
Chapter 3

Generalized Heat Kernel Related to
the Operator Lkm and Spectrum

In this chapter, we study the generalized solution of the operator Lk
m related

to the generalized heat equation and spectrum. Moreover, such heat kernel has
interesting properties and also related to the kernel of an extension of the heat
equation.

Theorem 3.1Given the equation

∂

∂t
u(x, t) + c2Lk

mu(x, t) = 0 (3.1)

with initial condition
u(x, 0) = f(x) (3.2)

where Lk
m is the operator iterated k-times and defined by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2i

)m

−

(
p+q∑

j=p+1

∂2

∂x2j

)m]k

p + q = n is the dimension of the space Rn, u(x, t) is an unknown function for
(x, t) = (x1, x2, . . . , xn, t) ∈ Rn × (0,∞), f(x) is a given generalized function, k
and m are positive integers and c is a positive constant. Then

u(x, t) = E(x, t) ∗ f(x) (3.3)

is a solution of (3.1) which satisfies (3.2), where E(x, t) is given by (2.24).
Proof. Taking the Fourier transform to the both sides of the (3.1), we obtain

∂

∂t
û(ξ, t) = −c2

[(
p∑

i=1

ξ2i

)m

−

(
p+q∑

j=p+1

ξ2j

)m]k
û(ξ, t).
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Thus

û(ξ, t) = K(ξ)e−c2t((
∑p

i=1 ξ
2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k

, (3.4)

where K(ξ) is constant and û(ξ, 0) = K(ξ).
Now, by (3.2) we have

K(ξ) = û(ξ, 0) = f̂(ξ) =
1

(2π)n/2

∫
Rn

e−i(ξ,x)f(x)dx. (3.5)

And by the inversion in (2.20), (3.4), (3.5) we obtain

u(x, t) =
1

(2π)n/2

∫
Rn

ei(ξ,x)û(ξ, t)dξ

=
1

(2π)n

∫
Rn

∫
Rn

ei(ξ,x)e−i(ξ,y)f(y)e−c2t[(
∑p

i=1 ξ
2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
]
k

dξdy.

u(x, t) =
1

(2π)n

∫
Rn

∫
Rn

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x−y)

]
f(y)dξdy. (3.6)

Set

E(x, t) =
1

(2π)n

∫
Rn

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ. (3.7)

Since the integral in (3.7) is divergent, therefore we choose Ω ⊂ Rn be the spectrum
of E(x, t) and by (2.24), we have

E(x, t) =
1

(2π)n

∫
Rn

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ

=
1

(2π)n

∫
Ω

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ. (3.8)

Thus (3.6) can be written in the convolution form

u(x, t) = E(x, t) ∗ f(x).
Moreover, since E(x, t) exists, we see that

lim
t→0

E(x, t) =
1

(2π)n

∫
Ω

ei(ξ,x)dξ

=
1

(2π)n

∫
Rn

ei(ξ,x)dξ

= δ(x), for x ∈ Rn. (3.9)

holds (see [6],p.396, equation (10.2.19b)).
Thus for the solution u(x, t) = E(x, t) ∗ f(x) of (3.1), then we have

u(x, 0) = lim
t→0

u(x, t) = lim
t→0

E(x, t) ∗ f(x) = δ(x) ∗ f(x) = f(x)
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which satisfies (3.2). This complete the proof. �

Theorem 3.2 The kernel E(x, t) is defined by (3.8) has the following properties:

(1) E(x, t) ∈ C∞(Rn × (0,∞)) the space of continuous with infinitely differen-
tiable,

(2) ( ∂
∂t
+ c2Lk

m)E(x, t) = 0, for t > 0,

(3) |E(x, t| ≤ 22−n

πn/2

M(t)
Γ( p

2
)Γ( q

2
)
, for t > 0,

whereM(t) =
∫ R

0

∫ T

0
e−c2t(r2m−s2m)

k

rp−1sq−1drds is a function of t > 0 in the
the spectrum Ω and Γ denote the Gamma function. Thus E(x, t) is bounded
for any fixed t > 0.

(4) limt→0E(x, t) = δ(x).

Proof. (1) From (3.8), since

∂n

∂xn
E(x, t) =

1

(2π)n

∫
Ω

∂n

∂xn
e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ

Thus E(x, t) ∈ C∞ for x ∈ Rn and t > 0.
(2) By computing directly, we obtain

(
∂
∂t
+ c2Lk

m

)
E(x, t) = 0.

(3) We have

E(x, t) =
1

(2π)n

∫
Ω

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ

|E(x, t)| ≤ 1

(2π)n

∫
Ω

e−c2t[(
∑p

i=1 ξ
2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
]
k

dξ.

By changing to bipolar coordinates

ξ1 = rω1, ξ2 = rω2, . . . , ξp = rωp

and
ξp+1 = sωp+1, ξp+2 = sωp+2, . . . , ξp+q = sωp+q,

where
∑p

i=1 ω
2
i = 1 and

∑p+q
j=p+1 ω

2
j = 1. Thus

|E(x, t)| ≤ 1

(2π)n

∫
Ω

e−c2t(r2m−s2m)
k

rp−1sq−1drdsdωpdωq

where dξ = drdsdωpdωq and dωp, dωq are the elements of surface area of the unit
sphere in Rp and Rq, respectively. Since ω ⊂ Rn is the spectrum of E(x, t) and
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we suppose 0 ≤ r ≤ R and 0 ≤ s ≤ T where R and T are constants. Thus

|E(x, t)| ≤ ωpωq

(2π)n

∫ R

0

∫ T

0

e−c2t(r2m−s2m)
k

rp−1sq−1drds

=
ωpωq

(2π)n
M(t) for any fixed t > 0 in the spectrum Ω

=
22−n

πn/2

M(t)

Γ(p
2
)Γ( q

2
)
,

where

M(t) =

∫ R

0

∫ T

0

e−c2t(r2m−s2m)
k

rp−1sq−1drds

is a function of t, ωp =
2πp/2

Γ( p
2
)
and ωq =

2πp/2

Γ( q
2
)
. Thus, for any fixed t > 0, E(x, t) is

bounded.
(4) Obvious by (3.9). �

For the example, If we put n = 1, q = 0,m = 2, k = 1, c = 1/3 in (3.1) and
u(x, 0) = sin(

√
3x), we have

∂

∂t
u(x, t) +

1

9

∂4

∂x4
u(x, t) = 0. (3.10)

From (3.8) we have E(x, t) = 1
2π

∫
Ω
e−

1
9
tξ4+iξxdξ and u(x, t) = e−t sin(

√
3x) is the

solution of (3.10). Graphical solution shows below.

Figure 3.1: The solution u(x, t) = e−t sin(
√
3x).
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For another example, we put n = 2, q = 0,m = 2, k = 1, c = 1/2 in (3.1) and
u(x, 0) = sinx sin y, we have the equation

∂

∂t
u(x, y, t) +

1

4

(
∂2

∂x2
+

∂2

∂y2

)2

u(x, y, t) = 0. (3.11)

From (3.8), we haveE(x, t) = 1
(2π)2

∫
Ω
e−

1
4
t(ξ21+ξ22)

2+iξxdξ and u(x, y, t) = e−t sinx sin y

is the solution of (3.11). Graphical solution shows below.

Figure 3.2: The solution u(x, t) at t = 0.

Figure 3.3: The solution u(x, t) at t = 500.


