TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
ABSTRACT (ENGLISH)	vi
ABSTRACT (THAI)	x
LIST OF TABLES	xix
LIST OF FIGURES	xx
ABBREVIATIONS AND SYMBOLS	xxxiii
CHAPTER 1 INTRODUCTION	1
1.1 Principles, rationale and hypothesis	1
1.2 Purpose of the research	3
1.3 Material candidates for this study	3
CHAPTER 2 LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Dielectric polarization	6
2.2.1 Macroscopic and microscopic views	6
2.2.2 Mechanisms of polarization	9

2.3 Normal ferroelectrics	12
2.4 Ferroelectric domains	15
2.4.1 The dynamics of domain wall motions in ceramics	18
2.4.2 Reversible and irreversible polarization contributions	20
2.4.3 Ferroelectric switching	25
2.5 Ferroelectric characterization	26
2.5.1 Hysteresis loop and characteristic values	26
2.5.2 Sawyer-Tower method	27
2.6 Power-law scaling relation	28
2.7 Data analysis	32
2.7.1 Least squares	32
2.7.1.1 Probability and statistics review	33
2.7.1.2 The method of least squares	35
2.7.2 Coefficient of determination	39
2.7.3 Fourier transform	45
2.8 Barium titanate (BT)	48
2.9 Lead magnesium niobate-lead titanate (PMN-PT)	61
2.9.1 Lead magnesium niobate (PMN)	61
2.9.2 Lead titanate (PT)	62
2.10 Lead zirconate titanate-lead zinc niobate [(Pb(Zr _{1/2} Ti _{1/2})O ₃ -	66
$Pb(Zn_{1/3}Nb_{2/3})O_3 \text{ or } PZT-PZN)]$ systems	
2.11 Literature review	68

CHAPTER 3 EXPERIMENTAL PROCEDURES	76
3.1 Basic methodology for dynamic hysteresis properties measurement	77
3.2 Experimental setup for hysteresis properties measurement	80
3.2.1 The procedures for the dynamic hysteresis investigation	80
at room temperature	
3.2.1.1 Investigation in BT system	84
BT single crystals	84
BT bulk ceramics	85
3.2.1.2 Investigation in 0.7PMN-0.3PT single crystals	86
3.2.1.3 Investigation in (1-x)PZT-(x)PZN ceramic systems;	87
• $(1-x)PZT-(x)PZN; x = 0.1$	87
• $(1-x)PZT-(x)PZN; x = 0.2$	87
• $(1-x)PZT-(x)PZN; x = 0.3$	88
• $(1-x)PZT-(x)PZN; x = 0.4$	88
• $(1-x)PZT-(x)PZN; x = 0.5$	89
3.2.2 The procedures for the dynamic hysteresis investigation	89
with temperature	
3.2.2.1 BT bulk ceramics	95
3.2.2.2 BT single crystals	95
3.2.3 The procedures for the dynamic hysteresis investigation	95
with electric field-waveform	

xvi

CHAPTER 4 RESULTS AND DISCUSSIONS	100
4.1 The dynamic hysteresis properties at room temperature	100
4.1.1 BT system	100
• BT single crystals	100
BT bulk ceramics	119
4.1.2 0.7PMN-0.3PT single crystals	140
4.1.3 (1-x)PZT-(x)PZN ceramic system	148
• $0.9PZT \ 0.1PZN; (x = 0.1)$	149
• $0.8PZT \ 0.2PZN; (x = 0.2)$	155
• 0.7PZT 0.3PZN; (x = 0.3)	163
• $0.6PZT-0.4PZN; (x = 0.4)$	169
• $0.5PZT-0.5PZN; (x = 0.5)$	177
All PZT-PZN compositions	184
4.2 The dynamic hysteresis properties with temperature	187
4.2.1 BT bulk ceramics	187
4.2.2 BT single crystals	195
4.3 The dynamic hysteresis properties with electric field-waveform	201
4.4 Summary of influencing factors	208
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS	213
	012
5.1 Conclusions	e^{213}
5.2 Suggestions	218

219

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
2.1	Dielectric and piezoelectric properties of $(1-x)$ PMN: x PT	65
4.1	Scaling exponents in different ferroelectric materials	117
4.2	Scaling exponents in ferroelectric materials	138
4.3	The exponents of power-law scaling relation for systems	146
4.4	The scaling exponent m and n for PZT-PZN ceramic systems	183
4.5	Power-law scaling exponents in ferroelectric systems	193
4.6	Power-law scaling exponents for BT systems in typical phases	199
4.7	The exponents of power-law scaling relation for ferroelectric systems	206
4.8	Summarized scaling exponents for ferroelectric materials at room	210
	temperature	
51	Summary of scaling exponents for ferroelectric materials in this study	214

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

MAI UNIN

LIST OF FIGURES

Figur	re 9318126	Page
2.1	Classification of the crystallographic groups by their electrical	6
	properties	
2.2	Parallel plate capacitor (a) without any dielectric, (b) filled with	7
	dielectric under short circuit condition ($E = \text{constant}$) and (c) filled	
	with dielectric under open circuit condition ($D = constant$)	
2.3	Bias field dependence of the dielectric constant of (a) dielectric	8
	and (b) ferroelectric materials	
2.4	Frequency dependence of real part of the dielectric function	12
2.5	A typical ferroelectric hysteresis loop of single crystal (dashed line)	13
	and polycrystal sample (full line)	
2.6	A general depiction of the temperature dependences of the	14
	spontaneous polarization, the dielectric constant, and the inverse	
	dielectric constant for a ferroelectric (a) second-order phase	
	transitions and (b) first-order phase transitions	
2.7	Reduction of electrical stray field energy by domain formation	15
2.8	Scheme of domain pattern of fine grained BaTiO ₃ ceramic (left)	SI 16
	and coarse grained BaTiO ₃ ceramic (right)	
2.9	Domain structures of tetragonal PZT with different orientations	17
2.10	Domain structures in polycrystalline materials: (a) simple lamellar	19
	twinning (b) banded twin structure in ceramics	

2.11	Movement of a domain wall in the lattice potential	21
2.12	(a) $C(V)$ - curve and (b) reversible and irreversible contribution	23
	to the polarization of a ferroelectric SBT thin film	
2.13	Relative permittivity of 2% Nd-doped Pb(Zr_xTi_{1-x})O ₃ bulk ceramics	23
2.14	(a) Piezoelectric coefficient d_{33} and (b) "Butterfly" loop and	24
	integrated d_{33} response of a PZT 45/55 film	
2.15	Nomenclature used	27
2.16	Schematic of a Sawyer-Tower hysteresis measurement method	28
2.17	The frequency-dependent hysteresis area A of epitaxially grown	30
	ultrathin Co films on a Cu (001) surface at room temperature, the	
	results for the loop area A as a function of frequency f is plotted at a	
	fixed ac current of 0.4 Amp. The direction of the magnetic field is	
	parallel to the film plane. The insets show plots of m - h loops for the	
	following particular values of the field amplitudes h_0 : (i) $h_0 = 48.0$ Oe	
	(top inset) and (ii) $h_0 = 63.0$ Oe (bottom inset)	
2.18	Integration for sliced domains of width $\Delta \omega$	47
2.19	The unit cell of BaTiO ₃	49
2.20	Properties of single-crystal BaTiO ₃ : (a) unit-cell distortions of the	49
	polymorphs; (b) lattice dimensions versus temperature (after R. Clarke	
	J. Appl. Cryst. 9, 335, 1976); (c) spontaneous polarization versus	
	temperature; (d) relative permittivities measured in the a and c	
	directions versus temperature (after W.J. Merz Phys. Rev. 76, 1221,	
	1949).	

2.21	Approximate ion displacements in the cubic-tetragonal distortion in	53
	BaTiO ₃	
2.22	Variation in the potential energy of Ti ⁴⁺ along the c axis	54
2.23	(a) Surface charge associated with spontaneous polarization;	55
	(b) formation of 180° domains to minimize electrostatic energy	
2.24	Schematic illustrating the changes accompanying the application of	56
	electrical and mechanical stresses to a polycrystalline ferroelectric	
	ceramic: (a) stress-free – each grain is non-polar because of the	
	cancellation of both 180° and 90° domains; (b) with applied electric	
	field – 180° domains switch producing net overall polarity but no	
	dimensional change; (c) with increase in electric field 90° domains	
	switch accompanied by small (~1%) elongation; (d) domains	
	disorientated by application of mechanical stress. (Note the blank	
	grains in (a) and (b) would contain similar domain structures.)	
2.25	(a) Polished and etched surface of unpoled ceramic; (b) schematic	57
	diagram of 180° and 90° domains in barium titanate	
2.26	Hysteresis loops for (a) a single-domain single crystal of $BaTiO_3$	59
	and (b) BaTiO ₃ ceramic	
2.27	Phase diagram of the solid-solution of the PMN-PT system showing	64
	the morphotropic phase boundary (solid circles = calculated data and	
	open circles = experimental data)	
2.28	Dielectric behaviour of $(1-x)$ PMN- <i>x</i> PT ceramics (at 1 kHz) as	65
	a function of temperature	

xxii

2.29	The proposed phase diagram for the Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Zr_{1/2}Ti_{1/2})O_3	67
	pseudo binary solid solution system	
2.30	The XRD patterns of xPZN– $(1-x)$ PZT ceramics sintered at 1200 °C for	69
	2 hours to illustrate the change in crystal structure as a function of	
	composition for columbite method	
3.1	Schematic of the modified Sawyer-Tower circuit ($C_0 = standard$	77
	capacitor, $C_s = $ Specimen, $C_0 >> C_s$)	
3.2	The <i>P</i> - <i>E</i> hysteresis loop of ferroelectric specimen on picoscope	78
	program	
3.3	Schematic of the experimental set-up for dynamic hysteresis	81
	investigation at room temperature	
3.4	The setup for ferroelectric hysteresis loop measurement	82
3.5	Flow chart of the dynamic hysteresis measurement at room	84
	temperature	
3.6	BT single crystal specimens	85
3.7	BT bulk ceramic specimens	86
3.8	0.7PMN-0.3PT single crystal specimens	87
3.9	Schematic of the experimental setup for various temperature	90
	investigations (a) setup for high temperature investigation (T > 25 °C),	
	(b) setup for middle low temperature investigation (-60 °C \leq T \leq 0 °C)	
	and (c) setup for the lowest temperature investigation (T < -60 $^{\circ}$ C)	
3.10	The setup for measuring ferroelectric hysteresis loop under influence	91
	of various temperatures	

xxiii

3.11	Flow chart of the dynamic hysteresis measurement for temperature	94
	dependence	
3.12	Schematic of the experimental setup for field-waveform dependence	96
	investigations	
3.13	Flow chart of the dynamic hysteresis measurement for waveform-	98
	dependent investigation	
4.1	The <i>P</i> - <i>E</i> hysteresis loops for $\{100\}$ -BaTiO ₃ single crystal (a) at	101
	various f fixed E_0 = 6.0 kV/cm, and (b) at various E_0 fixed f = 100 Hz	
4.2	The hysteresis area $\langle A \rangle$ profiles with evolutions of (a) frequency f ,	102
	and (b) field amplitude E_0	
4.3	Logarithmic plots between (a) $\log \langle A \rangle$ and $\log f$, and (b) $\log \langle A \rangle$	104
	and $\log E_0$	
4.4	(a) Variation of <i>f</i> -exponent <i>m</i> with E_0 , and (b) variation of E_0 -	106
	exponent <i>n</i> with <i>f</i> in sub-coercive field ($E_0 < E_C$) and saturated	
	field $(E_0 > E_C)$ conditions. The dotted lines represent linear fitting	
4.5	Power-law scaling relations of hysteresis for {100}-BaTiO ₃ single	108
	crystals (a) $\langle A \rangle$ against $f^m E_0^{4.157}$ for sub-coercive field ($E_0 \langle E_C$), and	
	(b) $\langle A \rangle$ against $f^{-0.195}E_0^{0.95}$ for saturated field ($E_0 > E_C$) conditions.	
	The dotted lines represent linear fitting	
4.6	(a and b) The remnant polarization (P_r) profiles with evolutions of	5 113
	frequency f and field amplitude E_0 , respectively, with insets of	
	logarithmic plots, (c and d) the coercive field ($E_{\rm C}$) profiles with	
	evolutions of frequency f and field amplitude E_0 , respectively, with	
	insets of logarithmic plots	

xxiv

4.7	The <i>P</i> - <i>E</i> hysteresis loops for polycrystalline BaTiO ₃ bulk ceramics	118
	(a) at various f fixed $E_0 = 15$ kV/cm, and (b) at various E_0 fixed $f =$	
	100 Hz	
4.8	The hysteresis area $\langle A \rangle$ profiles with evolutions of (a) frequency f ,	119
	and (b) field amplitude E_0	
4.9	Logarithmic plots between (a) $\log \langle A \rangle$ and $\log f$, and (b) $\log \langle A \rangle$	121
	and log E_0 . The dotted lines represent linear fitting	
4.10	(a) Variation of <i>f</i> -exponent <i>m</i> with E_0 , and (b) variation of E_0 -	123
	exponent <i>n</i> with <i>f</i> under sub-coercive field ($E_0 < E_C$) and beyond	
	coercive field ($E_0 > E_C$) conditions. The dotted lines represent data	
	linear fitting in each range	
4.11	Power-law scaling relations of hysteresis for polycrystalline BaTiO ₃	126
	bulk ceramics (a) $< A > against f^{-0.55} E_0^{-3.40}$ for sub-coercive field	
	$(E_0 < E_C)$, and (b) $< A > \text{against } f^{-0.39} E_0^{1.06}$ for saturated field	
	$(E_0 > E_C)$ conditions. The dotted lines represent linear fitting	
4.12	(a) Variation of <i>f</i> -exponent <i>m</i> with E_0 , and (b) variation of E_0 -	127
	exponent <i>n</i> with <i>f</i> under sub-coercive field ($E_0 < E_C$) and beyond	
	coercive field $(E_0 > E_C)$ conditions. The dotted lines represent	
	data linear fitting in each range	
4.13	Power-law scaling relations for polycrystalline BaTiO ₃ bulk	S 129
	ceramics with different observation <i>f</i> -range (a) scaling relations	
	of $< A > $ against $f^{-0.32}E_0^{-3.68}$ and (b) $< A >$ against $f^{-0.25}E_0^{-0.82}$ for	
	sub-coercive and saturated field conditions, respectively, with	
	observed <i>f</i> -range of 20-100 Hz	

- 4.14 (a and b) The remnant polarization (P_r) profiles with evolutions of 131 frequency *f* and field amplitude E₀, respectively, with insets of logarithmic plots, (c and d) the coercive field (E_C) profiles with evolutions of frequency *f* and field amplitude E₀, respectively, with insets of logarithmic plots
 4.15 (a) Variation of *f*-exponent *m* with E₀, and (b) variation of E₀- 134
- exponent *n* with *f* under sub-coercive field ($E_0 < E_C$) and beyond coercive field ($E_0 > E_C$) conditions. The dotted lines represent linear fitting
- 4.16 P_r and E_c -power-law scaling relations for polycrystalline BaTiO₃ 136 bulk ceramics with observed *f*-range of 1-100 Hz, (a and b) scaling relations of P_r against $f^{-0.43}E_0^{1.73}$ and P_r against $f^{-0.18}E_0^{0.47}$ for sub-coercive and saturated field conditions, respectively, (c and d) scaling relations of E_c against $f^{-0.27}E_0^{1.35}$ and E_c against $f^{-0.33}E_0^{0.46}$ for sub-coercive and saturated field conditions, respectively. The dotted lines represent linear fitting
- 4.17The *P-E* hysteresis loops for 0.7PMN-0.3PT single crystal (a) at139various f fixed $E_0 = 15$ kV/cm, and (b) at various E_0 fixed f = 50 Hz1414.18The hysteresis area < A > profiles with evolutions of (a) frequency f,141and (b) field amplitude E_0 for 0.7PMN-0.3PT single crystal1414.19Logarithmic plots between (a) $\log < A >$ and $\log f$, and (b) $\log < A >$ 142and $\log E_0$ for 0.7PMN-0.3PT single crystal. The dotted lines represent142

(a) Variation of f-exponent m with E_0 , and (b) variation of E_0 -143 4.20 exponent *n* with *f* in sub-coercive field ($E_0 < E_C$) and beyond coercive field ($E_0 > E_C$) conditions for 0.7PMN-0.3PT single crystal 4.21 Power-law scaling relations of hysteresis for 0.7PMN-0.3PT 145 single crystals (a) < A > against $f^{-0.27}E_0^{3.72}$ for sub-coercive field $(E_0 < E_C)$, and (b) $< A > \text{against } f^{-0.21} E_0^{-2.64}$ for saturated field $(E_0 > E_C)$ conditions. The dotted lines represent linear fitting The P-E hysteresis loops under sub-coercive field condition for 147 4.22 0.9PZT-0.1PZN ceramic (a) at various f fixed $E_0 = 18.52 \text{ kV/cm}$, and (b) at various E_0 fixed f = 10 Hz 4.23 The hysteresis area $\langle A \rangle$ profiles with evolutions of (a) frequency f, 149 and (b) field amplitude E_0 under sub-coercive field condition for 0.9PZT-0.1PZN ceramic 4.24 Logarithmic plots between (a) $\log \langle A \rangle$ and $\log f$, and (b) $\log \langle A \rangle$ 151 and log E_0 under sub-coercive field condition for 0.9PZT-0.1PZN

ceramic. The dotted lines represent linear fitting

- 4.25 (a) Variation of *f*-exponent *m* with E₀, and (b) variation of E₀exponent *n* with *f* under sub-coercive field condition for
 0.9PZT-0.1PZN ceramic
 4.26 Power-law scaling relation of hysteresis area < A > against f^{-0.42}E₀^{3.65}
 153
 - for 0.9PZT-0.1PZN ceramic under sub-coercive field condition.

4.27	The P - E hysteresis loops under sub-coercive field condition for	155
	0.8PZT-0.2PZN ceramic (a) at various f fixed $E_0 = 16.38$ kV/cm,	
	and (b) at various E_0 fixed $f = 10$ Hz	
4.28	The hysteresis area $\langle A \rangle$ profiles with evolutions of (a) frequency f ,	156
	and (b) field amplitude E_0 under sub-coercive field condition for	
	0.8PZT-0.2PZN ceramic	
4.29	Logarithmic plots between (a) $\log \langle A \rangle$ and $\log f$, and (b) $\log \langle A \rangle$	157
	and log E_0 under sub-coercive field condition for 0.8PZT-0.2PZN	
	ceramic. The dotted lines represent linear fitting	
4.30	(a) Variation of <i>f</i> -exponent <i>m</i> with E_0 , and (b) variation of E_0 -	159
	exponent n with f under sub-coercive field condition for	
	0.8PZT-0.2PZN ceramic	
4.31	Power-law scaling relation of hysteresis area $\langle A \rangle$ against $f^{-0.33}E_0^{-3.75}$	160
	for 0.8PZT-0.2PZN ceramic under sub-coercive field condition.	
	The dotted lines represent linear fitting	
4.32	The P - E hysteresis loops under sub-coercive field condition for	162
	0.7PZT-0.3PZN ceramic (a) at various f fixed $E_0 = 12.07$ kV/cm	
	and (b) at various E_0 fixed $f = 10$ Hz	
4.33	The hysteresis area $\langle A \rangle$ profiles with evolutions of (a) frequency f ,	163
	and (b) field amplitude E_0 under sub-coercive field condition for	
	0.7PZT-0.3PZN ceramic	
4.34	Logarithmic plots between (a) $\log \langle A \rangle$ and $\log f$, and (b) $\log \langle A \rangle$	165
	and log E_0 under sub-coercive field condition for 0.7PZT-0.3PZN	
	ceramic. The dotted lines represent linear fitting	

4.35	(a) Variation of <i>f</i> -exponent <i>m</i> with E_0 , and (b) variation of E_0 -	166
	exponent n with f under sub-coercive field condition for	
	0.7PZT-0.3PZN ceramic	
4.36	Power-law scaling relation of hysteresis area $\langle A \rangle$ against $f^{-0.35}E_0^{-3.47}$	167
	for 0.7PZT-0.3PZN ceramic under sub-coercive field condition.	
	The dotted lines represent linear fitting	
4.37	The P - E hysteresis loops under sub-coercive field condition for	169
	0.6PZT-0.4PZN ceramic (a) at various f fixed $E_0 = 10.45$ kV/cm	
	and (b) at various E_0 fixed $f = 10$ Hz	
4.38	The hysteresis area $\langle A \rangle$ profiles with evolutions of (a) frequency <i>f</i> ,	170
	and (b) field amplitude E_0 under sub-coercive field condition	
	0.6PZT-0.4PZN ceramic	
4.39	Logarithmic plots between (a) $\log \langle A \rangle$ and $\log f$, and (b) $\log \langle A \rangle$	171
	and log E_0 under sub-coercive field condition 0.6PZT-0.4PZN	
	ceramic. The dotted lines represent linear fitting	
4.40	(a) Variation of <i>f</i> -exponent <i>m</i> with E_0 , and (b) variation of E_0 -	173
	exponent n with f under sub-coercive field condition for	
	0.6PZT-0.4PZN ceramic	
4.41	Power-law scaling relation of hysteresis area $\langle A \rangle$ against $f^{-0.36}E_0^{4.03}$	174
	for 0.6PZT-0.4PZN ceramic under sub-coercive field condition.	
	The dotted lines represent linear fitting	
4.42	The <i>P</i> - <i>E</i> hysteresis loops under sub-coercive field condition for	176
	0.5PZT-0.5PZN ceramic (a) at various f fixed $E_0 = 9.64$ kV/cm	
	and (b) at various E_0 fixed $f = 10$ Hz	

4.43	The hysteresis area $\langle A \rangle$ profiles with evolutions of (a) frequency <i>f</i> ,	178
	and (b) field amplitude E_0 under sub-coercive field condition for	
	0.5PZT-0.5PZN ceramic	
4.44	Logarithmic plots between (a) $\log \langle A \rangle$ and $\log f$, and (b) $\log \langle A \rangle$	179
	and log E_0 under sub-coercive field condition for 0.5PZT-0.5PZN	
	ceramic. The dotted lines represent linear fitting	
4.45	(a) Variation of <i>f</i> -exponent <i>m</i> with E_0 , and (b) variation of E_0 -	180
	exponent n with f under sub-coercive field condition for	
	0.5PZT-0.5PZN ceramic	
4.46	Power-law scaling relation of hysteresis area $\langle A \rangle$ against $f^{-0.34}E_0^{-3.68}$	182
	for 0.5PZT-0.5PZN ceramic under sub-coercive field condition.	
	The dotted lines represent linear fitting	
4.47	Power-law scaling relations of hysteresis area $\langle A \rangle$ against $f^m E_0^n$	184
	for $(1-x)PZT-(x)PZN$ ceramics under sub-coercive field condition.	
	The dotted lines represent linear fitting	
4.48	The <i>P</i> - <i>E</i> hysteresis loops at various frequencies $f(10-100 \text{ Hz})$ and	187
	various electric fields E_0 (insets, up to 15 kV/cm) for BaTiO ₃ material	
	at different temperatures (a) -100 °C (rhombohedral), (b) -60 °C	
	(orthorhombic), (c) 25 °C (tetragonal), and (d) 170 °C (cubic)	
4.49	Development of hysteresis area $\langle A \rangle$ as a function of f and E_0	188
	(insets) for BaTiO ₃ at (a) -100 °C (rhombohedral), (b) -60 °C	
	(orthorhombic), (c) 25 °C (tetragonal), and (d) 170 °C (cubic)	

4.50	Power-law scaling relations in form of hysteresis area $\langle A \rangle$ as a	191
	function of f and E_0 in various crystal phases of BaTiO ₃ at (a) -100 °C	
	(rhombohedral), (b) -60 °C (orthorhombic), (c) 25 °C (tetragonal),	
	and (d) 170 °C (cubic). The frequency is varied in the range of	
	10-100 Hz and E_0 from 0-15 kV/cm	
4.51	Variation of f -exponent m and E_0 -exponent n as a function of	192
	temperature covering typical structural phases of BaTiO ₃ bulk	
	ceramic	
4.52	The <i>P</i> - <i>E</i> hysteresis loops for BaTiO ₃ single crystal at various	195
	frequencies f (1-300 Hz) and various electric fields E_0 (insets,	
	up to 15 kV/cm) (a) -60 °C (orthorhombic), (b) 25 °C (tetragonal),	
	and (c) 180 °C (cubic)	
4.53	Development of hysteresis area $\langle A \rangle$ as a function of f and E_0	196
	(insets) for BaTiO ₃ single crystal at (a) -60 °C (orthorhombic),	
	(b) 25 °C (tetragonal), and (c) 180 °C (cubic)	
4.54	Power-law scaling relations in form of hysteresis area $\langle A \rangle$ as a	197
	function of f and E_0 in typical crystal phases (a) -60 °C (orthorhombic),	
	(b) 25 °C (tetragonal), and (c) 180 °C (cubic). The frequency is varied	
	in the range of 1-300 Hz and E_0 from 0-15 kV/cm. The dotted lines	
	represent linear fitting	
4.55	Variations of <i>f</i> -exponent <i>m</i> and E_0 -exponent <i>n</i> as a function of	199
	temperature covering typical structural phases of BaTiO ₃ single	
	crystal	

xxxii

4.56	The sinusoidal-waveform P - E hysteresis loops for (a) various E_0	201
	but fixed $f = 50$ Hz, and (b) various f but fixed $E_0 = 15$ kV/cm	
4.57	Power law scaling relations in form of hysteresis area $\langle A \rangle$ as a	202
	function of f and E_0 for low and high field conditions with	
	sinusoidal-waveform for 0.7PMN-0.3PT single crystal	
4.58	The triangle-waveform P - E hysteresis loops for (a) various E_0	203
	but fixed $f = 50$ Hz, and (b) various f but fixed $E_0 = 15$ kV/cm	
4.59	Power law scaling relations in form of hysteresis area $\langle A \rangle$ as a	204
	function of f and E_0 for low and high field conditions with triangle	
	waveform	
4.60	The <i>P</i> - <i>E</i> hysteresis loops obtained by applying sinusoidal and	206
	triangle electric field-waveforms. Inset shows waveform	
	characteristics	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

PZT	Lead zirconate titanate
PZ	Lead zirconate
PT	Lead titanate
PZN	Lead zinc niobate
PMN	Lead magnesium niobate
BT	Barium titanate
MPB	Morphotropic phase boundary
T_c, Θ_C	Curie temperature
Р	Polarization
Pr	Remnant polarization
P _{sat}	Saturated polarization
P_s	Spontaneous polarization
E, E_0	Electric field
E_C	Coercive field
f	Frequency
V	Voltage
$\langle A \rangle$	Hysteresis area ang Mai University
AC	Alternating current
C_{0}	Standard capacitance
Cs	Sample capacitance
М	Dipole moment per unit volume

xxxiv

$\Delta \Theta$	Change in temperature
D	Electric displacement
ε	Dielectric permittivity
°C	Celsius degree
a	Lattice parameter a
c	Lattice parameter <i>c</i>
C	Curie-Weiss constant
dij	Piezoelectric coefficients
Р-Е	Polarization versus electric field
t	Thickness
$\tan \delta$	Loss tangent
ε ₀	permittivity of free space
ε _r	relative permittivity

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved