands using a focused ion 

beam [36]. 

2.4.1 The dynamics of domain wall motions in ceramics 

If the domain walls are fixed and no other defects contribute to piezoelectricity 

in ceramics, then an averaging calculation would predict all the main intrinsic 

electromechanical properties when using appropriate values of single domain crystals 

and a simple orientation distribution. This calculation [37] has to take into account the 

dielectric, piezoelectric, and elastic interactions between the domains, their shape and 

configuration, and their degree of orientation. Muratake [38] first introduced a method 

that takes into account some interaction effects by considering electric and elastic 

boundary conditions of the grain. Turik [39] improved the Muratake model by using a 

laminar grain consisting of a stack of 90º or 180º domains. For the laminar grain of 

BT, the effective piezoelectric, elastic, and dielectric coefficients were calculated 

considering the boundary conditions between the domains. The experimentally 

determined piezoelectric constants d31 and d33 of BT ceramics are, however, much 

larger than the calculated ones. This deviation between calculated and measured 

piezoelectric constants had led Turik to suppose additional “orientational” 

contributions that may be caused by domain wall motions [40]. 
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Figure 2.10 Domain structures in polycrystalline materials: (a) simple 

lamellar twinning. (b) banded twin structure in ceramics [41] 

Since the 1980s, Arlt et al. (e.g., [41] and [42]) have systematically studied 

microstructure and dynamics of 90º domain wall motion in BT and PZT ceramics. 

They could explain the strong increase in the piezoelectric and dielectric coefficients 

by shifts and oscillations of 90º-type domain walls (90º in the tetragonal, 71º and 109º 

in the rhombohedral phase). They used Fousek‟s model [43] to evaluate the dielectric, 

piezoelectric, and elastic coefficients referring to a special distribution function and 

by averaging the domain contributions in every grain of the ceramic samples. A 

similar work was done by some Russian scientists (e.g., [44]). They considered some 

special distributions of domain structures in ceramics (the laminar twin structure) to 

assess the physical properties of ferroelectric ceramics. 

All these models describe the average dynamic behavior of the domain wall 

motion in the single crystal with respect to the different orientations of polarizations. 

All these averaging methods have drawbacks and are of limited value for the 

calculation of the volume part of contributions to piezoelectric constants of ceramics. 
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The experimentally determined piezoelectric constants d31 and d33 are effectively 

larger than those calculated by the averaging methods. A similar disagreement was 

found for the dielectric constants, which in ceramics are much larger than expected 

from theoretical calculations. 

2.4.2 Reversible and irreversible polarization contributions 

To characterize ferroelectric materials usually the dependence of the 

polarization on the applied voltage is measured by means of a Sawyer-Tower circuit 

or by recording the current response to a voltage step. The P(V)-hysteresis curve is 

used to determine the remanent polarization and coercive voltage, respectively 

coercive field. These two parameters are of critical importance to the design of 

external circuits of FeRAMs. 

The ferroelectric hysteresis originates from the existence of irreversible 

polarization processes by polarization reversals of a single ferroelectric lattice cell. 

However, the exact interplay between this fundamental process, domain walls, defects 

and the overall appearance of the ferroelectric hysteresis is still not precisely known. 

The separation of the total polarization into reversible and irreversible contributions 

might facilitate the understanding of ferroelectric polarization mechanisms. 

Especially, the irreversible processes would be important for ferroelectric memory 

devices, since the reversible processes cannot be used to store information. 

For ferroelectrics, mainly two possible mechanisms for irreversible processes 

exist. First, lattice defects which interact with a domain wall and hinder it from 

returning into its initial position after removing the electric field that initiated the 

domain wall motion (“pinning”) [45]. Second, the nucleation and growth of new 

domains which do not disappear after the field is removed again. In ferroelectric 
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materials the matter is further complicated by defect dipoles and free charges that also 

contribute to the measured polarization and can also interact with domain walls [46]. 

Reversible contributions in ferroelectrics are due to ionic and electronic very fast. The 

reorientation of dipoles and/or defect or free charges also contributes to the total 

polarization. These mechanisms are usually much slower, but they also might be 

reversible (relaxation). 

A domain wall under an external electric field moves in a statistical potential 

generated by their interaction with the lattice, point defects, dislocations, and 

neighboring walls. Reversible movement of the wall is regarded as a small 

displacement around a local minimum. When the driven field is high enough, 

irreversible jumps above the potential barrier into a neighboring local minimum occur 

(see Figure 2.11). 

 

Figure 2.11 Movement of a domain wall in the lattice potential [25] 

Based on these assumptions the measurement of the large signal ferroelectric 

hysteresis with additional measurements of the small signal capacitance at different 

bias voltages are interpreted in terms of reversible and irreversible parts of the 
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polarization. As shown for ferroelectric thin films in Figure 2.12, the separation is 

done by substracting from the total polarization the reversible part, i. e. the integrated 

C(V )-curve [47]. 

    ( )      ( )  
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Analogous C(V) curves were recorded on PZT bulk ceramics with 

compositions around the morphotropic phase boundary (MPB). Figure 2.13 displays 

the relative permittivity as a function of DC-bias for a tetragonal (x = 0.48), a 

morphotropic (x = 0.52) and a rhombohedral (x = 0.58) sample. In contrast to thin 

films additional “humps” observed in the ε(E) curves. This could be explained by 

different coercive fields for 180º and non-180º domains [48]. Their absence in 

ferroelectric thin films could be taken as evidence for suppressed non-180º domain 

switching in thin films [49]. 

A further approach to separate the reversible and irreversible 90º and non-90º 

contributions is the investigation of the piezoelectric small and large signal response 

of the ferroelectric material. While both 180º and non-180º walls contribute to the 

permittivity, only non-180º walls affect the piezoelectric properties. A displacement 

of a 180º wall does not change the strains and thus yields no piezoelectric response. 
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Figure 2.12 (a) C(V ) - curve and (b) reversible and irreversible contribution 

to the polarization of a ferroelectric SBT thin film [25] 

 

Figure 2.13 Relative permittivity of 2% Nd-doped Pb(ZrxTi1−x)O3 bulk ceramics [25]. 

Analogue to the dielectric case, the reversible contribution to the strain can be 

determined by the integration of the piezoelectric small signal coefficient d3j over the 

applied bias field. 

       (     )  ∫    (  
 )   

      

 
           (2.13) 
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Figure 2.14 displays the results of the d33 coefficient as function of the bias 

field, the large signal x33 response (“butterfly loop”) as well as constructed x33,rev 

curve of the same PZT thin film. The curves were taken by double-beam laser 

interferometry having a resolution better than 1 pm [50]. In contrast to bulk ceramics 

almost the complete strain response of the film appeared to originate from reversible 

processes. Since the polarization response of the film was determined by both 180º 

and non-180º domain wall motion and the piezoelectric response was solely due to 

non-180º boundaries, the presented results are evidence that most reversible domain 

wall motions in ferroelectric thin films are due to reversible motion of non-180º 

domain walls. The clamping effect of the substrate which entails rather stringent 

mechanical boundary conditions apparently only allows for minute motions of the 

non-180º walls, which immediately return to their initial positions when the external 

electric field that initiated the motion is returned to zero. 

 

Figure 2.14 (a) Piezoelectric coefficient d33 and (b) “Butterfly” loop and 

integrated d33 response of a PZT 45/55 film [25] 
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2.4.3 Ferroelectric switching 

The polarization reversal in single crystals has been intensively investigated 

by direct observation of the formation and the movement of the domain walls. E.g., in 

BaTiO3 single crystals it was found by Merz [51], and Fousek [52] that in response to 

a voltage step the process happens by forming of opposing 180º or orthogonal 90º 

domains in the shape of needles and wedges. Both, the resulting maximum 

displacement current imax as well as the switching time ts, which is the most significant 

quantity and describes the duration of the polarization reversal, were measured as a 

function of the applied field E and follow empirical laws 

imax = i0· exp(−α/E),             (2.14) 

ts = t0· exp(α/E),             (2.15) 

where i0 and t0 are a constants. The constant activation field α in both equations is the 

same [53]. 

The above mentioned equations are only applicable when the applied field E is 

constant during the polarization reversal, i.e., the time constant of the dielectric 

charging ηRC must be much smaller than the switching time ts. The dielectric charging 

is determined by the capacitance of the sample and inevitable series resistors (source, 

lines etc.). The switching time is determined by many factors, the domain structure, 

the nucleation rate of opposite domains, the mobility of the domain walls, and many 

others.  
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2.5 Ferroelectric characterization 

2.5.1 Hysteresis loop and characteristic values 

Typical result of the measurement is the hysteresis curve of the polarization. 

In the following the nomenclature of characteristic values for the evaluation of the 

measured data is introduced ([54], see also Figure 2.15): 

Pr+ positive state of remanent polarization of the dynamically measured 

hysteresis loop 

Prrel+ positive state of relaxed remanent polarization, relaxed for one second 

in the Pr+ state. Equal to the positive state of remanent polarization of 

the quasi statically measured loop 

Pmax+ state of polarization when the stimulating signal reaches its maximum 

value – positive saturation 

Vc+ positive coercive voltage, voltage where the polarization crosses the x-

axis by increasing voltage values 

Pr−, Prrel−, Pmax−, Vc− are the corresponding values for the negative 

field and polarization direction 

Ps (Pmax+− Prrel−) change of polarization when the sample is switched 

from the negative state of the relaxed remanent polarization into the 

positive saturation - switching case 

Pns (Pmax+− Prrel+) change of polarization when the sample is driven into 

the positive saturation from the positive state of the relaxed remanent 

polarization – nonswitching case 

ΔPs (Ps−Pns) detectable polarization difference between switching and non-

switching case. 
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Figure 2.15 Nomenclature used [25] 

2.5.2 Sawyer-Tower method 

The Sawyer-Tower measurement circuit is based on a charge measurement 

method which relies on a reference capacitor in series with the ferroelectric capacitor 

[55]. The voltage drop across the reference capacitor is proportional to the 

polarization charge as defined by V = Q/C. But if the voltage on the reference 

capacitor increases, the voltage across the sample decreases (back voltage effect). So 

the reference capacitor is chosen much larger than the measured capacitor, e.g. if the 

reference capacitor is 100 times larger, the voltage drop is about 1 %. This means the 

reference capacitor has to be adapted to each sample. The Sawyer-Tower method can 

be used up to high speed which is primarily limited by cable reflections. As parasitic 

effects, cabling capacitances of the wiring between sample, reference capacitor, and 

the recording amplifier are in parallel to the reference capacitor. Typical cable 

capacitance values are between 33 pF and 100 pF per meter. For small capacitors, the 

total measured capacitance is increased over the capacitance of the ferroelectric 

material. Furthermore, it is difficult to get precise reference capacitors which typically 
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have several percent tolerance, and additionally the cable capacitance adds to this 

capacitance. Furthermore the input resistance of the voltage measurement device is in 

parallel to the reference capacitor and discharges it with a corresponding time 

constant, therefore the Sawyer-Tower is less suitable for slow measurements. 

 

Figure 2.16 Schematic of a Sawyer-Tower hysteresis measurement method [25] 

2.6 Power-law scaling relation 

Consider a cooperatively interacting many-body system, such as a magnet, 

driven by an oscillating external perturbation, such as an oscillating magnetic field. 

The thermodynamic response of the system, e.g., the magnetization, will then also 

oscillate with necessary modifications in its form, and will lag behind the applied field 

due to the relaxational delay. This delay in the dynamic response gives rise to a 

nonvanishing area of themagnetization-field loop, a phenomenon we term dynamic 

hysteresis. When the time period of oscillation of the external perturbation becomes 

much less than the typical relaxation time of the thermodynamic system, the 

hysteresis loop becomes asymmetric around the origin and an interesting 
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thermodynamic phase arises spontaneously out of dynamically broken symmetries 

due to the competing time scales in such nonequilibrium driven systems [56]. 

In the example of a magnetic system, the time (t) variation of the 

magnetization m(t) lags behind that of the oscillating field h(t) ( = h0sinωt, say), and 

after some initial transient period, the dynamic m(t) - h(t) loop stabilizes and encloses 

a nonvanishing loop area A(T,h0 ,ω) [=∮   ], which depends on the temperature T 

of the system and the field amplitude h0 and frequency ω. This hysteresis is 

dynamical in origin and disappears in the quasistatic limit. Pure magnetic systems, 

without any random defects or anisotropies to pin the magnetic domains, can relax 

properly in the quasistatic limit and follow the field in phase due to the presence of 

thermal fluctuations at any finite temperature. No hysteresis can therefore occur in 

pure magnets in the quasistatic limit [27, 57-58]. 

A power-law dependence of such hysteretic loss on the magnetic induction 

(related to the external field) was first proposed empirically, more than a century ago, 

by Steinmetz [59]. 

Typically, for fixed temperature T and field amplitude h0, the dynamic 

hysteresis loss A increases with increasing frequency ω for low values of ω. This is 

because, for low values of ω, the effective delay in the response increases as ω 

increases. In general, for a fixed ω, A increases with decreasing T and increasing h0 

until A saturates. Eventually, as the driving frequency exceeds a threshold value 

(dependent on h0 and T [60]), the loop area A starts decreasing, because of the 

increase in the effective delay (phase lag) towards 2π, as seen Figure 2.17. Eventually, 

the loop area vanishes for very high frequencies when the dynamic symmetry is fully 

broken. 
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Figure 2.17 The frequency-dependent hysteresis area A of epitaxially grown 

ultrathin Co films on a Cu(001) surface at room temperature, the results for the loop 

area A as a function of frequency f  is plotted at a fixed ac current of 0.4 Amp. The 

direction of the magnetic field is parallel to the film plane. The insets show plots of 

m-h loops for the following particular values of the field amplitudes h0: (i) h0 = 48.0 

Oe (top inset) and (ii) h0 = 63.0 Oe (bottom inset) [55] 

The dynamic contribution to the coercive field and the hysteresis loop area has 

been investigated in several recent experiments, mostly in thin films or in two 

dimensions. Bruno et al. [61] studied the dependence of the hysteresis loop area A on 

the rate of change of the external field, in ultrathin ferromagnetic films. Their study 

gives some indirect information on the dynamic contribution to the loop area A. 

In a more recent experiment, Jiang et al. [9, 62-63] studied the frequency-

dependent hysteresis of epitaxially grown ultrathin (2 to 6 monolayer thick) Co films 
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on a Cu (001) surface at room temperature. The films have strong uniaxial 

magnetization with two ferromagnetic phases of opposite spin orientations. This 

magnetic anisotropy makes it appropriate to represent the system by an Ising-like 

model (see also He and Wang [64]). The external magnetic field h(t) on the system 

was driven sinusoidally in the frequency (f = ω/2π) range 0.1 to 500 Hz and in the 

amplitude (h0) range 1 to 180 Oe. Here of course the time-varying current or the 

magnetic field induces an eddy current in the core, which results in a counter-field 

reducing the effective magnitude of the applied field. The surface magnetooptical 

Kerr effect technique was used to measure the response magnetization m(t). A typical 

variation of the loop area A with the driving frequency f, at room temperature and at 

fixed external field amplitude h0, is shown in Figure 2.17. Also, it may be mentioned 

that in a recent similar experiment on dynamic hysteresis in ultrathin Fe films on 

W(110) surface (Suen and Erskine [65]), the typical behavior of the dynamic 

hysteresis is observed to be similar, although considerable discrepancies are observed 

in the actual details for different materials and regimes. 

The observed variation of the loop area A with frequency ω follows the 

generic form discussed earlier: A decreases for both low and high values of ω. 

However, it may be noted that A does not quite vanish in the zero frequency limit. The 

observed variation can, in fact, be fitted to a form 

       
    (

 

  
 )             (2.16) 

with the scaling exponents α, β, and γ and with the scaling function g having a 

suitable nonmonotonic form such that g(x)→0 as x→0 or ∞. Here A0 is the loop area 

in the zero frequency limit. It seems, depending on the nature of the dynamic 
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processes involved in different materials and also the ranges (of amplitude, frequency, 

etc.), the values of the exponents differ dramatically. While Jiang et al. [9] obtained α 

≈ 0.67 ≈ β for Co films on Cu (100), and α ≈ 0.60 and β ≈ 0.30 for Fe films on Au 

(001), Suen and Erskine [65] obtained much lower values for the same exponents: α ≈ 

0.30 and β ≈ 0.06 (perhaps logarithmic) for Fe films on W (110) surfaces. 

Similarly, the ferroelectric responses of ferroelectric materials under various 

perturbations are very same as magnetic responses of magnets, and moreover 

frequency and electric field are also basic parameters responsible for ferroelectric 

hysteresis of ferroelectric materials. 

Therefore, the concept of power-law scaling relation used originally for 

magnetic materials is applied for ferroelectric materials case. Through some 

simplifications and parameter modifications, the power-law scaling relation for 

ferroelectric materials can be obtained in form of 

< A > ∝ f mE0
n
              (2.17) 

(where m and n are exponents dependent on the dimensionality and symmetry of the 

system). 

2.7 Data analysis 

2.7.1 Least squares 

 The Method of Least Squares is a procedure to determine the best fit line to 

data; the proof uses calculus and linear algebra. The basic problem is to find the best 

fit straight line y = ax+ b given that, for   *     +, the pairs (     ) are observed. 

The method easily generalizes to finding the best fit of the form 
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      ( )        ( )            (2.18) 

it is not necessary for the functions    to be linearly in x– all that is needed is 

that y is to be a linear combination of these functions [66]. 

2.7.1.1 Probability and statistics review 

We give a quick introduction to the basic elements of probability and statistics 

which we need for the Method of Least Squares; for more details see [67-73]. 

Given a sequence of data        , we define the mean (or the expected 

value) to be (       )/N. We denote this by writing a line above x: thus 

 ̅  
 

 
∑   

 
                 (2.19) 

The mean is the average value of the data. 

Consider the following two sequences of data: {10, 20, 30, 40, 50} and {30, 

30, 30, 30, 30}. Both sets have the same mean; however, the first data set has greater 

variation about the mean. This leads to the concept of variance, which is a useful tool 

to quantify how much a set of data fluctuates about its mean. The variance of 

{       }, denoted by   
  is 

  
  

 

 
∑ (    ̅)  

               (2.20) 

the standard deviation    is the square root of the variance: 

   √
 

 
∑ (    ̅)  

               (2.21) 
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Note that if the x‟s have units of meters then the variance   
  has units of 

meters
2
, and the standard deviation    and the mean  ̅ have units of meters. Thus it is 

the standard deviation that gives a good measure of the deviations of the x‟s around 

their mean, as it has the same units as our quantity of interest. 

There are, of course, alternate measures one can use. For example, one could 

consider 

 

 
∑ (    ̅) 

                (2.22) 

Unfortunately this is a signed quantity, and large positive deviations can 

cancel with large negatives. In fact, the definition of the mean immediately implies 

the above is zero! This, then, would be a terrible measure of the variability in data, as 

it is zero regardless of what the values of the data are. 

We can rectify this problem by using absolute values. This leads us to consider 

 

 
∑ |    ̅| 

                (2.23) 

While this has the advantage of avoiding cancellation of errors (as well as 

having the same units as the x‟s), the absolute value function is not a good function 

analytically. It is not differentiable. This is primarily why we consider the standard 

deviation (the square root of the variance) – this will allow us to use the tools from 

calculus. 

We can now quantify what we mean by “best fit”. If we believe y = ax +b, 

then y – (ax +b) should be zero. Thus given observations 

*(     )   (     )+             (2.24) 
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we look at 

*   (     )      (     )+          (2.25) 

The mean should be small (if it is a good fit), and the sum of squares of the terms will 

measure how good of a fit we have. 

We define 

 (   )  ∑ (   (     ))  
              (2.26) 

Large errors are given a higher weight than smaller errors (due to the squaring). Thus 

our procedure favors many medium sized errors over a few large errors. If we used 

absolute values to measure the error (see Equation (2.23)), then all errors are weighted 

equally; however, the absolute value function is not differentiable, and thus the tools 

of calculus become inaccessible. 

2.7.1.2 The method of least squares 

Given data *(     )   (     )+, we defined the error associated to saying 

       by 

 (   )  ∑ (   (     ))  
              (2.27) 

Note that the error is a function of two variables, the unknown parameters a and b. 

The goal is to find values of a and b that minimize the error. In multivariable 

calculus we learn that this requires us to find the values of (a, b) such that the gradient 

of E with respect to our variables (which are a and b) vanishes; thus we require 

∇  (
  

  
 
  

  
)  (   )            (2.28) 
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or 

  

  
   

  

  
                (2.29) 

Note we do not have to worry about boundary points: as | | and | | become large, the 

fit will clearly get worse and worse. Thus we do not need to check on the boundary. 

Differentiating E(a, b) yields 

 
  

  
 ∑  (   (     ))  (   )

 
    

 
  

  
 ∑  (   (     ))  (  ) 

             (2.30) 

Setting  
  

  
 

  

  
   (and dividing by -2) yields 

 ∑ (   (     ))       
    

 ∑ (   (     ))    
               (2.31) 

Note we can divide both sides by -2 as it is just a constant; we cannot divide by xi as 

that varies with i. 

We may rewrite these equations as 

   (∑   
  

   )  (∑   
 
   )  ∑     

 
    

(∑   
 
   )  (∑   

   )  ∑   
 
              (2.32) 

We have obtained that the values of a and b which minimize the error (defined in 

(2.27)) satisfy the following matrix equation: 
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(
∑   

  
   ∑   

 
   

∑   
 
   ∑   

   
) ( 

 
)  (

∑     
 
   

∑   
 
   

)           (2.33) 

We need a fact from linear algebra. Recall the inverse of a matrix A is a matrix 

B such that AB = BA = I, where I is the identity matrix. If A = (    
    

) is a 2 2 matrix 

where det A =        , then A is invertible and 

    
 

     
(     
     

)             (2.34) 

In other words, AA
-1

 = (    
    

) here. For example, if A = (    
    

) then det A = 1 and 

    (    
     

); we can check this by noting (through matrix multiplication) that 

(    
    

)(    
     

)= (    
    

)             (2.35) 

We can show the matrix in (2.33) is invertible (so long as at least two of the 

xn‟s are distinct), which implies 

( 
 
)  (

∑   
  

   ∑   
 
   

∑   
 
   ∑   

   
)
  

(
∑     

 
   

∑   
 
   

)           (2.36) 

Denote the matrix from (2.33) by M. The determinant of M is 

     ∑   
  

    ∑   
    ∑   

 
    ∑   

 
            (2.37) 

As 

 ̅  
 

 
∑   

 
                 (2.38) 

we find that 

       ∑   
  (  ̅)  
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   (
 

 
∑   

   ̅  
   )  

    
 

 
∑ (    ̅)  

              (2.39) 

where the last equality follows from simple algebra. Thus, as long as all the xn are not 

equal, det M will be non-zero and M will be invertible. Using the definition of 

variance, we notice the above could also be written as 

det M =     
               (2.40) 

Thus we find that, so long as the x‟s are not all equal, the best fit values of a 

and b are obtained by solving a linear system of equations; the solution is given in 

Equation (2.36). We rewrite Equation (2.36) in a simpler form. Using the inverse of 

the matrix and the definition of the mean and variance, we find 

( 
 
)  

 

    
 (

      ̅
   ̅ ∑   

  
   

) (
∑     

 
   

∑   
 
   

)           (2.41) 

Expanding gives 

  
 ∑        ̅∑   

 
   

 
   

    
     

  
   ̅∑      ∑   

 ∑   
 
   

 
   

 
   

    
     

 ̅  
 

 
∑   

 
       

  
  

 

 
∑ (    ̅)  

               (2.42) 

As the formulas for a and b are so important, it is worth giving another expression for 

them. We also have [66] 
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∑   
 
   ∑   

 
    ∑   

  
   ∑   

   
           (2.43) 

2.7.2 Coefficient of determination 

In statistics, the coefficient of determination R
2
 is used in the context of 

statistical models whose main purpose is the prediction of future outcomes on the 

basis of other related information. It is the proportion of variability in a data set that is 

accounted for by the statistical model [74]. It provides a measure of how well future 

outcomes are likely to be predicted by the model. 

There are several different definitions of R
2
 which are only sometimes 

equivalent. One class of such cases includes that of linear regression. In this case, if 

an intercept is included then R
2
 is simply the square of the sample correlation 

coefficient between the outcomes and their predicted values, or in the case of simple 

linear regression, between the outcomes and the values of the single regressor being 

used for prediction. In such cases, the coefficient of determination ranges from 0 to 1. 

Important cases where the computational definition of R
2
 can yield negative values, 

depending on the definition used, arise where the predictions which are being 

compared to the corresponding outcomes have not been derived from a model-fitting 

procedure using those data, and where linear regression is conducted without 

including an intercept. Additionally, negative values of R
2
 may occur when fitting 

non-linear trends to data [75]. In these instances, the mean of the data provides a fit to 

the data that is superior to that of the trend under this goodness of fit analysis. 

 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Simple_linear_regression
http://en.wikipedia.org/wiki/Simple_linear_regression
http://en.wikipedia.org/wiki/Goodness_of_fit


40 

Definitions 

A data set has values yi, each of which has an associated modelled value fi 

(also sometimes referred to as ŷi). Here, the values yi are called the observed values 

and the modelled values fi are sometimes called the predicted values. 

The "variability" of the data set is measured through different sums of squares: 

      ∑ (    ̅)  , the total sum of squares (proportional to the sample 

variance), 

      ∑ (    ̅)  , the regression sum of squares, also called the explained 

sum of squares,  

      ∑ (     )
 

 , the sum of squares of residuals, also called the residual 

sum of squares. 

In the above  ̅ is the mean of the observed data: 

 ̅  
 

 
∑   

 
               (2.44) 

where n is the number of observations. 

The most general definition of the coefficient of determination is 

        
     

     
              (2.45) 

Relation to unexplained variance 

In a general form, R
2
 can be seen to be related to the unexplained variance, 

since the second term compares the unexplained variance (variance of the model's 

errors) with the total variance (of the data). 

 

http://en.wikipedia.org/wiki/Sum_of_squares
http://en.wikipedia.org/wiki/Total_sum_of_squares
http://en.wikipedia.org/wiki/Explained_sum_of_squares
http://en.wikipedia.org/wiki/Explained_sum_of_squares
http://en.wikipedia.org/wiki/Residual_sum_of_squares
http://en.wikipedia.org/wiki/Residual_sum_of_squares
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As explained variance 

In some cases the total sum of squares equals the sum of the two other sums of 

squares defined above, 

                               (2.46) 

When this relation does hold, the above definition of R
2
 is equivalent to 

   
     

     
              (2.47) 

In this form R
2
 is given directly in terms of the explained variance: it compares the 

explained variance (variance of the model's predictions) with the total variance (of the 

data). This partition of the sum of squares holds for instance when the model values ƒi 

have been obtained by linear regression. A milder sufficient condition reads as 

follows: The model has the form 

                      (2.48) 

where the qi are arbitrary values that may or may not depend on i or on other free 

parameters (the common choice qi = xi is just one special case), and the coefficients α 

and β are obtained by minimizing the residual sum of squares. 

This set of conditions is an important one and it has a number of implications 

for the properties of the fitted residuals and the modelled values. In particular, under 

these conditions: 

                              ̅   ̅            (2.49) 

 

http://en.wikipedia.org/wiki/Total_sum_of_squares
http://en.wikipedia.org/wiki/Explained_variance
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Sufficient_condition
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
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As squared correlation coefficient 

Similarly, after least squares regression with a constant linear model, R
2
 equals 

the square of the correlation coefficient between the observed and modeled 

(predicted) data values. 

Under general conditions, an R
2
 value is sometimes calculated as the square of 

the correlation coefficient between the original and modeled data values. In this case, 

the value is not directly a measure of how good the modeled values are, but rather a 

measure of how good a predictor might be constructed from the modeled values (by 

creating a revised predictor of the form α + βƒi). According to Everitt [76], this usage 

is specifically the definition of the term "coefficient of determination": the square of 

the correlation between two (general) variables. 

Interpretation 

R
2
 is a statistic that will give some information about the goodness of fit of a 

model. In regression, the R
2
 coefficient of determination is a statistical measure of 

how well the regression line approximates the real data points. An R
2
 of 1.0 indicates 

that the regression line perfectly fits the data. 

Values of R
2
 outside the range 0 to 1 can occur where it is used to measure the 

agreement between observed and modelled values and where the "modelled" values 

are not obtained by linear regression and depending on which formulation of R
2
 is 

used. If the first formula above is used, values can never be greater than one. If the 

second expression is used, there are no constraints on the values obtainable. 

In many (but not all) instances where R
2
 is used, the predictors are calculated 

by ordinary least-squares regression: that is, by minimizing SSerr. In this case R-

squared increases as we increase the number of variables in the model (R
2
 will not 

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Least-squares
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decrease). This illustrates a drawback to one possible use of R
2
, where one might try 

to include more variables in the model until "there is no more improvement". This 

leads to the alternative approach of looking at the adjusted R
2
. The explanation of this 

statistic is almost the same as R
2
 but it penalizes the statistic as extra variables are 

included in the model. For cases other than fitting by ordinary least squares, the R
2
 

statistic can be calculated as above and may still be a useful measure. If fitting is by 

weighted least squares or generalized least squares, alternative versions of R
2
 can be 

calculated appropriate to those statistical frameworks, while the "raw" R
2
 may still be 

useful if it is more easily interpreted. Values for R
2
 can be calculated for any type of 

predictive model, which need not have a statistical basis. 

Adjusted R
2 

Adjusted R
2
 (often written as  ̅  and pronounced "R bar squared") is a 

modification of R
2
 that adjusts for the number of explanatory terms in a model. Unlike 

R
2
, the adjusted R

2
 increases only if the new term improves the model more than 

would be expected by chance. The adjusted R
2
 can be negative, and will always be 

less than or equal to R
2
. The adjusted R

2
 is defined as 

 ̅    (    )
   

     
        

     

     

   

   
         (2.50) 

where p is the total number of regressors in the linear model (but not counting the 

constant term), n is the sample size, dft is the degrees of freedom n – 1 of the estimate 

of the population variance of the dependent variable, and dfe is the degrees of freedom 

n – p – 1 of the estimate of the underlying population error variance. 

http://en.wikipedia.org/wiki/Weighted_least_squares
http://en.wikipedia.org/wiki/Generalized_least_squares
http://en.wikipedia.org/wiki/Explanatory_variable
http://en.wikipedia.org/wiki/Degrees_of_freedom_%28statistics%29
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The principle behind the Adjusted R
2
 statistic can be seen by rewriting the 

ordinary R
2
 as 

     
      

      
             (2.51) 

where VARerr = SSerr / n and VARtot = SStot / n are estimates of the variances of the 

errors and of the observations, respectively. These estimates are replaced by 

statistically unbiased versions: VARerr = SSerr / (n − p − 1) and VARtot = SStot / (n − 1).  

Adjusted R
2
 does not have the same interpretation as R

2
. As such, care must be 

taken in interpreting and reporting this statistic. Adjusted R
2
 is particularly useful in 

the feature selection stage of model building. The use of an adjusted R
2
 is an attempt 

to take account of the phenomenon of statistical shrinkage [76]. 

Generalized R
2
 

Nagelkerke [77] generalizes the definition of the coefficient of determination: 

1. A generalized coefficient of determination should be consistent with the 

classical coefficient of determination when both can be computed. 

2. Its value should also be maximized by the maximum likelihood estimation of a 

model. 

3. It should be, at least asymptotically, independent of the sample size. 

4. Its interpretation should be the proportion of the variation explained by the 

model. 

5. It should be between 0 and 1, with 0 denoting that model does not explain any 

variation and 1 denoting that it perfectly explains the observed variation. 

6. It should not have any unit. 

 

http://en.wikipedia.org/wiki/Bias_of_an_estimator#Sample_variance
http://en.wikipedia.org/wiki/Feature_selection
http://en.wikipedia.org/wiki/Shrinkage_%28statistics%29
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The generalized R² has all of these properties. 

     (
 ( )

 ( ̂)
)                (2.52) 

where L(0) is the likelihood of the model with only the intercept,  ( ̂) is the 

likelihood of the estimated model and n is the sample size. 

However, in the case of a logistic model, where  ( ̂) cannot be greater than 1, 

R² is between 0 and     
    ( ( ))   : thus, it is possible to define a scaled R² as 

R²/R²max [78]. 

2.7.3 Fourier transform 

The sufficiently smooth function f(t) that is periodic can be built out of sin‟s 

and cos‟s. We have seen that complex exponentials may be used in place of sin‟s and 

cos‟s. We shall now use complex exponentials because they lead to less writing and 

simpler computations, but yet can easily be converted into sin‟s and cos‟s. If f(t) has 

period 2l, its (complex) Fourier series expansion is [79] 

 ( )  ∑    
  

 

 
  

     with    
 

  
∫  ( )    

 

 
   

 

  
     (2.53) 

Not surprisingly, each term    
  

 

 
 
in this expansion also has period 2l, because 

   
  

 

 
(    )     

  
 

 
          

  
 

 
 
. We now develop an expansion for non-

periodic functions, by allowing complex exponentials (or equivalently sin‟s and cos‟s) 

of all possible periods, not just 2l, for some fixed l. So, from now on, do not assume 

that f(t) is periodic. 

For simplicity we will only develop the expansions for functions that are zero 

for all sufficiently large |t|. With a little more work, one can show that our conclusions 
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apply to a much broader class of functions. Let L > 0 be sufficiently large that f(t) = 0 

for all |t| ≥ L. We can get a Fourier series expansion for the part of f(t) with –L < t  < L 

by using the periodic extension trick. Define FL(t) to be the unique function 

determined by the requirements that 

i) FL(t) = | ( ) for – L < t ≤ L 

ii) FL(t) is periodic of period 2L 

Then, for –L < t < L, 

f(t) = FL(t) =∑   ( ) 
  

 

 
  

     where    ( )  
 

  
∫  ( )    

 

 
   

 

  
         (2.54) 

If we can somehow take the limit L→ ∞, we will get a representation of f that 

is valid for all t‟s, not just those in some finite interval –L < t < L. This is exactly what 

we shall do, by the simple expedient of interpreting the sum in Equation (2.54) as a 

Riemann sum approximation to a certain integral. For each integer k, define the k
th

 

frequency to be ωk =  
 

 
 and denote by    

 

 
 the spacing, ωk+1− ωk, between any 

two successive frequencies. Also define  ̂( )  ∫  ( )       
 

  
. Since f(t) = 0 for 

all |t| ≥ L 

   ( )  
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 ̂(  )               (2.55) 

In this notation, 

 ( )    ( )   
 

  
∑  ̂(  ) 

       
              (2.56) 
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for any –L < t < L. As we let L→ ∞, the restriction –L < |  < L disappears, and the 

right hand side converges exactly to the integral 
 

  
∫  ̂( )      
 

  
. To see this, cut 

the domain of integration into small slices of width    and approximate, as in Figure 

2.18, the area under the part of the graph of 
 

  
 ̂( )     with ω between ωk and 

      by the area of a rectangle of base    and height  
 

  
 ̂(  ) 

    . 

This approximates the integral 
 

  
∫  ̂( )      
 

  
 by the sum 

 

  
∑  ̂(  ) 

       
    . As L→ ∞ the approximation gets better and better so that 

the sum approaches the integral. So taking the limit of Equation (2.56) as L→ ∞ gives 

 ( )  
 

  
∫  ̂( )      
 

  
 where   ̂( )  ∫  ( )       

 

  
             (2.57) 

The function  ̂ is called the Fourier transform of f. It is to be thought of as the 

frequency profile of the signal f(t). 

 

Figure 2.18 Integration forsliced domains of width    [79] 
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2.8 Barium titanate (BT) 

Barium titanate, the first ceramic material in which ferroelectric behavior was 

observed, is the ideal model for a discussion of the phenomenon from the point of 

view of crystal structure and microstructure [80]. 

BaTiO3 is isostructural with the mineral perovskite (CaTiO3) and so is referred 

to as „a perovskite‟. The generalized perovskite structure ABO3, is visualized as based 

on a cubic close-packed assembly of composition AO3 with the A-ion coordinated 

with 12 oxygen ions and the B-ion in the octahedral interstices (see Figure 2.19). A 

consideration of the geometry shows that for a perfect fit the following relationship 

between the ionic radii holds [81]. 

       (     )            (2.58) 

For the many compounds having the perovskite structure the relationship will 

not hold exactly because of small variations in the sizes of the A and B ions. 

Therefore, to allow for this Equation (2.58) is written 

        (     )            (2.59) 

in which „t‟ is termed the „tolerance factor‟ with a value typically in the range 0.95 < t 

< 1.06. In the case of SrTiO3 t = 1. When t ≠ 1 then small lattice distortions (the 

octahedra tilt) occur in order to minimize lattice energy. These distortions have a 

significant effect on dielectric properties. 

Above its Curie point (approximately 130 ºC) the unit cell is cubic with the 

ions arranged as in Figure 2.19. Below the Curie point the structure is slightly 

distorted to the tetragonal form with a dipole moment along the c direction. Other 
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transformations occur at temperatures close to 0 ºC and -80 ºC: below 0 ºC the unit 

cell is orthorhombic with the polar axis parallel to a face diagonal and below -80 ºC it 

is rhombohedral with the polar axis along a body diagonal. 

 

Figure 2.19 The unit cell of BaTiO3 [80] 
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Figure 2.20 Properties of single-crystal BaTiO3: (a) unit-cell distortions of the 

polymorphs; (b) lattice dimensions versus temperature (after R. Clarke J. Appl. Cryst. 

9, 335, 1976); (c) spontaneous polarization versus temperature; (d) relative 

permittivities measured in the a and c directions versus temperature (after W.J. Merz 

Phys. Rev. 76, 1221, 1949) [80] 

The transformations are illustrated in Figure 2.20(a), and the corresponding 

changes in the values of the lattice parameters, the spontaneous polarization and the 

relative permittivity are shown in Figure 2.20(b–d). 

A consideration of the ion displacements accompanying the cubic–tetragonal 

transformation can give insight into how the spontaneous polarization might be 

coupled from unit cell to unit cell. X-ray studies have established that in the tetragonal 

form, taking the four central (B) oxygen ions in the cubic phase as origin, the other 

ions are slightly shifted as shown in Figure 2.21. It is evident that if the central Ti
4+
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ion is closer to one of the O
2-

 ions marked A, it will be energetically favorable for the 

Ti
4+

 ion on the opposite side of A to be located more distantly from that O
2-

 ion, thus 

engendering a similar displacement of all the Ti
4+

 ions in a particular column in the 

same direction. Coupling between neighboring columns occurs in BaTiO3 so that all 

the Ti
4+

 ions are displaced in the same direction. In contrast, in the orthorhombic 

perovskite PbZrO3 the Zr
4+ 

ions in neighboring columns are displaced in opposite 

senses so that the overall dipole moment is zero. Such a structure is termed 

antiferroelectric if the material shows a Curie point.
 

In tetragonal BaTiO3 the energy of the Ti
4+

 ion in terms of its position along 

the c axis takes the form of two wells (Figure 2.22). An applied field in the opposite 

direction to the polarization may enable a Ti
4+

 ion to pass over the energy barrier 

between the two states and so reverse the direction of the polarity at that point. When 

this happens the energy barriers for neighboring ions are reduced and the entire region 

affected by the field will eventually switch into the new direction. A similar 

mechanism is available for changes of polarity through 90º but in this case there is an 

accompanying dimensional change because the polar c axis is longer than the non-

polar a axis (Figure 2.20(b)). Switching through 90º can be induced through the 

ferroelastic effect by applying a compressive stress along the polar axis without an 

accompanying electric field. Mechanical stress does not induce 180º switching. 
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Figure 2.21 Approximate ion displacements in the cubic–tetragonal distortion 

in BaTiO3 [80] 

An immediate consequence of the onset of spontaneous polarization in a body 

is the appearance of an apparent surface charge density and an accompanying 

depolarizing field ED as shown in Figure 2.23(a). The energy associated with the 

polarization in the depolarizing field is minimized by twinning, a process in which the 

crystal is divided into many oppositely polarized regions, as shown in Figure 2.23(b). 

These regions are called domains and the whole configuration shown comprises 180º 

domains. Thus the surface consists of a mosaic of areas carrying apparent charges of 

opposite sign, resulting in a reduction in ED and in energy. This multidomain state can 

usually be transformed into a single domain by applying a field parallel to one of the 

polar directions. The domains with their polar moment in the field direction grow at 

the expense of those directed oppositely until only a single domain remains. The 

presence of mechanical stress in a crystal results in the development of 90º domains 
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configured so as to minimize the strain. For example, as ceramic BaTiO3 cools 

through the Curie temperature individual crystallites are subjected to large mechanical 

stresses leading to the development of 90º domains. The configurations can be 

modified by imposing either an electric or a mechanical stress. A polycrystalline 

ceramic that has not been subjected to a static field behaves as a non-polar material 

even though the crystals comprising it are polar. One of the most valuable features of 

ferroelectric behavior is that ferroelectric ceramics can be transformed into polar 

materials by applying a static field. This process is called „poling‟. The ceramic can 

be depoled by the application of appropriate electric fields or mechanical stresses. 

These poling and depoling processes are illustrated in Figure 2.24. 

 

Figure 2.22 Variation in the potential energy of Ti
4+

 along the c axis [80] 
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Figure 2.23 (a) Surface charge associated with spontaneous polarization; (b) 

formation of 180º domains to minimize electrostatic energy [80] 

The random directions of the crystallographic axes of the crystallites of a 

ceramic limit the extent to which spontaneous polarization can be developed. It has 

been calculated that the fractions of the single-crystal polarization value that can be 

attained in a ceramic in which the polar axes take all possible alignments are 0.83, 

0.91 and 0.87 for perovskites with tetragonal, orthorhombic or rhombohedral 

structures respectively. In ceramic tetragonal BaTiO3 the saturation polarization is 

about half the single-crystal value. The value attainable is limited by the inhibition of 

90º switching because of the strains involved, although 180º switching can be almost 

complete. 
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Figure 2.24 Schematic illustrating the changes accompanying the application 

of electrical and mechanical stresses to a polycrystalline ferroelectric ceramic: (a) 

stress-free – each grain is non-polar because of the cancellation of both 180º and 90º 

domains; (b) with applied electric field – 180º domains switch producing net overall 

polarity but no dimensional change; (c) with increase in electric field 90º domains 

switch accompanied by small (~1%) elongation; (d) domains disorientated by 

application of mechanical stress (Note the blank grains in (a) and (b) would contain 

similar domain structures) [80]. 

The domain structure revealed by polishing and etching an unpoled ceramic 

specimen is shown in Figure 2.25(a). The principal features in the form of parallel 

lines are due to 90º changes in the polar direction. The orientations occurring in a 

simple domain structure are shown schematically in Figure 2.25(b). The thickness of 
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the layer separating the domains, i.e. the domain wall, is of the order of 10 nm but 

varies with temperature and crystal purity. The wall energy is of the order 10 mJm
-2

. 

The physics of domain formation and stress-relief is reviewed by G. Arlt [33]. 

The detailed geometry and dynamics of changes in domain configuration in a 

single crystal accompanying changes in applied field are complex and there is marked 

hysteresis between induced polarization and an applied field of sufficient strength. 

Conditions in a crystallite clamped within a ceramic are even more complex. 

 

 

(a) 
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(b) 

Figure 2.25 (a) Polished and etched surface of unpoled ceramic; (b) schematic 

diagram of 180º and 90º domains in barium titanate [80] 

The hysteresis loop of a single-domain single crystal of BaTiO3 is shown in 

Figure 2.26(a). The almost vertical portions of the loop are due to the reversal of the 

spontaneous polarization as reverse 180º domains nucleate and grow. The almost 

horizontal portions represent saturated states in which the crystal is single domain 

with a permittivity εr of 160 (see Figure 2.20(d)) measured in the polar direction. The 

coercive field at room temperature when the loop is developed by a 50 Hz supply is 

0.1 MVm
-1

 and the saturation polarization is 0.27 Cm
-2

. For fields in the approximate 

range 10 to 100 Vmm
-1

 the hysteresis loop takes the form of a narrow ellipse, a 

Rayleigh loop, with its major axis parallel to the almost horizontal part of the fully 

developed loop. 
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The hysteresis loop of a ceramic varies according to composition and ceramic 

structure but is typically of the form shown in Figure 2.26(b). The coercive field is 

higher and the remanent polarization is lower than for a single crystal. Changes in 

both 180º and 90º domain configurations take place during a cycle and are impeded 

by the defects and internal strains within the crystallites. 

 

Figure 2.26 Hysteresis loops for (a) a single-domain single crystal of BaTiO3 

and (b) BaTiO3 ceramic [80] 

In discussing dielectric losses in ferroelectrics, it is necessary to distinguish 

between three mechanisms. The first involves the vibrating domain wall, the second a 

limited translation of the wall and the third the switching of the polarization direction 

of an entire domain. These three mechanisms are now discussed in a little more detail 
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when it is assumed that the driving electric field is sinusoidal and that when field 

strengths are referred to it is the amplitude which is the relevant parameter. 

Considering first the vibrating domain wall, the losses have their origin in the 

emission of acoustic shear waves resulting from small changes in domain shape 

induced by the applied field. These losses are present at all frequencies extending up 

to the GHz range. At around 1 GHz there is a marked Debye-like relaxation effect 

with the losses reaching a maximum. The process bears a formal similarity to that 

discussed earlier. At this frequency the wavelength of an acoustic wave is of the same 

order of size as that of the domains (i.e. ~ 1 μm) and there will be strong scattering. 

The topic is discussed by G. Arlt and co-workers (e.g. [82]). 

This loss mechanism is dominant up to a „threshold field‟ (Eth) the strength of 

which depends upon the „softness‟ or „hardness‟ of the ferroelectric. Anticipating the 

later discussion of the family of piezoelectric ceramics (PbZrO3 – PbTiO3 [„PZT‟]) 

„hardness‟ is engineered through specific doping which has the effect of „pinning‟ the 

domain walls. The losses (tan δ) of a „hard‟ and „soft‟ PZT in the low field region 

(below Eth) are typically 0.003 and 0.02 respectively. 

Above Eth the field is sufficiently strong to cause limited translation of the 

domain wall without disturbing to any significant extent the overall domain structure. 

This process is described as „reversible‟ (more correctly as „nearly reversible‟) to 

distinguish it from the very hysteretic and clearly irreversible process evidenced by 

the hysteresis loop (Figure 2.26). In this regime the P-E characteristic is a narrow 

loop, the Rayleigh loop referred to above. 

When a critical field (EC) is reached, which is near to the coercive field, the 

domains switch direction as a whole involving considerable hysteresis loss. This loss 
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is proportional to the area of the loop, so that for the single crystal in Figure 2.26(a) it 

amounts to about 0.1 MJm
-3

. At 100 Hz the power dissipated as heat would be 100 

MW-m
-3

, which would result in a very rapid rise in temperature. The dissipation 

factor (tan δ) is also very high at high field strengths, but becomes small at low field 

strengths, as described above. Modifications to the composition diminish the loss still 

further. Dielectric hysteresis in the commercially important ferroelectric 

piezoceramics (e.g. „PZT‟) is comprehensively reviewed by D. Hall [83]. 

2.9 Lead magnesium niobate-lead titanate (PMN-PT) 

2.9.1 Lead magnesium niobate (PMN) 

Lead magnesium niobate, Pb(Mg1/3Nb2/3)O3or PMN, was first fabricated by 

Smolenskii and Agranovskaya [84] in the late 1950s and is one of the most studied of 

the complex lead-based perovskites. At room temperature, PMN exhibits a cubic 

perovskite structure with space group Pm3m and lattice constant a = 4.04 Å [85]. On 

cooling, this high temperature paraelectric phase undergoes a gradual transition into a 

rhombohedral ferroelectric state over a wide range of temperatures centered at 

approximately 0 ºC. The origin of this broad dielectric response is postulated as 

caused by a distribution of Curie points resulting from microcompositional fluctuation 

in the B-site cations [86]. 

Pure lead magnesium niobate (PMN) [87-88] is a representative of relaxor 

ferroelectric materials with a transition temperature of -10 ºC, at 1 kHz. There is 

cation disorder in the B-site for Pb(Mg1/3Nb2/3)O3 [89-91]. The composition regarding 

Mg/Nb ratio is not stoichiometric in the micro/nano-regions, leading to different 

ferroelectric transition temperatures which enhances the dielectric peak broadening. 

However, there have been many models proposed to explain the behavior of the 
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relaxor ferroelectric, for example, the inhomogeneous micro/nano-region model, the 

micro-micro domain transition model, the super paraelectric model, the dipolar glass 

model, the order-disorder model and etc. [91-94]. 

2.9.2 Lead titanate (PT) 

Lead titanate (PbTiO3 or PT) is a ferroelectric with a high Curie point 

(∼490ºC) at which the phase transition from the cubic paraelectric (above Curie 

point) to the tetragonal ferroelectric phase (below Curie point) occurs [85]. At room 

temperature, PT has a symmetry of point group 4mm with the ratio of axes c/a 

∼1.063, which is larger than that (c/a ∼ 1.01) for barium titanate [80, 95]. It is very 

appropriate for high frequency and high temperature applications in electronics and 

microelectronics, due to its desirable dielectric constant (εr ∼ 200), pyroelectric, and 

piezoelectric (kt/kp > 10) properties [2, 80, 85]. It has been extensively employed to 

make solid solutions with lead zirconate (PbZrO3) to obtain lead zirconate titanate 

(PZT) material [2] and also other perovskites, forming a wide range of versatile 

crystalline solid solutions, such as Pb(Mg1/3Nb2/3)O3-PbTiO3 or PMN-PT and 

Pb(Zn1/3Nb2/3)O3-PbTiO3or PZN-PT [2, 80]. These PT-based family members of 

ferroelectrics are widely used in multilayer capacitors, actuators, sensors, transducers, 

pyroelectric detectors and electro-optic devices. 

During several past decades, many experiment [96-98] studies were carried 

out on various phase transformation and crystal structures of lead-based solid 

solutions consisting of normal and relaxor perovskite ferroelectrics. These compounds 

have attracted a growing fundamental and practical interest because of their excellent 

dielectric, piezoelectric and electrostiction properties which are useful in actuating 
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and sensing applications [95, 99]. Experimentally it has been reported that a variety of 

complex-mixed perovskite ferroelectrics with a complex occupation of the A and/or B 

site in the crystal lattice and exhibiting the diffuse phase transition behavior have a 

nanometer scale heterogeneity in composition [100-101]. In the 1950s, Smolenski and 

coworkers [85-86] investigated many cation substitutions into PbTiO3 in a search for a 

new ferroelectric material. In this kind of substitution, the general guidelines are that 

the ionic sizes should be comparable to those of Ti
4+

ion and the combination must 

yield the same average charge as Ti
4+

 to maintain charge neutrality. Many such 

compositions take on the complex perovskite structure, and their properties have been 

extensively reported by several researchers [102-104]. 

Lead magnesium niobate (PMN) is nowadays acknowledged as the 

presentative of relaxor ferroelectrics [84]. The real macroscopic phase transition of 

the first order to rhombohedral long-range ferroelectric ordered phase has been 

detected in PMN at about 200 K by cooling in an external dc electric field [102]. 

Though the Curie temperature or better yet, Curie range of PMN is well below room 

temperature where it can be easily shifted upward with PT additions, a normal or 

ordered ferroelectric compound which has a transition at 490 ºC. A spontaneous (zero 

field) phase transition was indicated in the solid solution PMN-PT as a result of a 

change in the degree of ordering induced by substitution of cationic sites. An addition 

of ∼28% PT causes the material to revert to a normal ferroelectric tetragonal phase 

with TC ∼ 130 ºC [103]. 

The (1-x)PMN-(x)PT system also shows a morphotropic phase boundary 

(MPB) near x ∼ 0.34, separating pseudo-cubic phase and tetragonal phases (Figure 

2.27) [103]. As observed in other systems such as (1-x)PZN:(x)PT and (1-x)PZ:(x)PT 
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or PZT, anomalously large dielectric and piezoelectric properties are observed for 

compositions lying near the MPB. The piezoelectric properties of PMN-PT system, 

however, are much higher compared with PZT system.  

There is a considerable interest in PMN-PT ceramics due to their high strains 

with low hysteresis losses. These compounds also exhibit a board maximum in the 

dielectric constant, and the temperature of the dielectric maximum also increases with 

the testing frequency as shown in Figure 2.28. These properties make the materials 

particularly suitable for use in electrostrictive actuator, sensor and piezoelectric 

devices. 

 

Figure 2.27 Phase diagram of the solid-solution of the PMN-PT system 

showing the morphotropic phase boundary (solid circles = calculated data and open 

circles = experimental data) [103] 
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Figure 2.28 Dielectric behavior of (1-x)PMN-xPT ceramics (at 1 kHz) as a 

function of temperature [103]. 

Table 2.1 Dielectric and piezoelectric properties of (1-x) PMN: x PT [104] 

Sample Unpoled Poled 

x εr tan δ εr, max TC 

(ºC) 

tan 

δmax 

d33 εr tan δ εr, max TC 

(ºC) 

tan 

δmax 

d33 

0.225 3533 0.032 29552 112 0.036 297 1695 0.022 28688 114 0.042 96 

0.25 2778 0.031 30192 127 0.061 305 2435 0.018 28714 130 0.072 124 
0.275 2873 0.035 33432 136 0.045 353 2091 0.030 31986 138 0.051 130 

0.3 3782 0.034 36469 139 0.035 669 4936 0.027 33289 143 0.057 136 

0.325 4170 0.029 33350 155 0.029 663 5260 0.018 30048 159 0.049 156 

0.35 3190 0.013 30623 177 0.098 456 3119 0.006 29020 182 0.069 230 

0.375 2434 0.015 28524 190 0.018 405 2781 0.011 28126 198 0.038 191 

0.4 2097 0.016 27156 202 0.030 323 2371 0.010 25189 207 0.044 204 
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2.10 Lead zirconate titanate-lead zinc niobate 

[(Pb(Zr1/2Ti1/2)O3−Pb(Zn1/3Nb2/3)O3 or PZT-PZN)] systems 

The piezoelectric solid solution lead zirconate titanate [Pb(Zr1-xTix)O3 (PZT)] 

was found to host exceptionally high dielectric and piezoelectric properties for 

compositions close to the morphotropic phase boundary (MPB) [30]. This MPB is 

located around PbTiO3:PbZrO3 ~ 1:1 and separates the Ti-rich tetragonal phase from 

the Zr-rich rhombohedral phase [105]. Most commercial PZT ceramics are thus 

designed in the vicinity of the MPB with various dopings in order to achieve high 

properties. 

Lead zinc niobate [Pb(Zn1/3Nb2/3)O3 (PZN)] is an important relaxor 

ferroelectric material with the rhombohedral structure at room temperature. A diffuse 

phase transition from the paraelectric state to a ferroelectric polar state occurs at 140 

ºC [106]. Extensive research has been carried on PZN single crystals because of their 

excellent dielectric, electrostrictive, and optical properties [107]. 

In addition, PZN has a low tolerance factor and small electronegativity 

difference between the cations and the pyrochlore phase appears to be more 

thermodynamically stable than the perovskite phase [108]. Hot isostatic pressing was 

reported to be able to produce phase-pure perovskite PZN ceramics [109]. However, 

relatively poor piezoelectric properties were measured in the as-pressed ceramic. 

Various chemical additives, such as Ba(Zn1/3Nb2/3)O3, BaTiO3, and SrTiO3 have thus 

been explored in an attempt to stabilize the perovskite PZN ceramic and retain the 

excellent piezoelectric properties. 

Since both PZT and PZN have perovskite structure and are known to have 

excellent dielectric and piezoelectric properties, it is suggested to alloy PZN with PZT 
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to stabilize and optimize the PZN ceramics. So, recently, there have been lots of 

studies in lead zirconate titanate-lead zinc niobate [(Pb(Zr1/2Ti1/2)O3−Pb(Zn1/3Nb2/3)O3 

or PZT-PZN)] systems [ 110-113]. 

 

Figure 2.29 The proposed phase diagram for the Pb(Zn1/3Nb2/3)O3− 

Pb(Zr1/2Ti1/2)O3 pseudo binary solid solution system [113] 

One of previous studies [114] revealed the investigation of crystal structure 

change as a function of composition in (1-x)PZT-(x)PZN ceramic systems where x = 

0.1, 0.2, 0.3, 0.4, and 0.5. The results suggested that the morphotropic phase boundary 

(MPB) is located between x = 0.2 and 0.3 according to observations made on ceramics 

prepared with the columbite method. When x ≤ 0.2, the tetragonal phase dominates at 
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ambient temperatures, while in the range of x ≥ 0.3, the rhombohedral phase 

dominates. 

 

Figure 2.30 The XRD patterns of xPZN–(1-x)PZT ceramics sintered at 1200 

°C for 2 hours to illustrate the change in crystal structure as a function of composition 

for columbite method [114] 

2.11 Literature Reviews 

In 1998, Acharyya [60] studied the nonequilibrium phase transition in the 

kinetic Ising model. The non-quilibrium dynamic phase transition, in the kinetic Ising 

model in presence of an oscillating magnetic field, has been studied both by Monte 

Carlo simulation (in two dimensions) and by solving the mean-field dynamical 

equation of motion for the average magnetization. The temperature variations of 

hysteretic loss (loop area) and the dynamic correlation have been studied near the 
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transition point. The transition point has been identified as the minimum-correlation 

point. The hysteretic loss becomes maximum above the transition point. An analytical 

formulation has been developed to analyze the simulation results. A general 

relationship among hysteresis loop area, dynamic order parameter, and dynamic 

correlation has also been developed. 

In 1999, Chakrabarti et al. [56] reviewed the dynamic hysteresis and 

transitions in ferromagnets via both aspects of theoretical and experimental studies. It 

can be concluded that when an interacting many-body system, such as a magnet, is 

driven in time by an external perturbation, such as a magnetic field, the system cannot 

respond instantaneously due to relaxation delay. The response of such a system under 

a time-dependent field leads to many novel physical phenomena with intriguing 

physics and important technological applications. For oscillating fields, one obtains 

hysteresis that would not occur under quasistatic conditions in the presence of thermal 

fluctuations. Under some extreme conditions of the driving field, one can also obtain 

a nonzero average value of the variable undergoing such „„dynamic hysteresis‟‟. This 

nonzero value indicates a breaking of the symmetry of the hysteresis loop about the 

origin. Such a transition to the „„spontaneously broken symmetric phase‟‟ occurs 

dynamically when the driving frequency of the field increases beyond its threshold 

value, which depends on the field amplitude and the temperature. Typically, at fixed 

temperature T and field amplitude h0, the dynamic hysteresis loss A increases with 

increasing frequency ω for low values of ω. This is because, for low values of ω, the 

effective delay in the response increases as ω increases. In general, for a fixed ω, A 

increases with decreasing T and increasing h0 until A saturates. Eventually, as the 

driving frequency exceeds a threshold value (dependent on h0 and T), the loop area A 
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starts decreasing, because of the increase in the effective delay. The observed 

variation of the loop area A with frequency ω can be fitted to a form of      

  
    (

 

  
 ) with the scaling exponents α, β, and γ and with the scaling function g 

having a suitable nonmonotonic form such that g(x)→0 as x→0 or ∞. A0 is the loop 

area in the zero frequency limit. Similar dynamic transitions also occur for pulsed and 

stochastically varying fields. 

The same year, Liu et al. [115] investigated the frequency response and 

scaling of hysteresis for ferroelectric Pb(Zr0.52Ti0.48)O3 thin films deposited by laser 

ablation. The ferroelectric hysteresis response against periodically varying electric 

field over frequency range of 10
-2

-10
5
 Hz and amplitude range of 2-45 kV/cm for 

YBa2Cu3O7(YBCO)/ Pb(Ti0.48Zr0.52)O3 (PZT)/YBCO thin film capacitors prepared by 

laser ablation is measured by utilizing the Sawyer-Tower circuit. Given amplitude  

of the field, the hysteresis area < A > first grows and then decays as a function of 

frequency . At low and high ranges of frequency, < A > can be scaled as < A >  

1/32/3
 and < A >  -1/3, respectively. It is established that the dynamic hysteresis 

at the high frequency range for a PZT thin film capacitor does not follow the 

theoretically predicted scaling law. An empirical scaling law < A >  1/3
(-

0)
2/3

/(1+b2/3-1/3
) with 0 the critical field and b a constant, is proposed to 

characterize the frequency and amplitude dependence of the hysteresis area over all 

the frequency range. In addition, the remnant polarization Pr and coercive field EC as 

function of  are investigated, respectively, revealing a single-peaked pattern of both 

Pr and EC. 
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In 2003, Park et al. [12] studied the scaling behavior of ferroelectric hysteresis 

loop in pulsed-laser-deposited SrBi2Ta2O9 thin film grown on a highly oriented 

Pt/Ti/SiO2/Si substrates using pulsed laser ablation. The hysteresis loop of 

ferroelectric SrBi2Ta2O9 was studied as a function of applied field amplitude. A 

scaling analysis of ferroelectric hysteresis loop area showed A E

. The value of 

scaling exponent,  = 0.40, is not similar to the reported theoretical and experimental 

values. This result shows the possibility that both ferroelectric bulk and thin-film 

systems may have different universal behaviors. Influence of potential in the surface 

of SrBi2Ta2O9 thin film was measured in the dc applied field range from 0 to 8 V by 

using electro force microscopy. Roughness of surface potential of SrBi2Ta2O9 thin 

film changed rapidly around the coercive voltage, VC 1.5 V. It is believed that the 

switching effect of SrBi2Ta2O9 thin film includes surface polarization at the surface of 

the thin film as well as pure spontaneous polarization in the bulk. 

In 2005, Liu et al. [116] determined the dynamic scaling of hysteresis 

dispersion in three representative ferroelectric Pb(Ti0.48Zr0.52)O3 (PZT), Bi2Sr2Ta5O9 

(SBT) and Bi4Ti3O12 (BTO) thin films and one 1-3 Pb0.95La0.05TiO3 (PLT)/polymer 

composites, measured using the Sawyer–Tower (ST) method, focusing on the 

dependence of the hysteresis area as a function of the amplitude E0 and frequency f of 

the external electric field E. It is found that the one-parameter scaling of the single-

peaked hysteresis dispersion applies to the three types of ferroelectric thin films and a 

Ginzburg–Landau (GL) model system where the domain reversal can be kinetically 

described by a unique characteristic time. It is confirmed by all of the three 

ferroelectric systems that the effective characteristic time for the domain reversal is 
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inversely proportional to the field amplitude, while this scaling does not work for the 

composite system. 

In 2006, Yimnirun et al. [16] observed the scaling behavior of dynamic 

hysteresis in commercial soft lead zirconate titanate bulk ceramics (PKI-552, Piezo 

Kinetics Inc., USA). The results showed that the scaling relation of hysteresis area 

<A> against frequency f and field amplitude E0 for the saturated loops of the soft lead 

zirconate titanate bulk ceramic takes the form of < A >  f 
−1/4

E0, which differs 

significantly from that of the theoretical prediction and that of the thin film. This 

indicates that the scaling relation is dimension dependent and that depolarizing effects 

in the interior must be taken into account to model bulk materials. Additionally, the 

scaling relation for the minor loops takes the form of < A >  f 
−1/3

E0
3
, which is 

identical to that of the thin film as both cases contain similar 180° domain-reversal 

mechanism. Later in 2007, they also observed the dynamic hysteresis and scaling 

behavior of commercial hard lead zirconate titanate bulk ceramics (APC-840, APC 

International, Ltd., USA) [17]. The scaling relation of ferroelectric hysteresis area 

<A> against frequency f and field amplitude E0 for the saturated loops of the hard lead 

zirconate titanate bulk ceramic takes the form of < A >  f 
−0.28

E0
0.89

, while that for the 

minor loops takes the form of < A >  f 
−0.43

E0
3.19

. In both cases, the scaling relations 

are similar to those of its soft counterpart. This indicates that the dynamic behaviors 

and scaling relations in bulk ceramics are mainly governed by the domain states and 

structures, while the distinct types of complex defects contribute mainly to the 

difference in the coercive field observed in hard and soft ceramics. 

In 2008, Bhattacharyya et al. [22] investigated the scaling behavior of 

dynamic hysteresis of deformed helix ferroelectric liquid crystals (DHFLCs). The 
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hysteresis areas < A > for the saturated loops of a deformed helix ferroelectric liquid 

crystal, viz., (S)-4-(2-methyloctanoyl) 4-biphenyl-4-octyloxybenzoate (MIP0806) 

have been studied. The scaling laws < A >  f 
0.24

E0
0.68

 and < A >  f 
0.28

E0
0.70

 

connecting frequency (f) and amplitude (E0) of the applied signal are found to be valid 

close to and far away from the SmA-SmC* transition temperature (104 °C), 

respectively. The formation of ferroelectric monodomain in MIP0806 is weakly 

constrained by surface and dipolar interactions, which might be responsible for the 

observed small deviation obtained from theoretically predicted scaling laws.  

In addition, Yang et al. [21] have studied the evolution of electric field 

amplitude dependent scaling behaviors in ferroelectric films over a broad temperature 

range of 0.5 mol% Mn doped Pb0.5Sr0.5TiO3 (PSMT05) and 0.7Pb(Mg1/3Nb2/3)O3–

0.3PbTiO3 (0.7PMN-0.3PT) films. The evolution of the electric field amplitude (V0) 

dependent scaling of dynamic hysteresis area (A  V0

) with temperature in Mn doped 

(Pb,Sr)TiO3 film was analyzed.  exhibited different values under three temperature 

regions: (I) when T < TC, namely, the ferroelectric state, α = 2/3.The scaling of the 

dynamic hysteresis in this region represents the kinetic picture of intrinsic 

ferroelectric domain nucleation, growth, and reversal. (II) From TC to 520 K, α 

increases approaching to 2. Here the ferroelectric domain has been replaced by PNRs 

distributing in the paraelectric matrix. In addition, the effect of mobile defects (e.g., 

oxygen vacancy) begins to occur and becomes more prominent with the increase in 

temperature. Therefore, the competition between the PNRs and mobile defects may be 

another cause for the enhancement in the value of α. (III) Above 520 K, ionized 

oxygen vacancies are dominative, which can move a long distance under the applied 

electric field, the scaling behavior shows quadratic (α = 2) power-law due to Joule 
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loss in the process of oxygen vacancies‟ movement. The evolution of the scaling 

behavior in 0.7PMN-0.3PT films was also checked and it revealed similar results of α. 

This study suggests a quantitative criterion to distinguish the intrinsic ferroelectric 

hysteresis from artificial one. 

 In 2009, Chen et al. [117] observed the scaling behaviors of dynamic 

hysteresis in Zr-rich lead zirconate titanate bulk ceramics. The PZT 95/5 ceramics 

prepared by the conventional solid-state reaction were investigated hysteresis 

behaviors and their scaling relations under two ferroelectric phases, a high-

temperature rhombohedral phase (FR(HT)) and a low-temperature rhombohedral phase 

(FR(LT)).  The scaling relations of the saturated hysteresis loops for PZT 95/5 ceramics 

take the forms     ∝         and     ∝         
    for low f and high f at fixed 

temperature, respectively. The forms are different from the theoretical predictions and 

other experimental results but are the same for FR(LT) and FR(HT), which implies that the 

compositions and crystal structures can influence the scaling laws while the different 

space groups in rhombohedral phase cannot. 

 In 2010, Yu et al. [118] examined the dynamic ferroelectric hysteresis scaling 

behavior of 40BiScO3-60PbTiO3 bulk ceramics. (1-x)BiScO3-xPbTiO3 (BSPT) 

ceramics are the promising candidates for relatively high temperature sensor use and 

actuator applications. Polarization-field (P-E) hysteresis loops of 40BiScO3-60PbTiO3 

bulk ceramics were measured under sinusoidal electric fields over a frequency range 

of 10
-2

-10
2 

Hz and an amplitude range of 20-50 kV/cm. The scaling relations of the 

hysteresis loop area < A > versus the frequency f and amplitude E0 of the applied field 

for the saturated loops take different forms in the low (0.01 Hz < f  < 1 Hz) and high 

(1 Hz < f < 100 Hz) frequency ranges. For low f range, the scaling relation takes the 



75 

form of     ∝        
   , and takes the form of    ∝         

    for high f 

range. Combining the information from these two relations, one can draw the 

conclusion that the area < A > first grows and then decays with increasing frequency f 

over a wide range. 


