
Chapter 1

Introduction

Generalized functions have of late been commanding constantly expanding
interest in several different branches of mathematics. In somewhat nonrigorous
form, they have already long been used in essence by physicists and opened up
a new area of mathematical research, which in turn provided an impetus in the
development of a number of mathematical disciplines, such as ordinary and partial
differential equations, operational calculus, transformation theory, and functional
analysis.

The Fourier transform is one of the important tools used in solving differential
equations and associated problems. The Fourier transform of Generalized func-
tions as developed in the Gel’fand and Shilov book [5] requires no assumptions
concerning the growth of the functions treated, and can be used for functions of
any number of variables. It is thus evident that this method can be used to solve,
in particular, all types of problems.

In 1988-2000, S. E. Trione [15-17] showed that the n−dimensional ultrahy-
perbolic equation, �ku(x) = δ, has a unique elementary solution u(x) = RH

2k(x),
where �k is the ultra-hyperbolic operator iterated k−times, defined by

�k =

(
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2p
− ∂2

∂x2p+1

− · · · − ∂2

∂x2p+q

)k

, (1.1)

p+ q = n is the n−dimensional of Euclidean space Rn and k is a positive integer.
The function RH

2k(x) is called the ultra-hyperbolic kernel of the Marcel Riesz,
defined by

RH
2k(x) =

{
V

2k−n
2

Kn(2k)
for x ∈ Γ+,

0 for x ̸∈ Γ+,
(1.2)

where V = x21 + x22 + · · ·+ x2p − x2p+1 − · · · − x2p+q, Γ+ is the interior of the forward
cone, defined by

Γ+ = {x ∈ Rn : x1 > 0 and V > 0},
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and

Kn(2k) =
π

n−1
2 Γ(2k+2−n

2
)Γ(1−2k

2
)Γ(2k)

Γ(2k+2−p
2

)Γ(p−2k
2

)
.

If p = n and q = 0, then the ultra-hyperbolic operator reduce to the Laplace
operator, that is,

△k =

(
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

)k

. (1.3)

The elementary solution of the Laplace operator is Re
2k(x) and is defined by

Re
2k(x) = 2−2kπ−n/2Γ

(
n− 2k

2

)
|x|(2k−n)

Γ (k)
, (1.4)

where |x| =
√
x21 + x22 + · · ·+ x2n.

Furthermore, S. E. Trione studied the elementary solution of the ultra-hyperbolic
Klein-Gordon operator iterated k−times, defined by

(�+m2)k =

(
∂2

∂x21
+ · · ·+ ∂2

∂x2p
− ∂2

∂x2p+1

− . . .− ∂2

∂x2p+q

+m2

)k

, (1.5)

and the elementary solution of the ultra-hyperbolic Klein-Gordon operator is
WH

2k(x), where

WH
2k(x) =

∞∑
r=0

(−1)rΓ (k + r)

r!Γ (k)

(
m2
)r
RH

2k+2r(x). (1.6)

If p = n and q = 0, then the ultra-hyperbolic Klein-Gordon operator reduce to
the Helmholtz operator, that is,

△+m2 =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
+m2. (1.7)

In 1997-2001, A. Kananthai [7-9] first introduced the Diamond operator iter-
ated k times ♢k and the Diamond operator can be expressed by ♢ = △� = �△
where △ is the Laplace operator and � is the ultra-hyperbolic operator. He has
proved that distribution related to the n dimensional ultra-hyperbolic equation,
the solutions of the n dimensional classical diamond operator and Fourier transfor-
mation of the diamond kernel of Marcel Riesz have the solution of the convolution
form u(x) = (−1)kRe

2k(x) ∗ RH
2k(x) which is an unique elementary solution of the

equation ♢ku(x) = δ. The equation ♢ku(x) =
∑m

r=1Cr♢rδ has been already
studied and obtained the type of these solutions of such equation depends on the
relationship between the values of k and m. He also studied the solution of the
equation ♢ku(x) = f(x) and the nonlinear equation ♢ku(x) = f(x,△k−1�ku(x))
related to wave equation.
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By keeping on studying such operator continuously, we define the new op-
erator that so call the Lk

m operator. We study the solution of the generalized
heat equation and wave equation related the Lk

m operator. The such solutions
play important role in constructing the high technology in the present such as
telecommunication and heat transfer.

This thesis is organized as follow.
In chapter 2, we give some useful definitions and properties of the special

functions, partial differential equations, distributions and elementary solutions.

In chapter 3, firstly we define by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2i

)m

−

(
p+q∑

j=p+1

∂2

∂x2j

)m]k

and study the elementary solution of the operator Lk
m related to the generalized

heat equation and spectrum.

It is well known that for the heat equation

∂

∂t
u(x, t) = c2△u(x, t)

with the initial condition u(x, 0) = f(x), where △ is the Laplace operator defined
by

△ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

and (x, t) = (x1, x2, . . . , xn, t) ∈ Rn × (0,∞), we obtain the solution in the convo-
lution form u(x, t) = E(x, t) ∗ f(x) where

E(x, t) =
1

(4c2πt)n/2
e−

|x|2

4c2t .

E(x, t) is call the heat kernel, where |x|2 = x21 + x22 + · · ·+ x2n and t > 0, see [6].
In [9], K. Nonlaopon and A. Kananthai have studied the generalized ultra-

hyperbolic heat kernel of the equation

∂

∂t
u(x, t) = c2�ku(x, t)

with the initial condition u(x, 0) = f(x), where �k is the ultra-hyperbolic operator
iterated k time, defined by (1.1) and c is a positive constant. They obtained
u(x, t) = E(x, t) ∗ f(x) as a solution of such equation where E(x, t) is the kernel
of such equation, defined by

E(x, t) =
1

(2π)
n
2

∫
Ω

exp

c2t( p+q∑
j=p+1

ξ2j −
p∑

i=1

ξ2i

)k

+ i(ξ, x)

 dξ,
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where ξ = (ξ1, ξ2, . . . , ξn), x = (x1, x2, . . . , xn) ∈ Rn, (ξ, x) = ξ1x1+ξ2x2+· · ·+ξnxn
is the usual inner product in Rn, dξ = dξ1 dξ2 · · · dξn and Ω ⊂ Rn is the spectrum
of E(x, t) for any fixed t > 0.

In [14], J. Tariboon has studied the generalized diamond heat kernel of the
equation

∂

∂t
u(x, t) = c2♢ku(x, t)

with the initial condition u(x, 0) = f(x), where ♢k is the diamond operator iter-
ated k time, defined by

♢k =

[(
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2p

)2

−
(

∂2

∂x2p+1

+
∂2

∂x2p+2

+ · · ·+ ∂2

∂x2p+q

)2
]k
,

p+ q = n is the dimension of the Euclidean space Rn and c is a positive constant.
He obtained u(x, t) = E(x, t) ∗ f(x) as a solution of such equation where E(x, t)
is the kernel of such equation, defined by

E(x, t) =
1

(2π)
n
2

∫
Ω

exp

c2t
( p∑

i=1

ξ2i

)2

−

(
p+q∑

j=p+1

ξ2j

)2
k

+ i(ξ, x)

 dξ
where ξ = (ξ1, ξ2, . . . , ξn), x = (x1, x2, . . . , xn) ∈ Rn, (ξ, x) = ξ1x1+ξ2x2+· · ·+ξnxn
is the usual inner product in Rn, dξ = dξ1 dξ2 · · · dξn and Ω ⊂ Rn is the spectrum
of E(x, t) for any fixed t > 0.

In this thesis we propose to study the equation

∂

∂t
u(x, t) + c2Lk

mu(x, t) = 0,

with initial condition u(x, 0) = f(x) for x ∈ Rn where the operator Lk
m is defined

by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2i

)m

−

(
p+q∑

j=p+1

∂2

∂x2j

)m]k
p + q = n is the dimension of the space Rn, u(x, t) is an unknown function, f(x)
is a given generalized function, k and m is a positive integer and c is a positive
constant.
We obtain u(x, t) = E(x, t) ∗ f(x), as a solution of such equation which satisfies
u(x, 0) = f(x), where

E(x, t) =
1

(2π)n

∫
Ω

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ

and Ω ⊂ Rn is the spectrum of E(x, t) for any fixed t > 0. The function E(x, t)
is called the kernel or elementary solution.
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In chapter 4, we study the operator Lk
m related to the generalized wave equation

by using ϵ approximation.

It is well known that for the 1-dimensional wave equation

∂2

∂t2
u(x, t) = c2

∂2

∂x2
u(x, t),

we obtain u(x, t) = f(x + ct) + g(x − ct) as a solution of the equation where f
and g are continuous. Also for the n-dimensional wave equation

∂2

∂t2
u(x, t)− c2△u(x, t) = 0,

with the initial condition

u(x, 0) = f(x) and
∂

∂t
u(x, 0) = g(x)

where f and g are given continuous functions. By solving the Cauchy problem for
such equation, the Fourier transform has been applied and the solution is given
by

û(ξ, t) = f̂(ξ) cos (2π|ξ|) t+ ĝ(ξ)
sin (2π|ξ|) t

2π|ξ|
,

where |ξ|2 = ξ21 + ξ22 + · · · + ξ2n (see [4], p177). By using the inverse Fourier
transform, we obtain u(x, t) in the convolution form, that is

u(x, t) = f(x) ∗ ψ(x, t) + g(x) ∗ ϕ(x, t),

where ϕ(ξ, t) is an inverse Fourier transform of ϕ̂(ξ, t) =
sin (2π|ξ|) t

2π|ξ|
and ψ(ξ, t)

is an inverse Fourier transform of ψ̂(ξ, t) = cos (2π|ξ|) t = ∂

∂t
ϕ̂(ξ, t). Sritantatana

and Kananthai studied the equation

∂2

∂t2
u(x, t) + c2(−△)ku(x, t) = 0,

see [12], where △ is Laplacian iterated k times, defined by

△ =
n∑

i=1

∂2

∂x2i
.

Next, Satsanit and Kananthai studied the equation

∂2

∂t2
u(x, t) + c2(♢)ku(x, t) = 0,
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see [11], where ♢ is Diamond operator iterated k times, defined by

♢ =

(
p∑

i=1

∂2

∂x2i

)2

−

(
p+q∑

j=p+1

∂2

∂x2j

)2

, p+ q = n.

In this thesis, we study the equation

∂2

∂t2
u(x, t) + c2Lk

mu(x, t) = 0,

where Lk
m defined by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2i

)m

−

(
p+q∑

j=p+1

∂2

∂x2j

)m]k
,

with u(x, 0) = f(x) and
∂

∂t
u(x, 0) = g(x) where c is a positive constant, k and m

are positive integer, f and g are continuous functions and absolutely integrable.
We obtain

u(x, t) = f(x) ∗ ψ(x, t) + g(x) ∗ ϕ(x, t)

as a solution of such equation where ϕ(x, t) is an inverse Fourier transform of

ϕ̂(ξ, t) =
sin ct

√
(r2m − s2m)k

c

√
(r2m − s2m)k

and ψ(x, t) is an inverse Fourier transform of ψ̂(ξ, t) =

cos ct

√
(r2m − s2m)k =

∂

∂t
ϕ̂(ξ, t) where r2 = ξ21 + ξ22 + · · · + ξ2p and s2 = ξ2p+1 +

ξ2p+2 + · · ·+ ξ2p+q .
Moreover, if we put m = k = 1 and q = 0, then it become the generalized

n-dimensional wave equation

∂2

∂t2
u(x, t)− c2△u(x, t) = 0.

We also study the asymptotic form of u(x, t) by using ϵ approximation and obtain

u(x, t) = O(ϵ
−n
mk ).

In chapter 5, we study the nonlinear product of Laplacian related to the non-
homogeneous Biharmonic equation.

Gelfand and Shilov [5] have shown that the iterated Laplace equation△ku(x) =
f(x) will be solved when we have obtained an elementary solution E(x). Kanan-
thai [11], [14] has shown that u(x) = (−1)kRe

2k(x) be the elementary solution
of the equation △ku(x) = δ(x), where Re

2k(x) defined by below equation and
u(x) = ((−1)k−1Re

2(k−1)(x))
(l) be a solution of △ku(x) = 0.
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R.Courant and D.Hilbert [2] have studied the nonlinear equation of the form
△u(x) = f(x, u(x)) with f defined and continuous function for all x ∈ Ω ∪ ∂Ω
where Ω is an open set in Rn, ∂Ω denotes the boundary of Ω and △ is the Laplace
operator, defined by

△ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
.

They found that the solution u(x) of such equation is unique under the condition
|f(x, u(x))| ≤ N for all x ∈ Ω where N is a constant and the boundary condition
u(x) = 0 for all x ∈ ∂Ω.

In [7], A. Kananthai first introduced the diamond operator ♢k iterated k times,
defined by

♢k =

[(
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2p

)2

−
(

∂2

∂x2p+1

+
∂2

∂x2p+2

+ · · ·+ ∂2

∂x2p+q

)2
]k
.

The equation ♢ku(x) = δ(x) has the convolution u(x) = (−1)kRe
2k(x) ∗RH

2k(x) as
an elementary solution and is called the Diamond Kernel of Marcel Riesz where
Re

2k(x) and R
H
2k(x) are defined by

Re
α(x) = 2−απ−n/2Γ

(
n− α

2

)
∥x∥α−n

Γ
(
α
2

)
and

RH
α (x) =

{
V (α−n)/2

Kn(α)
for x ∈ Γ+

0 for x ̸∈ Γ+,

for

Kn(α) =
π

n−1
2 Γ(α+2−n

2
)Γ(1−α

2
)Γ(α)

Γ(α+2−p
2

)Γ(p−α
2
)

,

with α = 2k,

V = x21 + x22 + · · ·+ x2p − x2p+1 − x2p+2 − · · · − x2p+q,

∥x∥ =
√
x21 + x22 + · · ·+ x2n, Γ+ = {x ∈ Rn : x1 > 0 and V > 0}, p+ q = n is the

dimension of the Euclidean space Rn and α is a complex number.
In [13], G. Sritanratana and A. Kananthai have studied the solution of the

nonlinear equation ♢ku(x) = f(x,△k−1�ku(x)) where ♢k is the Diamond opera-
tor iterated k times and △k−1 is the Laplace operator iterated k−1 times, defined
by

△k−1 =

[
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

]k−1

,

and �k is the ultra-hyperbolic operator iterated k times. They obtained that the
existence of the solution u(x) of such equation depends on the conditions of f and
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△k−1�ku(x). Moreover such solution u(x) related to the wave equation depends
on the conditions of p, q and k.

In this thesis, we study the nonlinear equation of the form

△k(△+m2)ku(x) = f(x,△k−1(△+m2)ku(x)),

where △ +m2 is Helmholtz operator, k is a positive integer, f defined and con-
tinuous for all x ∈ Ω ∪ ∂Ω where Ω is an open subset of Rn and ∂Ω denotes
the boundary of Ω. We can find the solution u(x) which is unique under the
condition |f(x,△k−1(△ + m2)ku(x))| ≤ N where N is a constant for all x ∈ Ω
and the boundary condition △k−1(△ +m2)ku(x) = 0 for x ∈ ∂Ω. Moreover the
solution u(x) related to the nonhomogeneous biharmonic equation depends on the
conditions of k.


