Chapter 2

Preliminaries and basic concepts

In this chapter, we give some basic definitions, notations, lemmas and
results which will be used in the later chapters.

2.1 Notations

The following notations that will be used in this thesis.

R™ denote the n dimensional Euclidean space,
R™ ™ denote the set of all n x m real matrices,
R™ denote the set of positive real numbers,

Ry denote the set of nonnegative real numbers,

7 denote the set of integers,

27" ={z€Z:z>—r},
[M,N]:=={M,M+1,...,N}, where M < N € Z
|lz|| denote the Euclidean norm of vector =,
diag{-} denote the block diagonal matrix,

I denote the identity matrix,

AT denote the transpose of matrix A,

A~ denote the inverse of matrix A,

{A B

x C

A < B denote the A — B matrix is a square symmetric negative definite matrix,

] — % represents the symmetric form of matrix, namely * = BT,

det(A) denote determinant of the square matrix A.
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2.2 Types of matrix

Definition 2.2.1 (Symmetric matrix) A real n x n matrix A is called symmetric
if
AT = A,

Definition 2.2.2 (Positive Definite Matrix)A real n x n matrix A is called positive
definite if
T Az > 0,

for all nonzero vectors x € R". It is called positive semidefinite if
T Az > 0.

Definition 2.2.3 (Negative Definite Matrix) A real n x n matrix A is called neg-
ative definite if
T Az < 0,

for all nonzero vectors x € R". It is called negative semidefinite if
zT Az <0.
The follows result are well known.

Lemma 2.2.4 A symmetric matrix is positive semidefinite (definite) matrix if all
of its eigenvalues are nonnegative (positive).

Lemma 2.2.5 A symmetric matrix is negative semidefinite (definite) matrix if all
of its eigenvalues are nonpositive (negative).

2.3 Several discrete-time neural networks system with
time-varying delay

1. Discrete-time LPD and stochastic LPD neural networks with time-varying
delay

We propose to study the robust stability problem of uncertain discrete-time neu-
ral networks with time-varying delay of the form

2(k+1) = —[AE)+AAJz(k)+[W () +AW]Sf (x(k))+ W1 (§)+AWA]g(x(k—T(k))),
(2.1)
and uncertain stochastic discrete-time neural networks with time-varying delay:

w(k+1) = = [A(&) + AAR)]z (k) + V(&) + AW (F)]f (2(F)) + W1 (E)
+ AW (K)lg(z(k = 7(k))) + o(x(k), 2(k — 7(k)), K)w(k),  (2.2)
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where z(k) = [z1(k),z2(k),...,x,(k)] is the state vector, 7(k) is a positive
integer denotes the time-varying delay satisfying
7 < 7(k) < 7

where 77 > 0 and 75 > 0 are known integers, A(§), W (&) and Wy () (the inter-
connection matrices) are of polytopic types where

[A() W) W] €9,

0= {[A(f) W(¢) Wl(f)} :i@ (A W, Wy, ifi =1 &2 0},
y \ (2.3)

where A;, W; and Wj; are known constant matrices and AA, AW and AW, are
uncertain matrices which are of the form

AA = H()F()Eo, AW = HFFE and AWl = H1F1E1, (24)

where Hy, H, H,, Ey, F and E; are known constant matrices F, F' and F} are
unknown matrices which satisfy

FIFy<I, FFF<Tand FI'F, <1, (2.5)

where [ is the identity matrix of appropriate dimension, w(k) is a scalar Wiener
process (Brownian Motion) on (€2, F,P) with

Elw(k)] =0, E[w?(k)] =1, E[w(i)w(j)] = 0 (i # ) (2.6)
and 0 : R" x R" x R — R" is a continuous function, and is assumed to satisfy
ol (x,y,k)o(z,y, k) < pa’z + poy’y, x,y €R", (2.7)
where p; > 0 and p, > 0 are known constant scalars.
2. Discrete-time neural networks with time-varying delays

We propose to study the global exponential stability for discrete-time neural
networks with time-varying delays:

z(k+1) = Cz(k) + Ag(x Z 7;(k))), (2.8)

where x(k) = xl(k), :cg( )s .-, xn (k)] is the state vector, g;(z;(+)) = {g1(z1(+)), .
gn(zn(:))}, 7=1,2,....n and the transformed activation functions satisfy the
conditions

|95(2)] < Ly,
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and 7;(k) is a positive integer denotes the time-varying delay satisfying
0 <7(k) <75,
where 7; is known positive integer.

3. H, filter for nonlinear discrete-time neural networks with time-varying
delay

We propose to study the H,, filtering problem of discrete-time neural networks
with time-varying delay of the form:

w(k+1) = Ave(k) + Ao f (2(F)) + Asg((k — 7(k))) + Bw (k)
(k) = Ciz(k) + Cof (x(k)) + Cag(x(k — 7(k))) + Dw(k)
(
(

<

B) = Kax(k) + Kof(e(k) + Koglalk — 7(k))) + Goo(h) (29)

k’) ( )7 k:—TQ,TQ—f—L...,O,

z
X

where z(k) € R" is the neuron state vector, y(k) € R™ is the measurement vector,
the noise signal vector w(k) € R? belongs to I3[0, +00), 7(k) is time-varying delay
satisfying

n < 7(k) < 7, (2.10)
where 1, 75 > 0 are known integers, Ay, Ay, A3, B, C1, Cy, C3, D, K, Ky, K3
and G are the constant matrices with appropriate dimensions (the interconnection
matrices) and the activation function f;(-) i = 1,...,n and ¢;(-) i = 1,...,n
satisfy the following conditions

- _ L) = fily) _ s .

l] Sx—_yglj \V’x,yER,x#y,jzl,Z,...,n, (2].].)

~_gi@)=gily) _ ”

ngvgvj Ve, yeR, x £y, j=1,2,...,n, (2.12)
where [, l;“, vy, U;_, j=1,2,...,n are known constants.

2.4 Preliminaries

2.4.1 Autonomous systems

Consider the autonomous system of difference equation of the form
z(k+1) = f(x), z(ko) = w0, (2.13)

where x e R" | x; =z4(k) , i=1,2,...,n, k>ko ,k€ZT
and f = (f1, fo, -, fu) *Z x R* - R™.
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Definition 2.4.1 A point z is called an equilibrium point of equation (2.13) if
f(z) =z for all k > kq. For all purposes of the stability theory we can assume
that 0 is an equilibrium of (2.13).

Definition 2.4.2 [16] The equilibrium point 2* = 0 of the system (2.13) is

(i) stable at k = ko if Ve > 0, 36 = 6(e) > 0 such that

[zoll <6 = [zl <€, VEk = ko;

(ii) wunstable if not stable at k = kg, that is Je > 0 such that, ¥é > 0 so that
|lzol] < 6 = ||z(k1)|| > €, Tko > 0.

If this holds for every x¢ in ||zg|| < ¢ the equilibrium point is completely
unstable ;

(i) asymptotically stable if x* = 0 is stable and 3§(kg) such that

|zo]| < 6 = lim z(k) = 0;
k—o0

(iv) exponentially stable if there exist three positive real constants ¢, K and A
such that

lz(k) | < Kllzolle ™ *75), Vjaol| <€, k> ko;

The largest constant A which may be utilized in above inequality is called
the rate of convergence.

(v) globally asymptotically stable if z* = 0 is stable and Vxy, € R"

lim z(k) = 0.

k—o0

Definition 2.4.3 (Lyapunov Function [16]) Let D be a domain R such that 0 € D
VD CR" — R, we say that V(z) is a Lyapunov function of system (2.13) if
the following conditions hold :

(1) V(x) is continuous on D C R™.
(2) V(z) is positive definite such that V(0) = 0 and V(z(k)) > 0 for z(k) # 0.

(3) AV (x(k )) V(x(k + 1)) — V(x(k)) is negative semidefinite such that
AV (0) = 0 and AV (z(k)) <0 for z(k) # 0.
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Theorem 2.4.4 [16] Let * = 0 be the equilibrium point of the system (2.13) and
D be a domain R™ such that 0 € D. Let V(z(k)) : D C R" — R be a continuous
function, such that

V(0)=0 and V(z(k))>0in D — {0},
AV (z(k)) <0in D — {0}.

Then, x* = 0 is stable. Moreover, if
AV (xz(k)) < 0in D — {0},
then z* = 0 is asymptotically stable.

Theorem 2.4.5 [16] Let 2* = 0 be the equilibrium point of the system (2.13) and
D be a domain R™ such that 0 € D. Let V(z(k)) : D C R" — R be a continuous

function, such that

V(0) =0 and V(z(k)) > 0 in Vz # 0,
||| = 00 = V(z(k)) — oo,
AV (z(k)) <0, Vx #0,

then z* = 0 is globally asymptotically stable.

2.4.2 Nonautonomous systems

Consider the nonautonomous system of difference equation of the form
v(k+1) = f(k,x(k)), (k) =mo and f(k,0)=0, k€Z%, k>ky (2.14)

where x € R", x; = x;(k) , i=1,2,....,.n, k> ko, k€ Z"
and f = (fi, far o, fa) : Z X R* =5 R™.

Definition 2.4.6 A point Z is called an equilibrium point of equation (2.14) if
f(k,z) =z for all k > kq. For all purposes of the stability theory we can assume
that 0 is an equilibrium of (2.14).

Definition 2.4.7 [16] The equilibrium point z* = 0 of the system (2.14) is

(i) stable at k = kq if Ve > 0, 30 = d(ko, €) > 0 such that

lz(Ro) | < & = llz(k)| <& Vk=ko>0;

(ii) wunstable if not stable ;
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(iii) asymptotically stable if x* = 0 is stable and 3§(ky) > 0 such that

lz(ko)l| < 6 = lim 2(k) = 0:
k—o0

(iv) exponentially stable if there exist three positive real constants ¢, K and A
such that

lz (k)| < Kllwolle™*75), - Vjzol| <, k> ko;

The largest constant A which may be utilized in above inequality is called
the rate of convergence.

(v) globally asymptotically stable if z* = 0 is stable and Vay, € R"

lim z(k) = 0.

k—o0

Definition 2.4.8 (Lyapunov Function) Let D be a domain R™ such that 0 € D
V : D CR" — R, we say that V(z) is a Lyapunov function of system (2.13) if
the following conditions hold :

1) V(k, z

(
(2) V(k, x(k)) is positive definite such that V(0) = 0 and V(k, z(k)) > 0 for
z(k) #0

(3) AV(k, z(k)) =
such that AV(0,

k)) is continuous on D C R™.

V(k 1, z(k+ 1)) — V(k, xz(k)) is negative semidefinite
0) = nd AV (k, z(k)) < =X |lz(k)||*, for some A > 0.

Definition 2.4.9 [16] (Robustly Stable) Consider the system

r(k+1)=(A+ AA)f(k,z(k)), z(ko) =z and f(k,0)=0, k€ Z", k> ko,
(2.15)

where A = {a;;} € R™", AA is uncertain matrix. The system (2.15) is said to
be robustly stable if for all AA which is the form AA = HFFE, where H and F
are known constant matrices and F' is unknown matrix satisfying F7F < I, 0is

AS.

Definition 2.4.10 [16] The zero solution of discrete-time system (2.1) and (2.2)
with AA = AW = AW, = 0, is asymptotically stable if there exists a positive
definite scalar function V(k, x(k)) : R™ x R" — R such that

AV(k, z(k) = V(k+1, 2(k+ 1)) — V(k 2(k)) <0,

along any trajectory of solution of the system.
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Definition 2.4.11 [27] The discrete-time system (2.1) and (2.2) is robustly stable
if there exists a positive definite scalar function V' (k, z(k)) : Rt x R" — R such
that

AV (k, x(k)=V(k+1, z(k+1))—V(k, x(k)) <0,

along the solution of the system for all uncertainties which satisfy (2.3), (2.4)
and (2.5).

Definition 2.4.12 [20] The discrete-time system (2.1) and (2.2) is robustly expo-
nentially stable if there exists x > 0 and 0 < a < 0 such that every solution of
the system (2.1) satisfies

< kat ' > 0.
lz(k)l| < Ko™ _max Hlz(s)l , k=0
Definition 2.4.13 The discrete-time system (2.2) is robustly stable in the mean

square if there exists a positive definite scalar function V(k, z(k)) : Rt xR® — R
such that

E{AV(k, z(k))} =E{V(k+1, z(k+1)) - V(k, z(k))} <0,

along any trajectory of solution of the system for all uncertainties which satisfy
(2.3), (2.4) and (2.5).

Definition 2.4.14 [35] The solution of (2.8) is globally exponentially stable if for
any solution z(k, ¢;) with the initial condition x;(l) = ¢;(l) for [ € [—7y, 0] from
R™ there exist constant € € (0,1) and D > 1 such that

[z(k)]| < Dljglle" ¥n <0,

where ||¢[| = maxie—r,, o {[[6(1)][}.

The following Lemmas will be used throughout this thesis.

Lemma 2.4.15 (Schur Complement [5]) Given constant symmetric matrices @, S
and R € R™" where R(z) > 0, Q(z) = QT (z) and R(x) = R (x), we have

{ Qz)  S(=)

ST(@) Rl <0F U@ -S@ET@S () <0

Lemma 2.4.16 (S-procedure [5]) Let 7; € R™™ (i = 1,2,...,p) be matrices.
The conditions on T; (i = 1,2,...,p),

¢(T"Ty¢ >0, V¢ #0suchthat ¢(PT;¢ >0 (i=1,2,...,p),
hold if there exist 7; > 0 (i = 1,2,...,p) such that

p
TO_ZTZ'E > 0.

=1





