
Chapter 5

On the Nonlinear Product of
Laplacian Related to the Biharmonic

Equation

In this chapter, we study the nonlinear product of Laplacian related to the
nonhomogeneous Biharmonic equation.

Theorem 5.1 Given the nonlinear equation

△k(△+m2)ku(x) = f(x,△k−1(△+m2)ku(x)) (5.1)

where △k is the Laplacian iterated k times, defined by

△ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
. (5.2)

and (△+m2)k is the Helmholtz operator iterated k times, defined by

△ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
+m2. (5.3)

Let f be defined and have continuous first derivatives for all x ∈ Ω ∪ ∂Ω,Ω is an
open subset of Rn and ∂Ω denotes the boundary of Ω and n is even with n ≥ 4.
Let f be a bounded function, that is

|f(x,△k−1(△+m2)ku(x))| ≤ N, (5.4)

where N is a positive constant and the boundary condition

△k−1(△+m2)ku(x) = 0, for x ∈ ∂Ω (5.5)

then we obtain

u(x) = (−1)k−1Re
2(k−1)(x) ∗W e

2k(v,m) ∗W (x) (5.6)
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as a solution of (5.1) with the boundary condition

u(x) = (−1)k−2(Re
2(k−2)(x))

(l) ∗W e
2k(v,m)

for x ∈ ∂Ω, l = (n − 4)/2, k = 2, 3, 4, . . . and v is given by (2.25), W (x) is a
continuous function for x ∈ Ω∪∂Ω. Re

2(k−2)(x), with β = 2(k−2), and W e
2k(v,m)

are given by (2.26) and (2.27), respectively. Moreover, for k = 1 then (5.1)
becomes

△(△+m2)u(x) = f(x, (△+m2)u(x)) (5.7)

with boundary condition

(△+m2)u(x) = 0, for x ∈ ∂Ω; (5.8)

we have
u(x) = W e

2 (v,m) ∗W (x) (5.9)

as a solution of (5.7) and we can write (5.7) as

△2u(x) = g(x,△u(x)),

which is called the nonhomogeneous biharmonic equation, where g(x,△u(x)) =
f(x, (△+m2)u(x))−m2△u(x).
Proof. From equation (5.1), we have

△k(△+m2)ku(x) = △(△k−1(△+m2)ku(x))

= f(x,△k−1(△+m2)ku(x)). (5.10)

Since u(x) has continuous derivatives up to order 2k for k = 1, 2, 3, . . . we can
assume

△k−1(△+m2)ku(x) = W (x), for x ∈ ∂Ω. (5.11)

Thus, (5.10) can be written in the form

△ku(x) = △W (x) = f(x,W (x)). (5.12)

by (5.4)
|f(x,W (x))| ≤ N. (5.13)

and by (5.5), W (x)=0 or

△k−1(△+m2)ku(x) = 0, for x ∈ ∂Ω. (5.14)

Thus by Lemma (2.3.12) there exists a unique solution W (x) of (5.12) which
satisfies (5.13).
Now consider the Equation (5.11); we have (−1)k−1Re

2(k−1)(x) and W
e
2k(v,m) are
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the elementary solutions of the operators △k−1 and (△+m2)k, respectively. Thus,
convolving both sides of (5.11) by (−1)k−1Re

2(k−1)(x) ∗W e
2k(v,m) we obtain

[(−1)k−1Re
2(k−1)(x) ∗W e

2k(v,m)] ∗ △k−1(△+m2)ku(x)

= (−1)k−1Re
2(k−1)(x) ∗W e

2k(v,m) ∗W (x).

By properties of convolution, we obtain

[△k−1(−1)k−1Re
2(k−1)(x)][(△+m2)kW e

2k(v,m)] ∗ u(x)
= (−1)k−1Re

2(k−1)(x) ∗W e
2k(v,m) ∗W (x)

δ ∗ δ ∗ u(x) = (−1)k−1Re
2(k−1)(x) ∗W e

2k(v,m) ∗W (x).

Thus
u(x) = (−1)k−1Re

2(k−1)(x) ∗W e
2k(v,m) ∗W (x) (5.15)

as required. Consider △k−1(△ +m2)ku(x) = 0, for x ∈ ∂Ω. By Lemma (2.3.9),
we have

(△+m2)ku(x) = (−1)k−2(Re
2(k−2)(x))

(l)

u(x) = (−1)k−2(Re
2(k−2)(x))

(l) ∗W e
2k(v,m)

for x ∈ ∂Ω and k = 2, 3, 4, . . ..
Moreover, if we put k = 1 in (5.1), then

△(△+m2)u(x) = f(x, (△+m2)u(x)) (5.16)

with boundary condition

(△+m2)u(x) = 0, for x ∈ ∂Ω,

respectively, we obtain
u(x) =W e

2k(v,m) ∗W (x).

From (5.16) we can write

△2u(x) = g(x, (△)u(x)), (5.17)

where g(x, (△)u(x)) = f(x, (△ + m2)u(x)) − m2△u(x) and (5.17) is called the
nonhomogeneous biharmonic equation. This completes the proof. �



Chapter 6

Conclusion

In this thesis, we study the generalized solution of the operator Lk
m related

to the generalized heat equation and spectrum. Next, we study the operator Lk
m

related to the generalized wave equation by using ϵ approximation. Finally, we
study the nonlinear product of Laplacian related to the nonhomogeneous Bihar-
monic equation. The results obtained in this thesis extend and improve several
results obtained in this area. The results are summarized as follows.

Theorem 1 Given the equation

∂

∂t
u(x, t) + c2Lk

mu(x, t) = 0 (6.1)

with initial condition
u(x, 0) = f(x) (6.2)

where Lk
m is the operator iterated k-times and defined by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2i

)m

−

(
p+q∑

j=p+1

∂2

∂x2j

)m]k

p + q = n is the dimension of the space Rn, u(x, t) is an unknown function for
(x, t) = (x1, x2, . . . , xn, t) ∈ Rn × (0,∞), f(x) is a given generalized function, k
and m are positive integers and c is a positive constant. Then

u(x, t) = E(x, t) ∗ f(x) (6.3)

is a solution of (6.1) which satisfies (6.2), where E(x, t) is given by

E(x, t) =
1

(2π)n

∫
Ω

e

[
−c2t((

∑p
i=1 ξ

2
i )

m
−(

∑p+q
j=p+1 ξ

2
j )

m
)
k
+i(ξ,x)

]
dξ (6.4)

.
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Theorem 2 The kernel E(x, t) is defined by (6.4) has the following properties:

(1) E(x, t) ∈ C∞(Rn × (0,∞)) the space of continuous with infinitely differen-
tiable,

(2) ( ∂
∂t
+ c2Lk

m)E(x, t) = 0, for t > 0,

(3) |E(x, t| ≤ 22−n

πn/2

M(t)
Γ( p

2
)Γ( q

2
)
, for t > 0,

whereM(t) =
∫ R

0

∫ T

0
e−c2t(r2m−s2m)

k

rp−1sq−1drds is a function of t > 0 in the
the spectrum Ω and Γ denote the Gamma function. Thus E(x, t) is bounded
for any fixed t > 0.

(4) limt→0E(x, t) = δ(x).

Theorem 3 Given the equation

∂2

∂t2
u(x, t) + c2Lk

m, u(x, t) = 0, (6.5)

where Lk
m defined by

Lk
m = (−1)mk

[(
p∑

i=1

∂2

∂x2i

)m

−

(
p+q∑

j=p+1

∂2

∂x2j

)m]k
,

with initial conditions

u(x, 0) = f(x) and
∂

∂t
u(x, 0) = g(x), (6.6)

where u(x, t) ∈ C, c is a positive constant, k and m are nonnegative integer, f
and g are continuous functions and absolutely integrable for x ∈ Rn. Then (6.5)
has a unique solution

u(x, t) = f(x) ∗ ψ(x, t) + g(x) ∗ ϕ(x, t) (6.7)

and satisfy the condition (6.6) where ϕ(x, t) is an inverse Fourier transform of

ϕ̂(ξ, t) =
sin ct

√
(r2m − s2m)k

c

√
(r2m − s2m)k

and ψ(x, t) is an inverse Fourier transform of

ψ̂(ξ, t) = cos ct

√
(r2m − s2m)k =

∂

∂t
ϕ̂(ξ, t),

where r2 = ξ21 + ξ22 + · · · + ξ2p, s
2 = ξ2p+1 + ξ2p+2 + · · · + ξ2p+q and r > s > 0.

Moreover, if we put m = k = 1 and q = 0 in (6.5), then it become the generalized
n-dimensional wave equation

∂2

∂t2
u(x, t)− c2△u(x, t) = 0.
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Theorem 4 Given the nonlinear equation

△k(△+m2)ku(x) = f(x,△k−1(△+m2)ku(x)) (6.8)

where △k is the Laplacian iterated k times, defined by

△ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
. (6.9)

and (△+m2)k is the Helmholtz operator iterated k times, defined by

△ =
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
+m2. (6.10)

Let f be defined and have continuous first derivatives for all x ∈ Ω ∪ ∂Ω,Ω is an
open subset of Rn and ∂Ω denotes the boundary of Ω and n is even with n ≥ 4.
Let f be a bounded function, that is

|f(x,△k−1(△+m2)ku(x))| ≤ N (6.11)

where N is a positive constant and the boundary condition

△k−1(△+m2)ku(x) = 0, for x ∈ ∂Ω (6.12)

then we obtain

u(x) = (−1)k−1Re
2(k−1)(x) ∗W e

2k(v,m) ∗W (x) (6.13)

as a solution of (6.8) with the boundary condition

u(x) = (−1)k−2(Re
2(k−2)(x))

(l) ∗W e
2k(v,m)

for x ∈ ∂Ω, l = (n − 4)/2, k = 2, 3, 4, . . . and v is given by (2.25), W (x) is a
continuous function for x ∈ Ω∪∂Ω. Re

2(k−2)(x), with β = 2(k−2), and W e
2k(v,m)

are given by (2.26) and (2.27), respectively. Moreover, for k = 1 then (6.8)
becomes

△(△+m2)u(x) = f(x, (△+m2)u(x)) (6.14)

with boundary condition

(△+m2)u(x) = 0, for x ∈ ∂Ω; (6.15)

we have
u(x) = W e

2 (v,m) ∗W (x) (6.16)

as a solution of (6.14) and we can write (6.14) as

△2u(x) = g(x,△u(x)),

which is called the nonhomogeneous biharmonic equation, where g(x,△u(x)) =
f(x, (△+m2)u(x))−m2△u(x).


