Chapter 1

Introduction

In recent years, research on stability for neural networks (NNs) have been
interesting studies and applied to application information processing problems
and received much due to their potential applications in associative memory,
parallel computation, pattern recognition, signal processing and optimization
problems. It is well known that delays are often the sources of instability and
oscillation in system. Therefore, the stability analysis of discrete-time neu-
ral networks (DNNs) has become an important topic of theoretical studies in
neural networks; for examples, asymptotic stability, robust stability, and expo-
nential stability of neural networks have been studied by many researchers, see
13, 12, 13, 15, 20, 22, 23, 24, 33, 34, 35].

The study of stability for systems with uncertainties is called robust stability.
Important types of uncertainties are called parametric uncertainties and norm-
bounded uncertainties, see [7, 12, 22, 26, 28, 29, 30, 33]. In [12], authors have
presented global robust stability for delayed neural networks with polytopic type
uncertainty, a stability condition for delayed neural networks is derived by us-
ing the S-procedure.Y. Liu, Z. Wang, A. Serrano and X. Liu [20], have studied
discrete-time recurrent neural networks with time-varying delays: Exponential
stability analysis. Y. Liu, X. Liu [22], have considered the problem of robust
stability of discrete-time stochastic neural networks with time-varying delays by
using a LyapunovKrasovskii functional criteria of robust stability is proposed in
terms of LMIs. The problem of the robust stability analysis of neural networks
with time-varying delay with norm-bounded uncertainties are proposed in [33].
The stability condition is given in terms of a LMI.

1. Uncertainty

1.1 Polytopic Uncertainty

In [29], Domingos C. W. Ramos and Pedro L. D. Peres have studied the robust
stability of discrete-time linear parameter dependent (LPD) system of the form

z(k+1) = A(a)x(k),



where z(k) € R™ and A(a) € R™" belongs to a convex bounded (polytope type)
uncertain domain €2, where

N N
Ala) € Q, Q= {A(a) = Z%‘Az‘, Zai =1, a;>0}.
i=1 i=1

In [28], M. C. de Oliveira, J. Bernussou and J. C. Geromel have studied the
robust stability of the linear discrete-time uncertain system

Tr1 = Aa)zy,

where the dynamic matrix A(a) belongs to a convex polytopic set defined as

N N
A= {A(a) s Ala) = Z%‘Ai, Zai =1, o > 0},
i=1 i=1
and they considered the linear discrete-time system

Tpr1 = A(a)zy, + B(B)ux,

where the dynamic matrix A(«) belonging to A and B(f) is in convex polytope
defined by

M M
B = {B(ﬁ) 1 B(B) = Zﬁz‘Bi, Zﬁi =1, 3> 0}-

Furthermore, Y. He, Q.-G. Wang and W.-X. Zheng [12], have studied the global
robust stability for delayed neural networks with polytopic type uncertainties.

#(t) = —Ax(t) + Wog(x(t)) + Wag(z(t — 7(1))),

where z(+) = [21(), 22(+), .. ., 2, (+)]T is the neuron state vector, g(z(-)) = [g1(z1(+))
,92(22(+))s -+, gn(x(+))]" is the neuron activation function, the matrices A, Wy and W,
are uncertainties and satisfy real convex polytopic :

A4 W, Wi eq,

N N
0= {[A(f) Wo(&) Wi(§)] = Zfi [A; Wo; W], Zfi =1&2= 0}7
i=1 i=1
where A; = diag{ai;,...,an;}, i =1,..., N are diagonal matrices, Wy;, Wy;, i =

1,..., N are constant matrices, the delay 7(t) satisfies

7(t) <d <1,



where d is a constant , ¢;(-), 7 =1,...,n, satisfies the following condition:

0< 9 g0y =0, Ve, £0, j=1,....n.
L
1.2 Norm-bounded Uncertainties
In [33], H. Zhang and X. Liao have studied the robust stability analysis of neural
networks with time-varying delay. They considered the following discrete-time
neural networks model

B(t) = =(A+ Ad)z(t) + (W + AW)g(z(t)) + (Wi + AW)g(z(t — (1)),

where z(t) = [x1(t),...,7,(t)]" is the neuron state vector, A = diag(ay, ..., a,)
is a positive diagonal matrix, W and W, are interconnection weight matrices and
7(t) denotes the time-varying delay satisfying 7(¢) < d < 1 where d is constant,
AA, AW and AW, are parametric uncertainties and g(x) = [g1(x1), ..., gn(2y)]
denotes the neuron activation function and satisfies 0 < gj(—j <k,

zj
g;(0) =0, Vz; #0, j=1,...,n. The uncertainties AA, AW and AW; are
defined by

AA = HOF()E(), AW = HFE and AWl = HlFlEl,

where Hy, H, H,, Ey, ¥ and E; are known constant matrices of appropriate dimen-
sions, and Fy, F, F} are unknown matrices (the parameter uncertainty) satisfying

FlFy<I, F'FP<I, F'F <1,
where [ is the identity matrix.

In [22], Y. Liu, Z. Wang, and X. Liu have studied the robust stability of discrete-
time stochastic neural networks with time-varying delays. They considered, on a
probability space (€2, F, P), the following discrete-time stochastic neural networks
(DSNNSs) with time-varying delays of the form

z(k+1) =(A+ AA(k))z(k) + (B+ AB(k))G(xz(k)) + (D + AD(k))H (x(k — 7(k)))
+ o(x(k), z(k — 7(k)), k)w(k), (1.1)

where z(k) = (z1(k), z2(k), ..., z,(k))T € R" is the neural state vector, the
positive integer 7(k) denotes the time-varying delay satisfying

Tm < 7(k) <70, kEN,

where 7, and 7, are known positive integers. The diagonal matrix A = diag(a,
as,...,a,) is real constant diagonal with entries |a;| < 1, B = [bij]nxn and
D = [d;j]nxn are connection weight matrices and the discretely delayed connection



weight matrix, respectively; Whereas the time-varying matrices AA(k), AB(k)
and AD(k) represent the time-varying parameter uncertainties satisfying

[AA(K) AB(k) AD(k)] = MF(k)[Ny Ny N,

where M and N; (i = 1,2, 3) are known real constant matrices, and F(k) is the
unknown time-varying matrix-valued function subject to the following condition:

FY(k)F(k)<I Vke€NT,

In DSNNs (1.1), w(k) is a scalar Wiener process (Brownian Motion) on (€2, F,P)
with
Elw(k)] =0, E[w*(k)]=1, E[w(i)w(j)] =00 # j),

and 0 : R" x R" x R — R" is a continuous function satisfying
O-T(m7 Y, ]C)O'(ZE, Y, k) S Pll’Tl' + prTya xr,Y € ]Rna

where p; > 0 and py > 0 are known constant scalars, and G(z(k)) = [g1(x1(k))
,92(w2(K)), -, gn(@a(K))]" and H(x(k)) = [ha(21(k)), ha(z2(k)), . hn (2 (R))]"
denote the neuron activation functions.

Motivated by these results, we are studied the robust stability problem of
discrete-time and discrete-time stochastic neural networks with time-varying de-
lay. The advantages of our study are

(i) There are norm-bounded uncertainties, polytopic type uncertainties and
stochastic perturbation in our study.

(ii) If we consider discrete-time neural networks with time-varying delay with-
out norm-bounded uncertainties and without polytopic uncertainties, then
we obtain a result of [20] as our corollary.

In the past few years, many researchers have studied on the asymptotic sta-
bility of the generalized difference equations, see [4, 6, 18, 19, 31, 35, 37]. In
[4], L. Berezansky, E. Broverman and E. Liz have derived sufficient conditions
for the global stability by using discrete type inequalities. N. S. Bay and V. N.
Phat [6], have studied new stability conditions are given for nonlinear difference
equations on the assumption that the nonlinear part satisfies certain discrete type
inequalities. In [37], authors have considered the problem of asymptotic stability
of discrete-time interval system with delay. A sufficient condition is given by
means of the inequality techniques.

2. Discrete type Inequalities
In [18], E. Liz and J. B. Ferreiro have studied the global stability of generalized
difference equation

Axn:f(naxnvxn—la"'7$n—r)7 n€N7



where Az, = z,41 — x,, and f : N x R™™! and they considered the following
generalized difference equation :

Az, = —ax, + f(n, Tpy L1y - ,xn,T), a> 0.

In [19], E. Liz, A. F. Ivanov and J. B. Ferreiro have studied discrete halanay-type
inequalities and applications. They considered the following inequalities:

Au, < —Au, + Bu,, + Cv, + Dv,,, n>0
n—1
uy < (L= A)"ug+ Y (1= A" "B + Cv; + DG), n >0,
i=0
v, < Ev, + Fu,, n>0,

where Au, = Upi1 — Uy, Up = max{Up, ..., Uy}, Op = max{vy_1,...,Vp_r},
r>1,and A, B,C, D, E, F are real constants.

In [35], Q. Zhang, X. Wei and J. Xu have studied the global exponential stability
of discrete-time hopfield neural networks with time-varying of the following form

y(n+1) = Cy(n) + Ag(y(n)) + Bg(y(n — x(n))),

where y(n) = [y1(n), ..., ym(n)]T € R™ is the state vector, k(n) is the transmis-
sion delay satisfying 0 < k(n) < k (k is a constant) , g(z(n)) = [g1(z1(n)),...,
gm(zm(n))]T € R™ is the activation function of the neuron, where g;(+), j =
1,...,m satisfies

19; ()] < Ljl&1-

Motivated by these results, we are investigated the discrete type inequalities and
global stability of discrete-time with time-varying delays. The advantages of our
results are

(i) There are multiple time-varying delays in our study. In the case that there
is only one time-varying delay, we obtain a result in [35] as our corollary.

(ii) In our results, the discrete type inequality is less conservative than the
discrete Halanay type inequality in [18] for the case of positive sequences.

In the past decades, several authors have studied the robust H., filtering
problem for uncertain discrete-time system with time-varying delay, see [10, 14,
17, 21, 36]. In [17], authors have investigated the delay-dependent robust Ho,
filtering for uncertain discrete-time singular systems with interval time-varying
delay in which the uncertainty is of polytopic type. They have considered the
design of a linear robust H, filter such that the resulting filtering error singular
system is regular, causal, and asymptotically stable with a H,, norm-bounded.



Y. Liu, Z. Wang, and X. Liu [21], have studied robust H,, filtering for discrete
nonlinear stochastic systems with time-varying delay. By using Lyapunov stabil-
ity theory, they have obtained conditions for H,, filter in terms of the solution
to a linear matrix inequality. In [8], authors have derived H, filter for discrete-
time switched systems with time-varying delays. By using switched Lyapunov
functionals, a sufficient condition for the solvability of this problem is obtained in
terms of LMIs. In [25], authors have proposed delay-dependent H, filtering of a
class of switched discrete-time state delay systems. By using switched Lyapunov
functionals, sufficient conditions for the solvability of this problem are obtained
in terms of LMIs.

3. H filtering problem
In [10], X.-M. Zhang and Q.-L. Han have studied H., filter design for discrete-
time systems with sector-bounded nonlinearities described as

x(k+1) = Ax(k) + F f(x(k)) + Bw(k)
y(k) = Cx(k) + Hh(x(k)) + Dw(k) (1.2)
2(k) = La(k),

where z(k) € R” is state vector, w(k) € R” is the disturbance input, which is
assumed to belong to Ly[0, o0], z(k) € R? is the regulated output, and y(k) € R?
is the measured output. The system matrices A, F, B,C, H, D and L are known
constant matrices of appropriate dimensions. The known functions f(x(k)) and
h(z(k)) are the vector-valued nonlinear functions.

Assumption 1. The vector-valued nonlinear functions f(-) and A(-) are assumed
to satisfy the following sector-bounded conditions:

{ [f () = fy) = Min]"[f () — f(y) — Man] <0,
() = h(y) — Min)"[h(z) — h(y) — Man] <0,

where n = x —y, Vo,y € R*, M, My, € R™™ N, Ny € R"™" are known
constant matrices, and

f(0) =0, ¢(0) =0.

The sensor outage cases are considered as follows

yE(k) = (1= phyi(k), 0<pl<pl<pi<l

1=1,....p, y=1,...,L,

where ,0{ is an unknown constant, p{ and pg represent the lower and upper bounds

of p{, respectively. Denote

yj (k) = [yr; (k) yg; (), ..y (B)]" = (I = pj)y(k),



where p/ = diag{p{, pg, o ,pg} and j = 1,..., L. The scaling factors p’ satisfy
Ny ={p|p = diag{p}, 05, ..., p)} € R,
0<pl<pl<p/ <1 i=12..p}

A uniform sensor failure model is given by

y (k) = (I = py(k), pe{p,p?....p"}, (1.3)

where p can be described by p = diag{p1, p2,. .., pp}-
Then, system (1.2) with sensor failure (1.3) is described by
z(k+1) = Az(k) + Ff(z(K)) + Bw(k)
y" (k) = (1 = p)(Cx(k) + Hh(x(k)) + Dw(k)) (1.4)
z(k) = Lz (k).
The reliable filter is of the form
#(k +1) = Aga(k) + Bpy" (k) + Fyr f(2(k))
. . (1.5)
(k) = Cyi (k).

where (k) € R" is the filter state, 2 € R? is the estimation of z(k), Ay, By, Cy
and F) are the filter parameter matrices to be designed.
Applying filter (1.5) to system (1.4), we obtain the filtering error system:

{ E(k+1) = AL(k) + Ap f(KAE(R)) + Apaf(Ko6(k)) + Aph(K E(K)) + Bw(k)

e(k) = C¢(k),
(1.6)

x(k)l, K= 1[I 0], Ko = [0 I], e(k) = z(k) — 2(k) is

where &(k) = [r%(k)

estimation error, and

- A 0 - F - 0 - 0

4= {Bf(I_P)C AJ s [0] A= {FJ A= {Bf(]_P)H} ’
B

[Bf(—, —p)D

We denote the filtering error system without sensor failures, i.e., p = 0, as follows:

{ §(k +1) = Ag(k) + Ap f(K1§(K)) + Apa f (K6 (R)) + Aph(K1§ (k) + Buw(k)
e(k) = CE(k),

B - ]andC:[L ).

(1.7)

where



The objective is to develop a filter of the form (1.5) such that the filtering error
systems (1.6) and (1.7) satisfy the following requirements:

(1) While there is no exogenous disturbance, i.e., w(k) = 0, the filtering error
system (1.6) and (1.7) are asymptotically stable.

(2) For given constants y; > v, > 0, find filter (1.5) such that

(a) The filtering error system (1.6) in the normal case, i.e., p = 0, (1.7)
has a prescribed level v, of H., performance, In other words, under
the zero initial condition, ey < 7,|lwl|2 is satisfied for any nonzero
w e lQ,

(b) The filtering error system (1.6) in the sensor failure case, i.e., p €
{p1.p2,....pp} with p/ € N;, j=1,..., L, has a prescribed level ~;
of H,, performance, In other words, under the zero initial condition,
lella < vfllwl|2 is satisfied for any nonzero w € Is.

In [36], X.-M. Zhang and Q.-L. Han have studied robust H, filtering for uncertain
discrete-time systems with time-varying delay of the following from

(k+1) = Agz(k) + Ayx(k — h(k)) + Biw(k)
(k) = Cox(k) + Crx(k — h(k)) + Baw(k)
2(k) = Loz (k) + Lyz(k — h(k)) + ng(k)
(k)= ¢(k), k=—h,—h+1,...,0,

where z(k) € R" is the state vector, y(k) € R™ is the measured output, z(k) € R?
is signal to be estimated, w(k) € R? is assumed to be an arbitrary noise signal
belonging to lo, ¢(k), k = —h,—h +1,...,0 is a known given initial condition

(1.8)

sequence, and h(k) is time-varying delay satisfying
O<h<hk)<h<oo, k=12 ...
where h, h are known constants. The system matrices belong to a convex set
X = (Ao, A1, By, Co, Cy, By, Ly, Ly, Bs) € Q, (1.9)
where . <
Q= {X’X = ZPin’, Zpi =1, p= O}a
i=1 i=1

with Xi = (A0i7 A1i7 Blia CO’ia Clia BQi, L0i7 Lli, Bgl) They designed a full order
filter with state-space of the following form:

{ i(k + 1) = Agi(k) + Bry(k), (0) =0 (1.10)

2(k) = Cra(k) + Dyy(k),



where constant matrices Ay € R™", By € R™™ (C; € RP*" and D; €
RP*™ are filter parameters to be determined. Defining the state vector z(k) :=
(27 (k), 27 (k)]T and the estimation error z(k) := z(k) — 2(k), one obtains the

following filtering system:

T(k+ 1) = Agz(k) + A1 Ex(k — h(k)) + Biw(k)
zZ(k) = Loz(k) + LiEx(k — h(k)) + Bsw(k) (1.11)
z(k) = [#(k), 0]T k=—h,~h+1,...,0,

- Ay 0 - Ay 2 By

where Ay = [cho AJ el = [I O} , Ay = [chj , B = [BfBQ] )
Lo=[Ly—D;Cy —Cy|], Li =Ly —DyCy, By = B;— D;Bs.
The purpose of this paper is to design a robust filter of the form (1.10) such that
the system (1.11) has a prescribed H,, performance for all uncertainties satisfying
(1.9), namely

1) System (1.11) with w(k) = 0 is asymptotically stable.

2) System (1.11) has a prescribed level v of H., noise attenuation, i.e., under
the zero initial condition, ||Z||s < 7||lw]|2 is satisfied for any nonzero w € 5.

Motivated by these results, we are interested in the H, filtering problem of
the nonlinear discrete-time system time-varying delay. The advantages of our
study are

(i) There are nonlinear perturbations in our study.
(ii) The time delay is time-varying.

(iii) We require less free matrix variable than some existing results such as [14].
It is noted that the former has more matrix variables than our results.
Therefore, our results are less conservative than these in some existing
results.

It is our future investigation to propose the robust H,, filtering problem for
nonlinear discrete-time neural networks with polytopic types uncertainties and
with time-varying delay.

This thesis is organized in six chapters that are structured as follows:
Chapter 1
The first chapter is a literature of general introduction of neural networks and
the stability analysis problem is recalled in order to concepts that are necessary
to the comprehension of our work and we present the structure of the thesis.

Chapter 2

In this chapter, we give some important notations mathematical definition and
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we show some general concepts of stability, definitions and lemmas because it
will be recalled.

Chapter 3

This chapter, we study the robust stability of discrete-time LPD and discrete-time
stochastic LPD neural networks with time-varying delay. Based on Lyapunov sta-
bility theory and the S-procedure, we derive robust stability criteria in terms of
linear matrix inequalities which are solvable by several available algorithms. Nu-
merical examples are given to illustrate the effectiveness of our theoretical results.

Chapter 4

In this chapter, we introduce discrete type inequalities. Based on these inequal-
ities, we derive new global stability conditions of nonlinear difference equations
and presents a new approach to the global stability of discrete-time with time-
varying delays. A numerical example is provide to demonstrate the effectiveness
of the proposed designs.

Chapter 5

In chapter 5, we investigate the problem of H., filter for discrete-time neural
networks with time-varying delays. Based on Lyapunov stability theory and the
S-procedure, we derive criteria in terms of linear matrix inequalities. Numerical
examples are given to illustrate the effectiveness of our theoretical results.

Chapter 6

In the last chapter we provide a summary of our results.





