
Chapter 1

Introduction

In recent years, research on stability for neural networks (NNs) have been

interesting studies and applied to application information processing problems

and received much due to their potential applications in associative memory,

parallel computation, pattern recognition, signal processing and optimization

problems. It is well known that delays are often the sources of instability and

oscillation in system. Therefore, the stability analysis of discrete-time neu-

ral networks (DNNs) has become an important topic of theoretical studies in

neural networks; for examples, asymptotic stability, robust stability, and expo-

nential stability of neural networks have been studied by many researchers, see

[3, 12, 13, 15, 20, 22, 23, 24, 33, 34, 35].

The study of stability for systems with uncertainties is called robust stability.

Important types of uncertainties are called parametric uncertainties and norm-

bounded uncertainties, see [7, 12, 22, 26, 28, 29, 30, 33]. In [12], authors have

presented global robust stability for delayed neural networks with polytopic type

uncertainty, a stability condition for delayed neural networks is derived by us-

ing the S-procedure.Y. Liu, Z. Wang, A. Serrano and X. Liu [20], have studied

discrete-time recurrent neural networks with time-varying delays: Exponential

stability analysis. Y. Liu, X. Liu [22], have considered the problem of robust

stability of discrete-time stochastic neural networks with time-varying delays by

using a LyapunovKrasovskii functional criteria of robust stability is proposed in

terms of LMIs. The problem of the robust stability analysis of neural networks

with time-varying delay with norm-bounded uncertainties are proposed in [33].

The stability condition is given in terms of a LMI.

1. Uncertainty

1.1 Polytopic Uncertainty

In [29], Domingos C. W. Ramos and Pedro L. D. Peres have studied the robust

stability of discrete-time linear parameter dependent (LPD) system of the form

x(k + 1) = A(α)x(k),
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where x(k) ∈ Rn and A(α) ∈ Rn×n belongs to a convex bounded (polytope type)

uncertain domain Ω, where

A(α) ∈ Ω, Ω =
{
A(α) =

N∑
i=1

αiAi,

N∑
i=1

αi = 1, αi ≥ 0
}
.

In [28], M. C. de Oliveira, J. Bernussou and J. C. Geromel have studied the

robust stability of the linear discrete-time uncertain system

xk+1 = A(α)xk,

where the dynamic matrix A(α) belongs to a convex polytopic set defined as

A :=
{
A(α) : A(α) =

N∑
i=1

αiAi,
N∑
i=1

αi = 1, αi ≥ 0
}
,

and they considered the linear discrete-time system

xk+1 = A(α)xk +B(β)uk,

where the dynamic matrix A(α) belonging to A and B(β) is in convex polytope

defined by

B :=
{
B(β) : B(β) =

M∑
i=1

βiBi,
M∑
i=1

βi = 1, βi ≥ 0
}
.

Furthermore, Y. He, Q.-G. Wang and W.-X. Zheng [12], have studied the global

robust stability for delayed neural networks with polytopic type uncertainties.

ẋ(t) = −Ax(t) +W0g(x(t)) +W1g(x(t− τ(t))),

where x(·) = [x1(·), x2(·), . . . , xn(·)]T is the neuron state vector, g(x(·)) = [g1(x1(·))
, g2(x2(·)), . . . , gn(x(·))]T is the neuron activation function, the matricesA, W0 andW1

are uncertainties and satisfy real convex polytopic :[
A W0 W1

]
∈ Ω,

Ω :=

{[
A(ξ) W0(ξ) W1(ξ)

]
=

N∑
i=1

ξi
[
Ai W0i W1i

]
,

N∑
i=1

ξi = 1, ξi ≥ 0

}
,

where Ai = diag{a1i, . . . , ani}, i = 1, . . . , N are diagonal matrices, W0i,W1i, i =

1, . . . , N are constant matrices, the delay τ(t) satisfies

τ̇(t) ≤ d < 1,
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where d is a constant , gj(·), j = 1, . . . , n, satisfies the following condition:

0 ≤ gj(xj)

xj

≤ µj, gj(0) = 0, ∀xj ̸= 0, j = 1, . . . , n.

1.2 Norm-bounded Uncertainties

In [33], H. Zhang and X. Liao have studied the robust stability analysis of neural

networks with time-varying delay. They considered the following discrete-time

neural networks model

ẋ(t) = −(A+∆A)x(t) + (W +∆W )g(x(t)) + (W1 +∆W1)g(x(t− τ(t))),

where x(t) = [x1(t), . . . , xn(t)]
T is the neuron state vector, A = diag(a1, . . . , an)

is a positive diagonal matrix, W and W1 are interconnection weight matrices and

τ(t) denotes the time-varying delay satisfying τ̇(t) ≤ d < 1 where d is constant,

∆A,∆W and ∆W1 are parametric uncertainties and g(x) = [g1(x1), . . . , gn(xn)]

denotes the neuron activation function and satisfies 0 ≤ gj(xj)

xj

≤ k,

gj(0) = 0, ∀xj ̸= 0, j = 1, . . . , n. The uncertainties ∆A,∆W and ∆W1 are

defined by

∆A = H0F0E0, ∆W = HFE and ∆W1 = H1F1E1,

whereH0, H,H1, E0, E and E1 are known constant matrices of appropriate dimen-

sions, and F0, F, F1 are unknown matrices (the parameter uncertainty) satisfying

F T
0 F0 < I, F TF < I, F T

1 F1 < I,

where I is the identity matrix.

In [22], Y. Liu, Z. Wang, and X. Liu have studied the robust stability of discrete-

time stochastic neural networks with time-varying delays. They considered, on a

probability space (Ω,F ,P), the following discrete-time stochastic neural networks

(DSNNs) with time-varying delays of the form

x(k + 1) =(A+∆A(k))x(k) + (B +∆B(k))G(x(k)) + (D +∆D(k))H(x(k − τ(k)))

+ σ(x(k), x(k − τ(k)), k)w(k), (1.1)

where x(k) = (x1(k), x2(k), . . . , xn(k))
T ∈ Rn is the neural state vector, the

positive integer τ(k) denotes the time-varying delay satisfying

τm ≤ τ(k) ≤ τM , k ∈ N,

where τm and τM are known positive integers. The diagonal matrix A = diag(a1,

a2, . . . , an) is real constant diagonal with entries |ai| < 1, B = [bij]n×n and

D = [dij]n×n are connection weight matrices and the discretely delayed connection
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weight matrix, respectively; Whereas the time-varying matrices ∆A(k), ∆B(k)

and ∆D(k) represent the time-varying parameter uncertainties satisfying

[∆A(k) ∆B(k) ∆D(k)] = MF (k)[N1 N2 N3],

where M and Ni (i = 1, 2, 3) are known real constant matrices, and F (k) is the

unknown time-varying matrix-valued function subject to the following condition:

F T (k)F (k) ≤ I ∀k ∈ N+.

In DSNNs (1.1), w(k) is a scalar Wiener process (Brownian Motion) on (Ω,F ,P)

with

E[w(k)] = 0, E[w2(k)] = 1, E[w(i)w(j)] = 0(i ̸= j),

and σ : Rn × Rn × R → Rn is a continuous function satisfying

σT (x, y, k)σ(x, y, k) ≤ ρ1x
Tx+ ρ2y

Ty, x, y ∈ Rn,

where ρ1 > 0 and ρ2 > 0 are known constant scalars, and G(x(k)) = [g1(x1(k))

, g2(x2(k)), . . . , gn(xn(k))]
T and H(x(k)) = [h1(x1(k)), h2(x2(k)), . . . , hn(xn(k))]

T

denote the neuron activation functions.

Motivated by these results, we are studied the robust stability problem of

discrete-time and discrete-time stochastic neural networks with time-varying de-

lay. The advantages of our study are

(i) There are norm-bounded uncertainties, polytopic type uncertainties and

stochastic perturbation in our study.

(ii) If we consider discrete-time neural networks with time-varying delay with-

out norm-bounded uncertainties and without polytopic uncertainties, then

we obtain a result of [20] as our corollary.

In the past few years, many researchers have studied on the asymptotic sta-

bility of the generalized difference equations, see [4, 6, 18, 19, 31, 35, 37]. In

[4], L. Berezansky, E. Broverman and E. Liz have derived sufficient conditions

for the global stability by using discrete type inequalities. N. S. Bay and V. N.

Phat [6], have studied new stability conditions are given for nonlinear difference

equations on the assumption that the nonlinear part satisfies certain discrete type

inequalities. In [37], authors have considered the problem of asymptotic stability

of discrete-time interval system with delay. A sufficient condition is given by

means of the inequality techniques.

2. Discrete type Inequalities

In [18], E. Liz and J. B. Ferreiro have studied the global stability of generalized

difference equation

∆xn = f(n, xn, xn−1, . . . , xn−r), n ∈ N,
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where ∆xn = xn+1 − xn, and f : N × Rr+1, and they considered the following

generalized difference equation :

∆xn = −axn + f(n, xn, xn−1, . . . , xn−r), a > 0.

In [19], E. Liz, A. F. Ivanov and J. B. Ferreiro have studied discrete halanay-type

inequalities and applications. They considered the following inequalities:

∆un ≤ −Aun +Bũn + Cvn +Dv̂n, n ≥ 0

un ≤ (1− A)nu0 +
n−1∑
i=0

(1− A)n−i−1[Bũi + Cvi +Dv̂i], n ≥ 0,

vn ≤ Evn + Fũn, n ≥ 0,

where ∆un = un+1 − un, ũn = max{un, . . . , un−r}, v̂n = max{vn−1, . . . , vn−r},
r ≥ 1, and A,B,C,D,E, F are real constants.

In [35], Q. Zhang, X. Wei and J. Xu have studied the global exponential stability

of discrete-time hopfield neural networks with time-varying of the following form

y(n+ 1) = Cy(n) + Ag(y(n)) +Bg(y(n− κ(n))),

where y(n) = [y1(n), . . . , ym(n)]
T ∈ Rm is the state vector, κ(n) is the transmis-

sion delay satisfying 0 ≤ κ(n) ≤ κ (κ is a constant) , g(x(n)) = [g1(x1(n)), . . . ,

gm(xm(n))]
T ∈ Rm is the activation function of the neuron, where gj(·), j =

1, . . . ,m satisfies

|gj(ξj)| ≤ Lj|ξj|.

Motivated by these results, we are investigated the discrete type inequalities and

global stability of discrete-time with time-varying delays. The advantages of our

results are

(i) There are multiple time-varying delays in our study. In the case that there

is only one time-varying delay, we obtain a result in [35] as our corollary.

(ii) In our results, the discrete type inequality is less conservative than the

discrete Halanay type inequality in [18] for the case of positive sequences.

In the past decades, several authors have studied the robust H∞ filtering

problem for uncertain discrete-time system with time-varying delay, see [10, 14,

17, 21, 36]. In [17], authors have investigated the delay-dependent robust H∞

filtering for uncertain discrete-time singular systems with interval time-varying

delay in which the uncertainty is of polytopic type. They have considered the

design of a linear robust H∞ filter such that the resulting filtering error singular

system is regular, causal, and asymptotically stable with a H∞ norm-bounded.
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Y. Liu, Z. Wang, and X. Liu [21], have studied robust H∞ filtering for discrete

nonlinear stochastic systems with time-varying delay. By using Lyapunov stabil-

ity theory, they have obtained conditions for H∞ filter in terms of the solution

to a linear matrix inequality. In [8], authors have derived H∞ filter for discrete-

time switched systems with time-varying delays. By using switched Lyapunov

functionals, a sufficient condition for the solvability of this problem is obtained in

terms of LMIs. In [25], authors have proposed delay-dependent H∞ filtering of a

class of switched discrete-time state delay systems. By using switched Lyapunov

functionals, sufficient conditions for the solvability of this problem are obtained

in terms of LMIs.

3. H∞ filtering problem

In [10], X.-M. Zhang and Q.-L. Han have studied H∞ filter design for discrete-

time systems with sector-bounded nonlinearities described as
x(k + 1) = Ax(k) + Ff(x(k)) +Bω(k)

y(k) = Cx(k) +Hh(x(k)) +Dω(k)

z(k) = Lx(k),

(1.2)

where x(k) ∈ Rn is state vector, ω(k) ∈ Rr is the disturbance input, which is

assumed to belong to L2[0,∞], z(k) ∈ Rq is the regulated output, and y(k) ∈ Rp

is the measured output. The system matrices A,F,B,C,H,D and L are known

constant matrices of appropriate dimensions. The known functions f(x(k)) and

h(x(k)) are the vector-valued nonlinear functions.

Assumption 1. The vector-valued nonlinear functions f(·) and h(·) are assumed

to satisfy the following sector-bounded conditions:{
[f(x)− f(y)−M1η]

T [f(x)− f(y)−M2η] ≤ 0,

[h(x)− h(y)−M1η]
T [h(x)− h(y)−M2η] ≤ 0,

where η = x − y, ∀x, y ∈ Rn, M1,M2 ∈ Rn×n, N1, N2 ∈ Rn×n are known

constant matrices, and

f(0) = 0, g(0) = 0.

The sensor outage cases are considered as follows

yFij(k) = (1− ρji )yi(k), 0 ≤ ρji ≤ ρji ≤ ρji ≤ 1

i = 1, . . . , p, j = 1, . . . , L,

where ρji is an unknown constant, ρji and ρji represent the lower and upper bounds

of ρji , respectively. Denote

yFj (k) = [yF1j(k), y
F
2j(k), . . . , y

F
pj(k)]

T = (I − ρj)y(k),
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where ρj = diag{ρj1, ρ
j
2, . . . , ρ

j
p} and j = 1, . . . , L. The scaling factors ρj satisfy

Nρj = {ρj|ρj = diag{ρj1, ρ
j
2, . . . , ρ

j
p} ∈ Rp,

0 ≤ ρji ≤ ρji ≤ ρji ≤ 1 i = 1, 2, . . . , p}.

A uniform sensor failure model is given by

yF (k) = (I − ρ)y(k), ρ ∈ {ρ1, ρ2, . . . , ρL}, (1.3)

where ρ can be described by ρ = diag{ρ1, ρ2, . . . , ρp}.
Then, system (1.2) with sensor failure (1.3) is described by

x(k + 1) = Ax(k) + Ff(x(K)) +Bω(k)

yF (k) = (1− ρ)(Cx(k) +Hh(x(k)) +Dω(k))

z(k) = Lx(k).

(1.4)

The reliable filter is of the form{
x̂(k + 1) = Af x̂(k) +Bfy

F (k) + Fff(x̂(k))

ẑ(k) = Cf x̂(k),
(1.5)

where x̂(k) ∈ Rn is the filter state, ẑ ∈ Rq is the estimation of z(k), Af , Bf , Cf

and Ff are the filter parameter matrices to be designed.

Applying filter (1.5) to system (1.4), we obtain the filtering error system:{
ξ(k + 1) = Āξ(k) + Āf1f(K1ξ(k)) + Āf2f(K2ξ(k)) + Āhh(K1ξ(k)) + B̄ω(k)

e(k) = C̄ξ(k),
(1.6)

where ξ(k) =

[
x(k)

x̂(k)

]
, K1 =

[
I 0

]
, K2 =

[
0 I

]
, e(k) = z(k) − ẑ(k) is

estimation error, and

Ā =

[
A 0

Bf (I − ρ)C Af

]
, Āf1 =

[
F

0

]
, Āf2 =

[
0

Ff

]
, Āh =

[
0

Bf (I − ρ)H

]
,

B̄ =

[
B

Bf (I − ρ)D

]
and C̄ =

[
L −Cf

]
.

We denote the filtering error system without sensor failures, i.e., ρ = 0, as follows:{
ξ(k + 1) = Āξ(k) + Āf1f(K1ξ(k)) + Āf2f(K2ξ(k)) + Āhh(K1ξ(k)) + B̄ω(k)

e(k) = C̄ξ(k),
(1.7)

where

Ā =

[
A 0

BfC Af

]
, Āf1 =

[
F

0

]
, Āf2 =

[
0

Ff

]
, Āh =

[
0

BfH

]
,

B̄ =

[
B

BfD

]
and C̄ =

[
L −Cf

]
.
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The objective is to develop a filter of the form (1.5) such that the filtering error

systems (1.6) and (1.7) satisfy the following requirements:

(1) While there is no exogenous disturbance, i.e., ω(k) = 0, the filtering error

system (1.6) and (1.7) are asymptotically stable.

(2) For given constants γf > γη > 0, find filter (1.5) such that

(a) The filtering error system (1.6) in the normal case, i.e., ρ = 0, (1.7)

has a prescribed level γη of H∞ performance, In other words, under

the zero initial condition, ∥e∥2 < γη∥ω∥2 is satisfied for any nonzero

ω ∈ l2,

(b) The filtering error system (1.6) in the sensor failure case, i.e., ρ ∈
{ρ1, ρ2, . . . , ρp} with ρj ∈ Nρj , j = 1, . . . , L, has a prescribed level γf
of H∞ performance, In other words, under the zero initial condition,

∥e∥2 < γf∥ω∥2 is satisfied for any nonzero ω ∈ l2.

In [36], X.-M. Zhang and Q.-L. Han have studied robustH∞ filtering for uncertain

discrete-time systems with time-varying delay of the following from
x(k + 1) = A0x(k) + A1x(k − h(k)) +B1ω(k)

y(k) = C0x(k) + C1x(k − h(k)) +B2ω(k)

z(k) = L0x(k) + L1x(k − h(k)) +B3ω(k)

x(k) = ϕ(k), k = −ĥ,−ĥ+ 1, . . . , 0,

(1.8)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rm is the measured output, z(k) ∈ Rp

is signal to be estimated, ω(k) ∈ Rq is assumed to be an arbitrary noise signal

belonging to l2, ϕ(k), k = −ĥ,−ĥ + 1, . . . , 0 is a known given initial condition

sequence, and h(k) is time-varying delay satisfying

0 < h ≤ h(k) ≤ h̄ < ∞, k = 1, 2, . . . .

where h̄, h are known constants. The system matrices belong to a convex set

χ := (A0, A1, B1, C0, C1, B2, L0, L1, B3) ∈ Ω, (1.9)

where

Ω :=

{
χ|χ =

r∑
i=1

ρiχi,

r∑
i=1

ρi = 1, ρi ≥ 0

}
,

with χi := (A0i, A1i, B1i, C0i, C1i, B2i, L0i, L1i, B3i). They designed a full order

filter with state-space of the following form:{
x̂(k + 1) = Af x̂(k) +Bfy(k), x̂(0) = 0

ẑ(k) = Cf x̂(k) +Dfy(k),
(1.10)
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where constant matrices Af ∈ Rn×n, Bf ∈ Rn×m, Cf ∈ Rp×n and Df ∈
Rp×m are filter parameters to be determined. Defining the state vector x̄(k) :=

[xT (k), x̂T (k)]T and the estimation error z̄(k) := z(k) − ẑ(k), one obtains the

following filtering system:
x̄(k + 1) = Ā0x̄(k) + Ā1Ex̄(k − h(k)) + B̄1ω(k)

z̄(k) = L̄0x̄(k) + L̄1Ex̄(k − h(k)) + B̄3ω(k)

x̄(k) = [ϕ(k), 0]T k = −h̄,−h̄+ 1, . . . , 0,

(1.11)

where Ā0 =

[
A0 0

BfC0 Af

]
, E =

[
I 0

]
, Ā1 =

[
A1

BfC1

]
, B̄1 =

[
B1

BfB2

]
,

L̄0 =
[
L0 −DfC0 −Cf

]
, L̄1 = L1 −DfC1 , B̄3 = B3 −DfB2.

The purpose of this paper is to design a robust filter of the form (1.10) such that

the system (1.11) has a prescribedH∞ performance for all uncertainties satisfying

(1.9), namely

1) System (1.11) with ω(k) = 0 is asymptotically stable.

2) System (1.11) has a prescribed level γ of H∞ noise attenuation, i.e., under

the zero initial condition, ∥z̄∥2 < γ∥ω∥2 is satisfied for any nonzero ω ∈ l2.

Motivated by these results, we are interested in the H∞ filtering problem of

the nonlinear discrete-time system time-varying delay. The advantages of our

study are

(i) There are nonlinear perturbations in our study.

(ii) The time delay is time-varying.

(iii) We require less free matrix variable than some existing results such as [14].

It is noted that the former has more matrix variables than our results.

Therefore, our results are less conservative than these in some existing

results.

It is our future investigation to propose the robust H∞ filtering problem for

nonlinear discrete-time neural networks with polytopic types uncertainties and

with time-varying delay.

This thesis is organized in six chapters that are structured as follows:

Chapter 1
The first chapter is a literature of general introduction of neural networks and

the stability analysis problem is recalled in order to concepts that are necessary

to the comprehension of our work and we present the structure of the thesis.

Chapter 2
In this chapter, we give some important notations mathematical definition and
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we show some general concepts of stability, definitions and lemmas because it

will be recalled.

Chapter 3
This chapter, we study the robust stability of discrete-time LPD and discrete-time

stochastic LPD neural networks with time-varying delay. Based on Lyapunov sta-

bility theory and the S-procedure, we derive robust stability criteria in terms of

linear matrix inequalities which are solvable by several available algorithms. Nu-

merical examples are given to illustrate the effectiveness of our theoretical results.

Chapter 4
In this chapter, we introduce discrete type inequalities. Based on these inequal-

ities, we derive new global stability conditions of nonlinear difference equations

and presents a new approach to the global stability of discrete-time with time-

varying delays. A numerical example is provide to demonstrate the effectiveness

of the proposed designs.

Chapter 5
In chapter 5, we investigate the problem of H∞ filter for discrete-time neural

networks with time-varying delays. Based on Lyapunov stability theory and the

S-procedure, we derive criteria in terms of linear matrix inequalities. Numerical

examples are given to illustrate the effectiveness of our theoretical results.

Chapter 6
In the last chapter we provide a summary of our results.




