Chapter 3

Generalized Heat Kernel Related to the Operator L_m^k and Spectrum

In this chapter, we study the generalized solution of the operator L_m^k related to the generalized heat equation and spectrum. Moreover, such heat kernel has interesting properties and also related to the kernel of an extension of the heat equation.

Theorem 3.1 Given the equation

$$\frac{\partial}{\partial t}u(x,t) + c^2 L_m^k u(x,t) = 0$$
(3.1)

(3.2)

with initial condition

$$\iota(x,0) = f(x)$$

where L_m^k is the operator iterated k-times and defined by

$$L_m^k = (-1)^{mk} \left[\left(\sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} \right)^m - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right)^m \right]$$

p+q = n is the dimension of the space \mathbb{R}^n , u(x,t) is an unknown function for $(x,t) = (x_1, x_2, \ldots, x_n, t) \in \mathbb{R}^n \times (0, \infty)$, f(x) is a given generalized function, k and m are positive integers and c is a positive constant. Then

$$u(x,t) = E(x,t) * f(x)$$
 (3.3)

is a solution of (3.1) which satisfies (3.2), where E(x,t) is given by (2.24). **Proof.** Taking the Fourier transform to the both sides of the (3.1), we obtain

$$\frac{\partial}{\partial t}\hat{u}(\xi,t) = -c^2 \left[\left(\sum_{i=1}^p \xi_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^m \right]^k \hat{u}(\xi,t)$$

Thus

$$\hat{u}(\xi,t) = K(\xi)e^{-c^2t\left(\left(\sum_{i=1}^p \xi_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^m\right)^k},$$
(3.4)

where $K(\xi)$ is constant and $\hat{u}(\xi, 0) = K(\xi)$. Now, by (3.2) we have

$$K(\xi) = \hat{u}(\xi, 0) = \hat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi, x)} f(x) dx.$$
(3.5)

And by the inversion in (2.20), (3.4), (3.5) we obtain

$$u(x,t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi,x)} \hat{u}(\xi,t) d\xi$$

= $\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\xi,x)} e^{-i(\xi,y)} f(y) e^{-c^2 t \left[\left(\sum_{i=1}^p \xi_i^2 \right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2 \right)^m \right]^k} d\xi dy.$

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{\left[-c^2 t \left(\left(\sum_{i=1}^p \xi_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^m\right)^k + i(\xi, x-y)\right]} f(y) d\xi dy.$$
(3.6)

Set

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{\left[-c^2 t \left(\left(\sum_{i=1}^p \xi_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^m\right)^k + i(\xi,x)\right]} d\xi.$$
(3.7)

Since the integral in (3.7) is divergent, therefore we choose $\Omega \subset \mathbb{R}^n$ be the spectrum of E(x,t) and by (2.24), we have

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{\left[-c^2 t \left(\left(\sum_{i=1}^p \xi_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^m\right)^k + i(\xi,x)\right]} d\xi$$
$$= \frac{1}{(2\pi)^n} \int_{\Omega} e^{\left[-c^2 t \left(\left(\sum_{i=1}^p \xi_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^m\right)^k + i(\xi,x)\right]} d\xi.$$
(3.8)

Thus (3.6) can be written in the convolution form

u(x,t) = E(x,t) * f(x).

Moreover, since E(x,t) exists, we see that

$$\lim_{t \to 0} E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} e^{i(\xi,x)} d\xi$$
$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(\xi,x)} d\xi$$
$$= \delta(x), \quad \text{for } x \in \mathbb{R}^n.$$
(3.9)

holds (see [6],p.396, equation (10.2.19b)). Thus for the solution u(x,t) = E(x,t) * f(x) of (3.1), then we have

$$u(x,0) = \lim_{t \to 0} u(x,t) = \lim_{t \to 0} E(x,t) * f(x) = \delta(x) * f(x) = f(x)$$

which satisfies (3.2). This complete the proof.

Theorem 3.2 The kernel E(x,t) is defined by (3.8) has the following properties:

- (1) $E(x,t) \in C^{\infty}(\mathbb{R}^n \times (0,\infty))$ the space of continuous with infinitely differentiable,
- (2) $\left(\frac{\partial}{\partial t} + c^2 L_m^k\right) E(x,t) = 0, \text{ for } t > 0,$
- (3) $|E(x,t)| \leq \frac{2^{2-n}}{\pi^{n/2}} \frac{M(t)}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})}$, for t > 0, where $M(t) = \int_0^R \int_0^T e^{-c^2 t \left(r^{2m} - s^{2m}\right)^k} r^{p-1} s^{q-1} dr ds$ is a function of t > 0 in the the spectrum Ω and Γ denote the Gamma function. Thus E(x,t) is bounded for any fixed t > 0.
- (4) $\lim_{t \to 0} E(x,t) = \delta(x).$

Proof. (1) From (3.8), since

$$\frac{\partial^n}{\partial x^n} E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} \frac{\partial^n}{\partial x^n} e^{\left[-c^2 t \left(\left(\sum_{i=1}^p \xi_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^m\right)^k + i(\xi,x)\right]} d\xi$$

Thus $E(x,t) \in C^{\infty}$ for $x \in \mathbb{R}^n$ and t > 0. (2) By computing directly, we obtain $\left(\frac{\partial}{\partial t} + c^2 L_m^k\right) E(x,t) = 0$. (3) We have

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\Omega} e^{\left[-c^2 t \left(\left(\sum_{i=1}^p \xi_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^m\right)^k + i(\xi,x)\right]} d\xi$$
$$|E(x,t)| \le \frac{1}{(2\pi)^n} \int_{\Omega} e^{-c^2 t \left[\left(\sum_{i=1}^p \xi_i^2\right)^m - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^m\right]^k} d\xi.$$

By changing to bipolar coordinates

$$\xi_1 = r\omega_1, \xi_2 = r\omega_2, \dots, \xi_p = r\omega_p$$

and

$$\xi_{p+1} = s\omega_{p+1}, \xi_{p+2} = s\omega_{p+2}, \dots, \xi_{p+q} = s\omega_{p+q}$$

where
$$\sum_{i=1}^{p} \omega_i^2 = 1$$
 and $\sum_{j=p+1}^{p+q} \omega_j^2 = 1$. Thus
$$|E(x,t)| \leq \frac{1}{(2\pi)^n} \int_{\Omega} e^{-c^2 t \left(r^{2m} - s^{2m}\right)^k} r^{p-1} s^{q-1} dr ds d\omega_p d\omega_q$$

where $d\xi = dr ds d\omega_p d\omega_q$ and $d\omega_p$, $d\omega_q$ are the elements of surface area of the unit sphere in \mathbb{R}^p and \mathbb{R}^q , respectively. Since $\omega \subset \mathbb{R}^n$ is the spectrum of E(x,t) and

we suppose $0 \le r \le R$ and $0 \le s \le T$ where R and T are constants. Thus

$$\begin{split} |E(x,t)| &\leq \frac{\omega_p \omega_q}{(2\pi)^n} \int_0^R \int_0^T e^{-c^2 t \left(r^{2m} - s^{2m}\right)^k} r^{p-1} s^{q-1} dr ds \\ &= \frac{\omega_p \omega_q}{(2\pi)^n} M(t) \quad \text{for any fixed } t > 0 \text{ in the spectrum } \Omega \\ &= \frac{2^{2-n}}{\pi^{n/2}} \frac{M(t)}{\Gamma(\frac{p}{2})\Gamma(\frac{q}{2})}, \end{split}$$

where

$$M(t) = \int_0^R \int_0^T e^{-c^2 t \left(r^{2m} - s^{2m}\right)^k} r^{p-1} s^{q-1} dr ds$$

is a function of t, $\omega_p = \frac{2\pi^{p/2}}{\Gamma(\frac{p}{2})}$ and $\omega_q = \frac{2\pi^{p/2}}{\Gamma(\frac{q}{2})}$. Thus, for any fixed t > 0, E(x, t) is bounded.

(4) Obvious by (3.9).

For the example, If we put n = 1, q = 0, m = 2, k = 1, c = 1/3 in (3.1) and $u(x,0) = \sin(\sqrt{3}x)$, we have

$$\frac{\partial}{\partial t}u(x,t) + \frac{1}{9}\frac{\partial^4}{\partial x^4}u(x,t) = 0.$$
(3.10)

From (3.8) we have $E(x,t) = \frac{1}{2\pi} \int_{\Omega} e^{-\frac{1}{9}t\xi^4 + i\xi x} d\xi$ and $u(x,t) = e^{-t} \sin(\sqrt{3}x)$ is the solution of (3.10). Graphical solution shows below.

Figure 3.1: The solution $u(x,t) = e^{-t} \sin(\sqrt{3}x)$.

For another example, we put n = 2, q = 0, m = 2, k = 1, c = 1/2 in (3.1) and $u(x, 0) = \sin x \sin y$, we have the equation

$$\frac{\partial}{\partial t}u(x,y,t) + \frac{1}{4}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)^2 u(x,y,t) = 0.$$
(3.11)

From (3.8), we have $E(x,t) = \frac{1}{(2\pi)^2} \int_{\Omega} e^{-\frac{1}{4}t(\xi_1^2 + \xi_2^2)^2 + i\xi x} d\xi$ and $u(x,y,t) = e^{-t} \sin x \sin y$ is the solution of (3.11). Graphical solution shows below.

Figure 3.3: The solution u(x,t) at t = 500