Chapter 4

Generalized Wave Equation Related
to the L” Operator

In this chapter, we study the operator L* related to the generalized wave
equation by using e approximation.

Theorem 4.1 Given the equation
92
ﬁu(x, t) 4+ LE u(x,t) =0, (4.1)

where LE is the product operator iterated k-times and is defined by
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p+ q = n is the dimension of the R", x = (xy1,29,...,2,) € R™ with initial
conditions

u(z,0) = f(z) and %u(m,O) = g(x), (4.2)

where u(x,t) € C, ¢ is a positive constant, k and m are nonnegative integers, f
and g are continuous functions and absolutely integrable for x € R™. Then (4.1)
has a unique solution

w(x,t) = f(x) * (2, 1) + g(x) * d(,1) (4.3)

and satisfy the condition (4.2) where ¢(z,t) is an inverse Fourier transform of

(Z(f ) = sin ety / (r¥m — s2m)k
’ CA /(r2m _ SQm)k

and Y(z,t) is an inverse Fourier transform of

@Z(S,t) = cos cty/ (r?m — st)k = %5(5,25),
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where 1> = & + &+ -+ 6, 8 =&+, + -+ &, andr > 5 >0,
Moreover, if we put m =k =1 and ¢ = 0 in (4.1), then it become the generalized
n-dimensional wave equation

82
@u(x,t) — A Au(x,t) = 0.

Proof. By applying the Fourier transform defined by (2.19) to both side of (4.1),

we obtain
o2 p L p+q my K
@ms,mcﬁ((Z@?) N (Z 5?) ) U t) = 0. (4.4)
i=1

Jj=p+1

Now, put 72 :§%+§§+~--+§§, 52 = §+1+§§+2+"'+§§+q and let r > s > 0.
Thus (4.4) becomes

2

A1)+ (17" — M e ) =0, (4.5)

with the initial conditions

u(z,0) = f(z) and %u(m,()) = g(x).

Thus by (4.2), we have

o~

u(€,0) = F(e) and S u(€.0) = 5(6) (4:6)

Now, we are solving the solution of (4.5) satisfies (4.6). Then

U(E,t) = A(E) cos et/ (r2m — s2m)* 4+ B(€) sin cty/ (r2m — s2m)F

and
8@(@&;15) — —CWA(&) sin ct (T2m—32m)k
+c\/m3(§) cos Ct\/m.

~

By (4.6), we obtain u(£,0) = A(§) = f(§) and

aagt,()) _ O+c\/m3(§)=§(£)
3()
Be) = —— -
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Thus the solution of (4.5) satisfies (4.6) is

A&, 1) =F (&) cos cty/ (r2m — s2m)F
9(&)

£ (,r.Qm _ S2m)k

+ sin et/ (r2m — s2m)" (4.7)

or in the convolution form

u(z, t) = f(x) x (1) + g(x) * ¢(x,1). (4.8)

Thus (4.8) is a solution of (4.1) where ¢(z,t) is an inverse Fourier transform

~ sin cty/ (r2m — g2m)F
of ¢(&,t) = and 1 (x,t) is an inverse Fourier transform of
c <r2m _ 82m)k

N 9 ~ - -

V(&) = coscty/ (r2m — s2m)F = agb(f,t). Since ¢(&,t) and ¥ (&,t) can not be
Lebesgue integrable, that is (E, zZ ¢ L'(R™). Thus we can not find the inverse ¢
and 1 directly . But we can compute the inverse ¢ and 1 by using the method of
e—approximation. Let us defined g/b;(g,t) = e “V (r2m_52m)k$(§,t) and Jg(f,t) =

e/ GEm ~ ~ ~ = .

e B(E,1). Clearly, Gu(€,1) — B(E,1), Tu(&,1) — D(E,1) uniformly as
e — 0. Since ¢, € L'(R"), then we can obtain the inverse ¢. and . by

applying (2.20) and we obtain ¢. — ¢ and ¥ — ¥ as € — 0. Now, by (2.20) we
have

1 i(€.a) 3
¢e(x7t) - (2%)% /ne ¢6(§,t>d€

sin cty/ (r?m — st
A 1 / i(€,x) 766\/ (r2m— k

(2m)z cy/ (r2m — g2m)k

and

(r2m752m
0ol t)] < / —
2 n T2m _ S2m

By changing to bipolar coordinates, we put
&1 =rwy, & =rws, ..., & = rw,

and £p+1 = SWp+1, §p+2 = SWp42,--- 7€p =SWprq, P+ qg=n
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where w} + w3 + -+ w) =1 and wl, | + w2 ,+---+ w2, = 1. Thus

(7’27" —827”)
Pe(z,t)| < n/ THWWM@MQ
27r 2 Jpn  / TQm 327”

Q Q (T2m_52m
= I / / rpflsqfldsdr,
0 CA / T2m S2m
2mP/2 27/
where Q, = m, Q, = W are the surface area of the unit sphere in

R? and R? respectively Now, put s™ = r™sinf, thus 0 < ¢ < 7 and ds =
~ cos f(sin 6)" =" df. Then we obtain

w/2 7ec(r cos 9)* -1
|pe(, )] < n/ / = [r(sing)™™]" x

c(rm cos 6

—cos@(st) w P dOdr

w/2 —ec r™ cos 0)* a—m
= ——————rP* 7 (sin ) = x
c(rmcos 6)F

cos fdfdr.
d
Put y = ec (r™ cos G)k = ecr™ cosk 0, r™F = L, dr = %Y , it follows that
ce cosk 0 mky

/2 —y,.n—1 o
|pe(x,t)] < / / e A & (sin )= cos 6 k dydb

e ye mE g-m
B m2 27r / / y? cecosk6’> " (sin6) 5" cos fdydf

B e yymk a4 1—n
— m2 27T / / e (sinf) (cosf) dyd6

Q,0, T'(Z&-1)

/2
_ 2(0)1 (com )71 5)1
w2 (2n)E e 1C£k/ (sinf) (cos@)\ "2 db
90, T (_ — 1 _m (2m n)
2m2(2m) 2 kemk~ 10# (2z=r)
Similarly, we defined @ZJ\E(S 1) = eV (r2m=s2m)" o cty/ (r2m — 82’” and
Ulat) = o / G (e, t)de

1 ; m m
= @) / eilE) gmee/ (rPm=s2m)® (o cty/ (r¥m — 32m)kd§
s n

_ %0 TR (q

B 2m2(27r) kEmk CmE 2m’
4 F
r
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Thus
ot < oo [ e Ty
2 n
= QPQZ / / e/ (r2m—s2m) P 51 Y dsdr,
(2’7'(')5 0 0
Now, put s = r™sin6, thus 0 < 6 < 7 and ds = - cos f(sin 6) " df. Then we
obtain
[Ve(z,t)] < / / —eelr™ cosO)" 1. (sin §) }
—cos@(st) w P dOdr
— QPQQQ /00/2 efec(rm cos@)kTerqfl(Sin 9) = >
m(27r)2 0 0
cos Odfdr.
Put y = ec (r™ cos G)k = ecr™ cosk 0, r™* = i , dr = it , it follows that
ce cosk 0 mky
0,0, [* [* L
|Ve(z,t)] < (;W; /2 / e V" Ysin0) = cos Gm ydyd@

mk —m
= 0) m Odydo
m2 271 / / ky \ce coskﬁ) (sin ) " cos fdy

y n
= m2 27r / / ( mi st)%_l(cos@)l_ﬁdde

~ Q82 F( ) <o 2(5L)-1 oS 2(1-52%)-1
etk (),;;/ e led #

_ 0,8 (mi) q 2m—n

©2m2(27)% k(ce)mr 5( om )

_o00 ) T (5h) T (%557)

B (2#)% k(ce)]:m om 1"(2m p) : (4.10)

Now, from (4.8), we define

uc(w,t) = f(x) * Pe(2,t) + g() * de(x,1). (4.11)
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Thus u(z,t) = . Ve(y,t) f(x —y)dy + . be(y, t)g(x — y)dy

w0 < [ W 0llf@ =y + [ o 0llate — )y
2,0, T () T (GR) T (35:2)

2m
g D d
= (2m)% k(ce)mr zmzp(zm p) If( y)ldy
Qqu T ( ]_) 1“ 2m n
* (2#)% kev:k Lome 2m2F 2m p / l9(z — y)|dy,

by (4.9) and (4.10). Since f,g € L*(R) and let M :/ |f|ldy and N = lg|dy
where M and N are constants. Thus .
2m—n
() ()0 (35)
( ) k(ce)mi  2m?T (252 p)
0,0, T (2~ YL ()0 (%) |
(2 ) kemr~Lemr 2m2F(2mmp)

|ue($’t)| >

2,9, T () T (55) T (355"
(2m)2 kemr  2m2D (22-2)
Q2 T (ﬁ & 1) r (L) I (355"
(2m)2  kcmE 2m?2T" (2-2)
\ Q Q F n_ F q F 2m—n
hmem|u€(x,t)| < P Z (mnk) (Zm) 2( 2m )
e—0 (27‘()5 kcmE QmZF( mmp)
where K is positive constant. Now u.(z,t) — wu(z,t) as € — 0. Thus we obtain
u(z,t) = O(emr ) as the solution of (4.1) which is bounded by the e—approximation.
Now,if we put m =k =1 and ¢ = 0 in (4.1), then it become the generalized
n-dimensional wave equation
92

@u(x t) — EAu(w,t) = 0.

This complete the proof. U

e#|u€($,t)| <

For the example, If we put n = 1,¢ = 0,m = 2,k = 1,¢ = 1/3 in (4.1) and
u(z,0) = sin(v/3z), we have the equation
0? 104
— - =0. 4.12
atZu(:v t) + 96x4u(x,t) 0 (4.12)

From (3.8) we obtain u(z,t) = cost¢sin(v/3z) is the solution of (4.12). Graphical
solution shows below.
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Figure 4.1: The solution u(x,t) = cos tsin(v/3z).

For another example, we put n =2,¢ =0,m =2k =1,¢=1/2in (4.1) and
u(z,0) = 0, we have the equation

0 1/ Y\
— | =—= 4+ =— =0. 4.1
S0+ (5 + g ) w0 =0 (4.13)

then u(z,y,t) = sintsinzsiny is the solution of (4.13).



