
Chapter 2

Preliminaries and Basic Concepts

The aim of this chapter is to give some definitions, notations and properties
of the spacial functions, distributions, elementary solutions and partial differen-
tial equations of the partial differential operators which will be used in the later
chapters.

2.1 The Special Functions

In this section, we shall present the definitions and some properties of the
gamma function, the Dirac-delta function.

2.1.1 The Gamma Function

Definition 2.1.1. The gamma function is denoted by Γ and is defined by

Γ(z) =

∫ ∞

0

e−ttz−1dt, (2.1)

where z is a complex number with Re z > 0.
A result that yields an immediate analytic continuation from the left haft plane

is the following properties.

Proposition 2.1.2. Let z be a complex number. Then

(1) Γ(z) =
Γ(z + 1)

z
, z ̸= 0,−1,−2, . . .

(2) Γ(z)Γ(1− z) =
π

sin πz
, z ̸= 0,±1,±2, . . ..

Proposition 2.1.3. Let z be a complex number. Then

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z), (2.2)

for z ̸= 0,−1,−2, . . . .
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Definition 2.1.4. The beta function is denote by B and is defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, (2.3)

where x and y are complex number with Re x > 0 and Re y > 0.

Now, our first result is the formula∫ ∞

0

e−pttz−1dt =
Γ(z)

pz
, Re p > 0, Re z > 0, (2.4)

which is easily proved for positive real p by making the change of variables s =
pt, and then using the integral representation (2.1). The extension of (2.4) to
arbitrary complex p with Re p > 0 is accomplished by using the principle of
analytic continuation.

Next consider the beta function, if we introduce the new variable of integration

u =
t

1− t

then (2.3) becomes

B(x, y) =

∫ ∞

0

ux−1

(1 + u)x+y
du, Re x > 0, Re y > 0. (2.5)

Let p = 1 + u and z = x+ y in (2.4), we find that

1

(1 + u)x+y
=

1

Γ(x+ y)

∫ ∞

0

e−(1+u)ttx+y−1dt,

and substituting the result into (2.5), we obtain

B(x, y) =
1

Γ(x+ y)

∫ ∞

0

(∫ ∞

0

e−utux−1du

)
e−ttx+y−1dt

=
Γ(x)

Γ(x+ y)

∫ ∞

0

e−tty−1dt

=
Γ(x)Γ(y)

Γ(x+ y)
. (2.6)

2.1.2 The Dirac-delta Function

In mathematical physics we often encounter functions which have non-zero
values in vary short intervals. For example, an impulsive force is envisaged as
acting for only a very short interval of time. The Dirac delta function, which is
used extensively in quantum mechanics and classical applied mathematics, may
me thought of as a generalization of this concept.
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If we consider the function

δa(x) =

{ 1

2a
, for |x| < a,

0, for |x| > a
(2.7)

then it is easily to show that ∫ ∞

−∞
δa(x) dx = 1. (2.8)

Also, if f(x) is any function which is integrable in the interval (−a, a) then, by
using the mean value theorem of the integral calculus, we see that∫ ∞

−∞
f(x)δa(x) dx =

1

2a

∫ a

−a

f(x) dx = f(θa), for |θ| ≤ 1.

We now define
δ(x) = lim

a→0
δa(x). (2.9)

Letting a tend to zero in equation (2.7) and (2.8) we see that δ(x) satisfies the
relations

δ(x) = 0, if x ̸= 0, (2.10)

and ∫ ∞

−∞
δ(x) dx = 1. (2.11)

The function δ(x) is known as the Dirac-delta function. For this reason Dirac has
called the delta function an improper function and has emphasized that it may be
used in mathematical analysis only when no inconsistency can possibly arise from
its use. The delta function could be dispensed with entirely by using a limiting
procedure involving ordinary functions of the kind δ(x), but the function δ(x) and
it derivatives play such a useful role in the formulation and solution of boundary
value problem is classical mathematical physics as well as in quantum mechanics
that it is important to derive the formal properties of the Dirac delta function. It
should be emphasized, however, that these properties are purely formal.

First of all it should be observed that the precise variation of δ(x) in the
neighborhood of the origin is not important provided that its oscillations, if it has
any, are not too violent. For instance, the function

δ(x) = lim
n→∞

sin 2nπx

πx

satisfies equations (2.10) and (2.11) and has the same formal properties as the
function defined by equation (2.9). If we let a tend to zero in equation (2.8), we
obtain the relation ∫ ∞

−∞
f(x)δ(x) dx = f(0),
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which a simple change of variable transforms to∫ ∞

−∞
f(x)δ(x− a) dx = f(a).

In other words the operation of multiplying f(x) by δ(x− a) and integrating
over all x is merely equivalent to substituting a for x in the original function.
Symbolically we may write

f(x)δ(x− a) = f(a)δ(x− a)

if we remember that this equation has meaning only in the sense that its two sides
give equivalent results when used as factors in an integrand. As a special case we
have

xδ(x) = 0.

In similar way we can prove that relations

δ(−x) = δ(x),

δ(ax) =
1

a
δ(x) for a > 0,

δ(a2 − x2) =
1

2a
(δ(x− a) + δ(x+ a)) , for a > 0.

Let us now consider the interpretation we must put upon the derivatives of δ(x). If
we assume that δ′(x) exists and that both it and δ(x) can be regarded as ordinary
functions in the rule for integrating by parts we see that∫ ∞

−∞
f(x)δ′(x) dx = f(x)δ(x)

∣∣∣∣∞
x=−∞

−
∫ ∞

−∞
f ′(x)δ(x) dx

= −f ′(0).

Replacing this process we find that∫ ∞

−∞
f(x)δ(n)(x) dx = (−1)nf (n)(0).

Next we shall study about delta-convergent sequence. There are many ways to
construct a sequence of regular functions which converge to the delta function. All
that is needed is that the corresponding ordinary functions fn(x), from which we
shall call a delta-convergent sequence, must possess the following two properties:

(a) For any M > 0 and for |a| ≤M and |b| ≤M , the quantities∣∣∣∣∫ b

a

fn(ξ) dξ

∣∣∣∣
must be bounded by a constant independent on a, b or n (in other words,
depending only on M).
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(b) For any fixed non-vanishing a and b, we must have

lim
n→∞

∫ b

a

fn(ξ) dξ =

{
0, for a < b < 0 and 0 < a < b,
1, for a < 0 < b.

Let fn(x) be such a delta-convergent sequence. Consider also the sequence of
primitive functions

Fn(x) =

∫ x

−1

fn(ξ) dξ.

It follows simply from the two properties of a delta-convergent sequence that as n
is followed to increase the Fn(x) converge to zero for x < 0 and to one for x > 0.
Moreover, these functions are uniformly bounded (in n) in every interval. This
implies that the Fn(x) converge in the sense of generalized functions to H(x),
which defined by

H(x) =

{
1, for x > 0,
0, for x < 0.

Then in the sense of generalized functions the sequence fn(x) = Fn(x) converges
to H ′(x) = δ(x), asserted.

2.2 Distribution

In this section, we give some definitions and properties of the distribution
which will be used in the later chapters.

Definition 2.2.1. Let Ω ⊂ Rn and f : Ω → R. The support of f is defined to be the
closure of the set S = {x ∈ Ω : f(x) ̸= 0}. And support of f denote by Suppf .

Definition 2.2.2. A set Ω ⊂ Rn is compact if every sequence in Ω has a convergence
subsequence whose limit is an element of Ω.

Definition 2.2.3. Let Ω ⊂ Rn, define D = C∞
0 (Ω) is the set of all infinitely differ-

entiable functions on Ω with compact support, φ ∈ D is called a test function.

Definition 2.2.4. A sequence of testing function φi(x)
∞
i=1 is said to converge to φ(x)

in D if all φi(x) are zero outside a certain region in Rn and if for every nonnegative

integers m1,m2, . . . ,mn the sequence
{

∂m1+m2+···+mnφi(x)

∂x
m1
1 ∂x

m2
2 ...∂xmn

n

}∞

i=1
converges uniformly

to ∂m1+m2+···+mnφ(x)

∂x
m1
1 ∂x

m2
2 ...∂xmn

n
on Rn.

Proposition 2.2.5. D is closed under convergence, that is, the limit of every se-
quence that converge in D is also in D.

Definition 2.2.6. A distribution is a mapping f : D → C such that

(1) ⟨f, φ⟩ is a well defined complex number for every φ ∈ D,
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(2) for any φ1, φ2 ∈ D and any scalars a1, a2,

⟨f, a1φ1 + a2φ2⟩ = a1⟨f, φ1⟩+ a2⟨f, φ2⟩,

(3) for any sequence {φn} in D such that lim
n→∞

φn = φ then lim
n→∞

⟨f, φn⟩ = ⟨f, φ⟩.

We note that each continuous(or even locally integrable) function f(x) generates
a distribution

⟨f, φ⟩ =
∫
f(x)φ(x)dx.

Definition 2.2.7. A regular distribution is a distribution which is generated by a
locally integrable function.

Definition 2.2.8. A singular distribution is a distribution which is not generated
by a locally integrable function.

Definition 2.2.9. The Dirac-delta distribution with singularity ξ ∈ Rn, denoted
by δ(x− ξ), which is defined by

⟨δ(x− ξ), ϕ⟩ = ϕ(ξ).

Definition 2.2.10. Let x = (x1, x2, . . . , xn) ∈ Ω ⊂ Rn, define S is the set of all real
value functions φ(x) that are infinitely smooth and are such that, all nonnegative
integer m and k = (k1, k2, . . . , kn),

∥x∥m|Dkφ(x)| ≤ Cmk,

for some a constant Cmk and denote Dk by Dk = ∂k1+k2+...+kn

∂x
k1
1 ∂x

k2
2 ...∂xkn

n

.

Definition 2.2.11. A tempered distribution is a mapping f : S → C such that

(1) ⟨f, φ⟩ is a well defined complex number for every φ ∈ S,

(2) for any φ1, φ2 ∈ S and any scalars a1, a2,

< f, a1φ1 + a2φ2 >= a1 < f, φ1 > +a2 < f, φ2 >,

(3) for any sequence {φn} in S such that lim
n→∞

φn = φ then lim
n→∞

⟨f, φn⟩ = ⟨f, φ⟩.

Definition 2.2.12. A space C of distributions is said to be a convolution algebra if
it possesses the following properties:

(1) C is a linear space.

(2) C is closed under convolution.

(3) Convolution is associative for any three distributions in C.
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Definition 2.2.13. Let f be a distribution. The derivative
∂f

∂xk
as the distribution

given by

⟨ ∂f
∂xk

, ϕ⟩ = −⟨f, ∂ϕ
∂xk

⟩,

and more generally Dkf denoted by

⟨Dkf, ϕ⟩ = (−1)|k|⟨f,Dkϕ⟩,

where |k| = k1 + k2 + · · ·+ kn.

Proposition 2.2.14. ([20]) Let x be an n-dimensional real variable and y an m-
dimensional real variable. Also, let φ(x, y) be a testing function in D define over
Rn+m. If f(x) is a distribution defined over Rn, then θ(y) = ⟨f(x), φ(x, y)⟩ is a
testing function of y in D.

Proposition 2.2.15. ([5]) Let f be a distribution in m dimensions and g be a
distribution in n dimensions. Then the functional h defined by

⟨h(x, y), φ(x, y)⟩ = ⟨f(x), ⟨g(y), φ(x, y)⟩⟩

is a distribution in m+ n dimensions.

Definition 2.2.16. The distribution h in Proposition (2.2.15) is called the tensor (
or direct ) product of f(x) and g(y) and is denoted by h(x, y) = f(x)× g(y), that
is,

⟨f(x)× g(y), φ(x, y)⟩ = ⟨f(x), ⟨g(y), φ(x, y)⟩⟩.

Definition 2.2.17. The support of a distribution f is defined as the complement of
the largest open set on which f is zero.

Proposition 2.2.18. ([5]) Let f and g be distributions in n dimensions. Then the
function h defined by

⟨h, φ⟩ = ⟨f(x)× g(y), φ(x+ y)⟩

is a distribution provided that it satisfies either of the following conditions:

(1) Either f or g has bounded support, or

(2) In one dimension the supports of both f and g are bounded on the same side
( for instance, f = 0 for x < a, and g = 0 for y < b ).

Definition 2.2.19. The distribution h in Proposition (2.2.15) is called the convo-
lution of f and g and is denoted by h = f ∗ g, that is,

⟨f ∗ g, φ⟩ = ⟨f(x)× g(y), φ(x+ y)⟩.
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Now we shall give some helpful properties of convolutions.

Proposition 2.2.20. ([5],[20]) Let f, g and h be distributions.

(1) For δ is the Dirac-delta function, we have

f ∗ δ = f.

(2) If f and g satisfy at least one of the (1) and (2) of proposition 2.2.18, then

f ∗ g = g ∗ f.

(3) If P (D) is a linear partial differential operator with constant coefficients and
f and g satisfy at least one of the (1) and (2) of proposition 2.2.18, then

P (D)f ∗ g = P (D)(f ∗ g) = f ∗ P (D)g.

Lemma 2.2.21. Let ♢ and u be a distribution defined for all ϕ ∈ C∞
0 (Ω), where Ω

is an open subset of Rn. Then ⟨♢u, ϕ⟩ = ⟨u,♢ϕ⟩

Proof. By Definition 2.2.13 we have⟨
∂2u

∂x2k
, ϕ

⟩
= (−1)2

⟨
u,
∂2ϕ

∂x2k

⟩
=

⟨
u,
∂2ϕ

∂x2k

⟩
.

Thus, ⟨
n∑

i=1

∂2u

∂x2i
, ϕ

⟩
=

⟨
u,

n∑
i=1

∂2ϕ

∂x2i

⟩
that is,

⟨△u, ϕ⟩ = ⟨u,△ϕ⟩.

Similarly,

⟨�u, ϕ⟩ = ⟨u,�ϕ⟩.

Therefore,

⟨♢u, ϕ⟩ = ⟨�(△u), ϕ⟩
= ⟨△u,�ϕ⟩
= ⟨u,△(�)ϕ⟩
= ⟨u,♢ϕ⟩.
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2.3 Partial Differential Equations

A partial differential equation (PDE) is an equation involving an unknown func-
tion of two or more variables and certain of its partial derivatives.

Definition 2.3.1. For an integer k ≥ 1 and let U denote an open subset of Rn An
expression of the form

F
(
Dku(x), Dk−1u(x), . . . , Du(x), u(x), x

)
= 0 (2.12)

(x ∈ U) is called a kth-order partial differential equation, where

F : Rnk ×Rnk−1 × · · · ×Rn ×R× U −→ R

is given and u : U −→ R is the unknown.

We solve the PDE if we find all u verifying (2.12), possibly only among those
functions satisfying certain auxiliary boundary conditions on some part Γ of ∂U .

Definition 2.3.2. .

• (i) The partial differential equation (2.12) is called linear if it has the form∑
|α|≤k

aα(x)D
αu = f(x)

for given function aα(|α| ≤ k), f.

• (ii) The partial differential equation (2.12) is called semilinear if it has the
form ∑

|α|=k

aα(x)D
αu+ a0

(
Dk−1u, . . . , Du, u, x

)
= 0.

• (iii) The partial differential equation (2.12) is called quasilinear if it has the
form∑

|α|=k

aα
(
Dk−1u, . . . , Du, u, x

)
Dαu+ a0

(
Dk−1u, . . . , Du, u, x

)
= 0.

• (iv) The partial differential equation (2.12) is called nonlinear if it depends
nonlinearly upon the highest order derivatives.
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2.3.1 Elementary Solutions

We shall mainly be interested in the equations where in the coefficients are
constants. The theory of partial differential equations stems from the intensive
and extensive study of a few basic equations of mathematical physics, and the
coefficients in all of these are constants. Such equations arise in the study of grav-
itation, electromagnetism, perfect fluids, elasticity, heat transfer, and quantum
mechanics. Of great importance in the study of these equations are their elemen-
tary solutions. Recall that a elementary solution E(x) is a generalized function
that satisfies the equation

LE(x) = δ(x). (2.13)

This solution is not unique, because we can add to it any solution of the homo-
geneous equation. This understood, in the sequel we shall select the elementary
solution from among the particular solutions according to its behavior at infin-
ity or other appropriate criteria. In the study of these solutions the following
interesting concept is helpful. It is called Hadamard’s method of descent:

Given the solution of a partial differential equation in Rn+1, we can find its
solution in Rn or in a still lower dimension. In doing so, we descend from the
higher-dimensional problem to a lower-dimensional one. For instance, the solu-
tion of the initial value problem for the wave equation in two dimensions can
be obtained from that in three dimensions. Specifically, let us consider a linear
partial differential equation

L

(
D,

∂

∂xn+1

)
u = f(x)⊗ δ(xn+1), (2.14)

in the space Rn+1 of variable (x, xn+1), where x = (x1, . . . , xn), D is ∂/∂xj, j =
1, . . . , n, f ∈ D′(Rn),

L

(
D,

∂

∂xn+1

)
u =

p∑
q=1

∂q

∂xn+1

Lq(D) + L0(D), (2.15)

and Lq(D) are partial differential operators involving the variables x1, . . . , xn.
When we say that the generalized function g ∈ D′(Rn+1) allows the contin-

uation over functions of the form φ(x)1(xn+1) where φ ∈ D(Rn), we mean the
following: Given an arbitrary sequence of functions ψm(xn+1), m = 1, 2, . . . , be-
longing to D(R1), where R1 is the space with variables xn+1 and converging to 1
in R1[i.e.1(xn+1)], then there is the limit

lim
m→∞

⟨g, φ(x)ψm(xn+1)⟩ = ⟨g, φ(x)1(xn+1)⟩ = ⟨g0, φ⟩ (2.16)

φ ∈ D(Rn). In view of the completeness of D′, we find that g0 ∈ D′(Rn).
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Specifically, for g(x) such that g(x) = f(x)⊗δ(xn+1), the inhomogeneous term
in (2.14), we have

⟨g0, φ⟩ = lim
m→∞

⟨g(x), φ(x)ψm(xn+1)⟩

= lim
m→∞

⟨f(x)⊗ δ(xn+1), φ(x)ψm(xn+1)⟩

= lim
m→∞

⟨f(x), δ(xn+1)φ(x)ψm(xn+1)⟩

= lim
m→∞

⟨f(x), φ(x)ψm(0)⟩

= ⟨f(x), φ(x)⟩, φ ∈ D.

Accordingly, the method of descent can be stated as follows: If the solution u ∈
D′(Rn+1) of (2.13) allows the continuation (2.16), then the distribution u0 ∈
D′(Rn) is the solution of the equation

L0(D)u0 = f(x). (2.17)

For instance, if the locally integrable function E(x, t) is the elementary solution
of the operator L(D, ∂/∂t), then the distribution

E0(x) =

∫ ∞

−∞
E(x, t) dt, (2.18)

is the elementary solution of the operator L0. Indeed, in view of the Lebesgue
theorem on the passage of the limit under the integral sign, we have

lim
m→∞

⟨E(x, t), φ(x)ψm(t)⟩ = lim
m→∞

∫
E(x, t)φ(x)ψm(t)dxdt

=

∫
E(x, t)φ(x)dxdt

=

∫
φ(x)

(∫ ∞

−∞
E(x, t)dt

)
dx

= ⟨E0(x), φ(x)⟩,

where E0 is defined in (2.18) and φ ∈ D. Moreover, this limit does not depend on
the sequence ψm(t). Here E0(x) is the elementary solution of the operator L0, as
required.

2.3.2 Fourier Transform

Definition 2.3.3. Let f(x) ∈ L1(Rn)-the space of integrable function in Rn. The
Fourier transform of f(x) defined by

f̂(ξ) =
1

(2π)n/2

∫
Rn

e−i(ξ,x)f(x)dx. (2.19)
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where ξ = (ξ1, ξ2, . . . , ξn) and x = (x1, x2, . . . , xn) ∈ Rn, (ξ, x) = ξ1x1 + ξ2x2 +
· · ·+ ξnxn and dx = dx1, dx2, . . . , dxn

Also, the inverse of Fourier transform is defined by

f(x) =
1

(2π)n/2

∫
Rn

ei(ξ,x)f̂(ξ)dξ. (2.20)

Definition 2.3.4. The spectrum of the kernel E(x, t), defined by

E(x, t) =
1

(2π)n

∫
Ω

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ, (2.21)

is the bounded support of the Fourier transform Ê(x, t), for any fixed t > 0.

Definition 2.3.5. Let ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn and denote

Γ+ = {ξ ∈ Rn : ξ21 + ξ22 + · · ·+ ξ2p − ξ2p+1 − ξ2p+2 − · · · − ξ2p+q > 0 and ξ1 > 0}

to be the set of an interior of the forward cone and Γ+ denotes the closure of Γ+.
Let Ω be the spectrum of E(x, t) defined by definition (2.3.4) and Ω ⊂ Γ+. Let

Ê(ξ, t) be the Fourier transform of E(x, t) which is defined by

Ê(ξ, t) =


1

(2π)
n
2

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
]

for ξ ∈ Γ+;

0 for ξ /∈ Γ+.
(2.22)

Lemma 2.3.6. Let The operator L defined by

L =
∂

∂t
+ c2Lk

m, (2.23)

where Lk
m is the operator iterated k-times and is defined by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2i

)m

−

(
p+q∑

j=p+1

∂2

∂x2j

)m]k
p + q = n is the dimension of the Rn, x = (x1, x2, . . . , xn) ∈ Rn, k and m are a
positive integer and c is a positive constant. Then we obtain

E(x, t) =
1

(2π)n

∫
Ω

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ (2.24)

is the elementary solution of (2.23) in the spectrum Ω ⊂ Rn for t > 0.

Proof. Let E(x, t) be the kernel or elementary solution of Lk
m operator and let δ

be the Dirac-delta distribution. Thus

∂

∂t
E(x, t) + c2Lk

mE(x, t) = δ(x)δ(t).
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Applying the Fourier transform to the both sides of the above equation, we have

∂

∂t
Ê(ξ, t) + c2

[(
p∑

i=1

ξ2i

)m

−

(
p+q∑

j=p+1

ξ2j

)m]k
Ê(ξ, t) =

1

(2π)n/2
δ(t).

Hence, we obtain

Ê(ξ, t) =
H(t)

(2π)n/2
e−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k

where H(t) is the Heaviside function. Since H(t) = 1 for t > 0,

Ê(ξ, t) =
1

(2π)n/2
e−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k

which has been already by (2.22). By inverse Fourier transform, we have

E(x, t) =
1

(2π)n

∫
Rn

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ

Since Ω is the spectrum of E(x, t), we obtain

E(x, t) =
1

(2π)n

∫
Ω

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ

for t > 0. �

Definition 2.3.7. Let x = (x1, x2, ..., xn) ∈ Rn and write

v = x21 + x22 + ...+ x2n. (2.25)

For any complex number β, define

Re
β(v) = 2−βπ

−n
2 Γ(

n− β

2
)
v

β−n
2

Γ(β
2
)
. (2.26)

The function Re
β(v) is called the elliptic kernel of Marcel Riesz and is ordinary

function for Re(β) ≥ n and is a distribution of β for Re(β) < n.

Definition 2.3.8. For any complex number β, define

W e
2k(v,m) =

∞∑
r=0

(−1)rΓ(k + r)

r!Γ(k)
(m2)r(−1)k+rRe

2k+2r(v), (2.27)

where Re
2k+2r(v) is defined by (2.26) with β = 2k + 2r, m is a nonnegative real

number.
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Lemma 2.3.9. Given the equation

△ku(x) = 0, (2.28)

where △k is the Laplacian iterated k-times defined by equation (1) we obtain
u(x) = ((−1)k−1Re

2(k−1)(x))
(l) as a solutions of (2.28) where l = (n− 4)/2, n ≥ 4

is nonnegative integer and n is even and Re
2(k−1)(x) defined by equation (2.26)

with m derivatives and β = 2(k − 1).

Proof. see [8].

Lemma 2.3.10. Given the equation △ku(x) = δ(x) for x ∈ Rn, where △k is the
Laplace operator iterated k-times defined by (1). Then u(x) = (−1)kRe

2k(x) is an
elementary solution of the operator △k.

Proof. See [7].

Lemma 2.3.11. The function W e
2k(v,m) is an elementary solutions of the operator

(△ +m2)k where (△ +m2)k is the Helmholtz operator iterated k-times, △ is the
Laplacian, and W e

2k(v,m) defined by equation (2.27)

Proof. At first, the following formula is valid ([1] p.3)

Γ
(η
2
+ r
)
=
η

2

(η
2
+ 1
)
· · ·
(η
2
+ r − 1

)
Γ
(η
2

)
.

Equivalently,

(−1)r

r!
Γ
(η
2
+ r
)
=

(−1)r

r!

η

2

(η
2
+ 1
)
· · ·
(η
2
+ r − 1

)
Γ
(η
2

)
=

1

r!

(
−η
2

)(
−η
2

− 1

)
· · ·
(
−η
2

− r + 1

)
Γ
(η
2

)
.

We have,

(−1)r

r!
Γ
(η
2
+ r
)
=

(
−η

2

r

)
Γ
(η
2

)
.

Then, we obtain the function W e
2k(v,m) is defined by (2.27) become

W e
2k(v,m) =

∞∑
r=0

(
−k
r

)
(m2)r(−1)k+rRe

2k+2r(v).

Since the operator △ is a linearly continuous and have 1− 1 mapping, it has
an inverse. By Lemma 2.3.10, we obtain

W e
2k(v,m) =

∞∑
r=0

(
−k
r

)
(m2)r△−k−rδ(x) = (△+m2)−kδ(x),

where (△+m2)−k is the inverse operator of the operator (△+m2)k. By applying
the operator (△+m2)k to both sides of the above equation, we have

(△+m2)kW e
2k(v,m) = (△+m2)k(△+m2)−kδ(x) = δ(x).
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Lemma 2.3.12. Given the equation

△u(x) = f(x, u(x)), (2.29)

where f is defined and has continuous first derivatives for all x ∈ Ω∪ ∂Ω,Ω is an
open subset of Rn and ∂Ω denotes the boundary of Ω. Assume f is a bounded,
that is |f(x, u)| ≤ N and the boundary condition u(x) = 0 for x ∈ ∂Ω. Then we
obtain u(x) as a unique solution of (2.29).

Proof. We can prove this lemma by the method of iterations and the Schauder’s
estimates, see [2].


