
Chapter 2

Preliminaries and basic concepts

In this chapter, we give some basic definitions, notations, lemmas and

results which will be used in the later chapters.

2.1 Notations

The following notations that will be used in this thesis.

Rn denote the n dimensional Euclidean space,

Rn×m denote the set of all n×m real matrices,

R+ denote the set of positive real numbers,

R+
0 denote the set of nonnegative real numbers,

Z denote the set of integers,

Z−r := {z ∈ Z : z ≥ −r},
[M,N ] := {M,M + 1, . . . , N}, where M < N ∈ Z
∥x∥ denote the Euclidean norm of vector x,

diag{·} denote the block diagonal matrix,

I denote the identity matrix,

AT denote the transpose of matrix A,

A−1 denote the inverse of matrix A,[
A B

∗ C

]
− ∗ represents the symmetric form of matrix, namely ∗ = BT ,

A < B denote the A−B matrix is a square symmetric negative definite matrix,

det(A) denote determinant of the square matrix A.
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2.2 Types of matrix

Definition 2.2.1 (Symmetric matrix) A real n× n matrix A is called symmetric

if

AT = A.

Definition 2.2.2 (Positive Definite Matrix)A real n×n matrix A is called positive

definite if

xTAx > 0,

for all nonzero vectors x ∈ Rn. It is called positive semidefinite if

xTAx ≥ 0.

Definition 2.2.3 (Negative Definite Matrix) A real n× n matrix A is called neg-

ative definite if

xTAx < 0,

for all nonzero vectors x ∈ Rn. It is called negative semidefinite if

xTAx ≤ 0.

The follows result are well known.

Lemma 2.2.4 A symmetric matrix is positive semidefinite (definite) matrix if all

of its eigenvalues are nonnegative (positive).

Lemma 2.2.5 A symmetric matrix is negative semidefinite (definite) matrix if all

of its eigenvalues are nonpositive (negative).

2.3 Several discrete-time neural networks system with

time-varying delay

1. Discrete-time LPD and stochastic LPD neural networks with time-varying

delay

We propose to study the robust stability problem of uncertain discrete-time neu-

ral networks with time-varying delay of the form

x(k+1) = −[A(ξ)+∆A]x(k)+[W (ξ)+∆W ]f(x(k))+[W1(ξ)+∆W1]g(x(k−τ(k))),

(2.1)

and uncertain stochastic discrete-time neural networks with time-varying delay:

x(k + 1) =− [A(ξ) + ∆A(k)]x(k) + [W (ξ) + ∆W (k)]f(x(k)) + [W1(ξ)

+ ∆W1(k)]g(x(k − τ(k))) + σ(x(k), x(k − τ(k)), k)w(k), (2.2)
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where x(k) = [x1(k), x2(k), . . . , xn(k)] is the state vector, τ(k) is a positive

integer denotes the time-varying delay satisfying

τ1 ≤ τ(k) ≤ τ2,

where τ1 ≥ 0 and τ2 ≥ 0 are known integers, A(ξ), W (ξ) and W1(ξ) (the inter-

connection matrices) are of polytopic types where[
A(ξ) W (ξ) W1(ξ)

]
∈ Ω,

Ω =
{[

A(ξ) W (ξ) W1(ξ)
]
=

N∑
i=1

ξi
[
Ai Wi W1i

]
,

N∑
i=1

ξi = 1, ξi ≥ 0
}
,

(2.3)

where Ai, Wi and W1i are known constant matrices and ∆A, ∆W and ∆W1 are

uncertain matrices which are of the form

∆A = H0F0E0, ∆W = HFE and ∆W1 = H1F1E1, (2.4)

where H0, H, H1, E0, E and E1 are known constant matrices F0, F and F1 are

unknown matrices which satisfy

F T
0 F0 ≤ I, F TF ≤ I and F T

1 F1 ≤ I, (2.5)

where I is the identity matrix of appropriate dimension, w(k) is a scalar Wiener

process (Brownian Motion) on (Ω,F ,P) with

E[w(k)] = 0, E[w2(k)] = 1, E[w(i)w(j)] = 0 (i ̸= j) (2.6)

and σ : Rn × Rn × R → Rn is a continuous function, and is assumed to satisfy

σT (x, y, k)σ(x, y, k) ≤ ρ1x
Tx+ ρ2y

Ty, x, y ∈ Rn, (2.7)

where ρ1 > 0 and ρ2 > 0 are known constant scalars.

2. Discrete-time neural networks with time-varying delays

We propose to study the global exponential stability for discrete-time neural

networks with time-varying delays:

x(k + 1) = Cx(k) + Ag(x(k)) +
M∑
j=1

Bjg(x(k − τj(k))), (2.8)

where x(k) = [x1(k), x2(k), . . . , xn(k)] is the state vector, gj(xj(·)) = {g1(x1(·)), . . . ,
gn(xn(·))}, j = 1, 2, . . . , n and the transformed activation functions satisfy the

conditions

|gj(x)| ≤ Lj|x|,
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and τj(k) is a positive integer denotes the time-varying delay satisfying

0 ≤ τj(k) ≤ τj,

where τj is known positive integer.

3. H∞ filter for nonlinear discrete-time neural networks with time-varying

delay

We propose to study the H∞ filtering problem of discrete-time neural networks

with time-varying delay of the form:
x(k + 1) = A1x(k) + A2f(x(k)) + A3g(x(k − τ(k))) +Bω(k)

y(k) = C1x(k) + C2f(x(k)) + C3g(x(k − τ(k))) +Dω(k)

z(k) = K1x(k) +K2f(x(k)) +K3g(x(k − τ(k))) +Gω(k)

x(k) = ϕ(k), k = −τ2, τ2 + 1, . . . , 0,

(2.9)

where x(k) ∈ Rn is the neuron state vector, y(k) ∈ Rm is the measurement vector,

the noise signal vector ω(k) ∈ Rq belongs to l2[0,+∞), τ(k) is time-varying delay

satisfying

τ1 ≤ τ(k) ≤ τ2, (2.10)

where τ1, τ2 ≥ 0 are known integers, A1, A2, A3, B, C1, C2, C3, D, K1, K2, K3

andG are the constant matrices with appropriate dimensions (the interconnection

matrices) and the activation function fi(·) i = 1, . . . , n and gi(·) i = 1, . . . , n

satisfy the following conditions

l−j ≤ fj(x)− fj(y)

x− y
≤ l+j ∀x, y ∈ R, x ̸= y, j = 1, 2, . . . , n, (2.11)

v−j ≤ gj(x)− gj(y)

x− y
≤ v+j ∀x, y ∈ R, x ̸= y, j = 1, 2, . . . , n, (2.12)

where l−j , l+j , v−j , v+j , j = 1, 2, . . . , n are known constants.

2.4 Preliminaries

2.4.1 Autonomous systems

Consider the autonomous system of difference equation of the form

x(k + 1) = f(x), x(k0) = x0, (2.13)

where x ∈ Rn , xi = xi(k) , i = 1, 2, . . . , n , k ≥ k0 , k ∈ Z+

and f = (f1, f2, . . . , fn) : Z× Rn → Rn.
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Definition 2.4.1 A point x̄ is called an equilibrium point of equation (2.13) if

f(x̄) = x̄ for all k ≥ k0. For all purposes of the stability theory we can assume

that 0̄ is an equilibrium of (2.13).

Definition 2.4.2 [16] The equilibrium point x∗ = 0 of the system (2.13) is

(i) stable at k = k0 if ∀ϵ > 0, ∃δ = δ(ϵ) > 0 such that

∥x0∥ < δ ⇒ ∥x∥ < ϵ, ∀k ≥ k0;

(ii) unstable if not stable at k = k0, that is ∃ε > 0 such that, ∀δ > 0 so that

∥x0∥ < δ ⇒ ∥x(k1)∥ ≥ ϵ, ∃k0 > 0.

If this holds for every x0 in ∥x0∥ < δ the equilibrium point is completely

unstable ;

(iii) asymptotically stable if x∗ = 0 is stable and ∃δ(k0) such that

∥x0∥ < δ ⇒ lim
k→∞

x(k) = 0;

(iv) exponentially stable if there exist three positive real constants ϵ,K and λ

such that

∥x(k)∥ ≤ K∥x0∥e−λ(k−k0), ∀∥x0∥ < ϵ, k ≥ k0;

The largest constant λ which may be utilized in above inequality is called

the rate of convergence.

(v) globally asymptotically stable if x∗ = 0 is stable and ∀x0 ∈ Rn

lim
k→∞

x(k) = 0.

Definition 2.4.3 (Lyapunov Function [16]) Let D be a domain Rn such that 0̄ ∈ D

V : D ⊆ Rn → R, we say that V (x) is a Lyapunov function of system (2.13) if

the following conditions hold :

(1) V (x) is continuous on D ⊆ Rn.

(2) V (x) is positive definite such that V (0̄) = 0 and V (x(k)) > 0 for x(k) ̸= 0̄.

(3) ∆V (x(k)) = V (x(k + 1)) − V (x(k)) is negative semidefinite such that

∆V (0̄) = 0 and ∆V (x(k)) ≤ 0 for x(k) ̸= 0̄.
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Theorem 2.4.4 [16] Let x∗ = 0 be the equilibrium point of the system (2.13) and

D be a domain Rn such that 0̄ ∈ D. Let V (x(k)) : D ⊆ Rn → R be a continuous

function, such that

V (0) = 0 and V (x(k)) > 0 in D − {0},
∆V (x(k)) ≤ 0 in D − {0}.

Then, x∗ = 0 is stable. Moreover, if

∆V (x(k)) < 0 in D − {0},

then x∗ = 0 is asymptotically stable.

Theorem 2.4.5 [16] Let x∗ = 0 be the equilibrium point of the system (2.13) and

D be a domain Rn such that 0̄ ∈ D. Let V (x(k)) : D ⊆ Rn → R be a continuous

function, such that

V (0) = 0 and V (x(k)) > 0 in ∀x ̸= 0,

∥x∥ → ∞ ⇒ V (x(k)) → ∞,

∆V (x(k)) < 0, ∀x ̸= 0,

then x∗ = 0 is globally asymptotically stable.

2.4.2 Nonautonomous systems

Consider the nonautonomous system of difference equation of the form

x(k + 1) = f(k, x(k)), x(k0) = x0 and f(k, 0̄) = 0̄, k ∈ Z+, k ≥ k0 (2.14)

where x ∈ Rn, xi = xi(k) , i = 1, 2, . . . , n , k ≥ k0 , k ∈ Z+

and f = (f1, f2, . . . , fn) : Z× Rn → Rn.

Definition 2.4.6 A point x̄ is called an equilibrium point of equation (2.14) if

f(k, x̄) = x̄ for all k ≥ k0. For all purposes of the stability theory we can assume

that 0̄ is an equilibrium of (2.14).

Definition 2.4.7 [16] The equilibrium point x∗ = 0 of the system (2.14) is

(i) stable at k = k0 if ∀ϵ > 0, ∃δ = δ(k0, ϵ) > 0 such that

∥x(k0)∥ < δ ⇒ ∥x(k)∥ < ϵ, ∀k ≥ k0 ≥ 0;

(ii) unstable if not stable ;
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(iii) asymptotically stable if x∗ = 0 is stable and ∃δ(k0) > 0 such that

∥x(k0)∥ < δ ⇒ lim
k→∞

x(k) = 0;

(iv) exponentially stable if there exist three positive real constants ϵ,K and λ

such that

∥x(k)∥ ≤ K∥x0∥e−λ(k−k0), ∀∥x0∥ < ϵ, k ≥ k0;

The largest constant λ which may be utilized in above inequality is called

the rate of convergence.

(v) globally asymptotically stable if x∗ = 0 is stable and ∀x0 ∈ Rn

lim
k→∞

x(k) = 0.

Definition 2.4.8 (Lyapunov Function) Let D be a domain Rn such that 0̄ ∈ D

V : D ⊆ Rn → R, we say that V (x) is a Lyapunov function of system (2.13) if

the following conditions hold :

(1) V (k, x(k)) is continuous on D ⊆ Rn.

(2) V (k, x(k)) is positive definite such that V (0̄) = 0 and V (k, x(k)) > 0 for

x(k) ̸= 0̄.

(3) ∆V (k, x(k)) = V (k + 1, x(k + 1)) − V (k, x(k)) is negative semidefinite

such that ∆V (0, 0̄) = 0 and ∆V (k, x(k)) < −λ ∥x(k)∥2 , for some λ > 0.

Definition 2.4.9 [16] (Robustly Stable) Consider the system

x(k + 1) = (A+∆A)f(k, x(k)), x(k0) = x0 and f(k, 0̄) = 0̄, k ∈ Z+, k ≥ k0,

(2.15)

where A = {aij} ∈ Rn×n, ∆A is uncertain matrix. The system (2.15) is said to

be robustly stable if for all ∆A which is the form ∆A = HFE, where H and E

are known constant matrices and F is unknown matrix satisfying F TF ≤ I, 0̄ is

A.S.

Definition 2.4.10 [16] The zero solution of discrete-time system (2.1) and (2.2)

with ∆A = ∆W = ∆W1 = 0, is asymptotically stable if there exists a positive

definite scalar function V (k, x(k)) : R+ × Rn → R such that

∆V (k, x(k)) = V (k + 1, x(k + 1))− V (k, x(k)) < 0,

along any trajectory of solution of the system.
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Definition 2.4.11 [27] The discrete-time system (2.1) and (2.2) is robustly stable

if there exists a positive definite scalar function V (k, x(k)) : R+ ×Rn → R such

that

∆V (k, x(k)) = V (k + 1, x(k + 1))− V (k, x(k)) < 0,

along the solution of the system for all uncertainties which satisfy (2.3), (2.4)

and (2.5).

Definition 2.4.12 [20] The discrete-time system (2.1) and (2.2) is robustly expo-

nentially stable if there exists κ > 0 and 0 < α < 0 such that every solution of

the system (2.1) satisfies

∥x(k)∥ ≤ καk max
−τ2≤j≤0

∥x(j)∥ , k ≥ 0.

Definition 2.4.13 The discrete-time system (2.2) is robustly stable in the mean

square if there exists a positive definite scalar function V (k, x(k)) : R+×Rn → R
such that

E{∆V (k, x(k))} = E{V (k + 1, x(k + 1))− V (k, x(k))} < 0,

along any trajectory of solution of the system for all uncertainties which satisfy

(2.3), (2.4) and (2.5).

Definition 2.4.14 [35] The solution of (2.8) is globally exponentially stable if for

any solution x(k, ϕi) with the initial condition xi(l) = ϕi(l) for l ∈ [−τM , 0] from

Rm there exist constant ϵ ∈ (0, 1) and D ≥ 1 such that

∥x(k)∥ ≤ D∥ϕ∥ϵn ∀n ≤ 0,

where ∥ϕ∥ = maxl∈[−τM ,0]{∥ϕ(l)∥}.

The following Lemmas will be used throughout this thesis.

Lemma 2.4.15 (Schur Complement [5]) Given constant symmetric matrices Q, S

and R ∈ Rn×n where R(x) > 0, Q(x) = QT (x) and R(x) = RT (x), we have[
Q(x) S(x)

ST (x) R(x)

]
< 0 ⇔ Q(x)− S(x)R−1(x)ST (x) < 0.

Lemma 2.4.16 (S-procedure [5]) Let Ti ∈ Rn×n (i = 1, 2, . . . , p) be matrices.

The conditions on Ti (i = 1, 2, . . . , p),

ζTT0ζ > 0, ∀ζ ̸= 0 such that ζTTiζ ≥ 0 (i = 1, 2, . . . , p),

hold if there exist τi ≥ 0 (i = 1, 2, . . . , p) such that

T0 −
p∑

i=1

τiTi > 0.




