Chapter 4

Global stability criteria of nonlinear
discrete-time systems with
time-varying delay

In this chapter, we present a new approach to the global stability of nonlinear
difference equation and discrete-time neural networks with time-varying delays.
Based on discrete type inequalities, new global stability conditions for nonlinear
difference equations are derive. Numerical examples are given to illustrate the
effectiveness of our theoretical results.

4.1 New discrete type inequalities and global stability
of nonlinear difference equations

Consider the following nonlinear difference equation:
Az, = f(n,Tp, Tpt1y- -, Tny), neEZL, (4.1)

where Az, = T,,1 — T, and f : N x R™™! — R. The system (4.1) is called gen-
eralized difference equation and we introduce new discrete equation inequalities
which will be used to derive global stability conditions in the next section.

Theorem 4.1.1 Let ¢; € RS, hy € ZT, i =1,...7; p,q. € RY, where 0 = hy <
hi < ... < h, and Zqi < p < 1, and let {x;};cz-n be a sequence of real

i=0
numbers satisfying the inequality

Az, < —px, + Z GTn_n,, n €L (4.2)

=0
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Then there exists Ao € (0,1) such that
r, <max{0, 29,7 _1,...,7_p N, n€Z’
Moreover, A\g might be chosen as the smallest root of the polynomial
P(A) = A = (1= p4 o)A — g A b g ARt g (43)
which lies in the interval (0,1).

Proof. Let {y,} be a solution of the difference equation

Ayn = —PYn + Z QiYn—h;; N E ZO' (44)

i=0
Since ¢; € R{ and 0 < p < 1, it is straightforward to show that if {x,} satisfies
(4.2) and z, < g, for n = —h,,...,0, then z, < y, for all n € Z°. For a
given K > 0 and A € (0,1), the sequence {y,} defined by y, = K\" is a
solution of the equation (4.4) if and only if A is a root of the polynomial (4.3).

Since limy 0+ P(A) = —¢, < 0 and P(1) = p — Zqz > 0, it follows from

continuity of P that there exists the smallest real number Ao € (0,1) such that
P(Xo) = 0. Thus, for any K € R{, the sequence { KA} is a solution of (4.4).
Let Ko = max{0,z0,2_1,...,2_p, }. Then, {y,} = {KoAj} is a solution of (4.4)
and obviously we have x,, <y, for n = —h,.,...,0. Therefore, by using the first
part of the proof, we conclude that x, <y, = Ko\, n € Z°. 0

By a similar argument used in the proof of Theorem 4.1.1, we obtain the
following result.

Theorem 4.1.2 Let p,oy,3; € RY, hy, € ZT,i=1,...r, where 0 = hy < h; <
. < h,, Zai =1 and HB" < p<1. Let {x,}hez-r be a sequence of real

1=0 =0
numbers such that z)" , —are defined for alli=1,...r;n € Z° which satisfies the

inequality

Az, < pxn—{—Hﬁlnh, n ez’

Then there ezists \g € (0,1) such that
r, <max{0, 29, 2_1,...,7_p Ny, n€Z’

Moreover, A\g might be chosen as the smallest root of the function

which lies in the interval (0,1).
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We derive global stability conditions for nonlinear difference equation using dis-
crete type inequalities derived in the previous section. Consider the nonlinear
difference equation:

Axy, = —pxy, + f(0, Tp, Tnonyy e ooy Toen, ), (4.5)

nyh; € ZT,i=1,...r € Z*, p > 0. For any initial string {x_,,z_,11,..., 20},
(4.5) has a unique solution which can be explicitly calculated. However, it is
difficult to obtain stability conditions using that form of solutions. The following
result gives a global stability of solutions of (4.5) by using discrete type inequality
derived in Theorem 4.1.1.

Theorem 4.1.3 Assume that there exist ¢; € Ry, h; € ZT,i=1,...r; ¢, € RT,

where Z ¢ <p <1 such that

i=0
(T Ty T ) S || (4.6)
i=0
for all(n, @y, Tp_nys- - Tn_n,) € Z° x R™TL. Then, there exists \g € (0,1) such

that every solution {x,} of (4.5) satisfies

|z, | < < max {]:CZ|}) Ny, neZl,

—h,<i<0

where \g 15 chosen as in Theorem 4.1.1.

Proof. As in [1], it is straightforward to show that every solution {z,} of (4.5) is
written in the form

n—

1
T, =x0(1—p)" + (1-— p)””"lf(i,xi,xi,hl, ey Tiop,), ME 70,
=0

i—

By using (4.6), we obtain

n—1 r
2] < 2ol (1 —p)" + (1 =p)" g win,|, neZ’
i=0 j=0
For each n = —h,.,...,0, let v, = |z,| and for each n € Z*, we let
n—1 r
vn = lzol (L=p)" + D> (1 =p)"" 45 |win,].
i=0 j=0

Then, we have |z,| < v,, n € Z~" and hence,

A’Un = —pu, + Z qi ‘xn—hi‘ < —pu, + Z QiVn—n;; N € ZO'
1=0 =0
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Therefore, by Theorem 4.1.1, we obtain

A1) — , n 0
[Tn| < vp < (}Il?ggio{w}) Y (ﬁlﬁﬁo{w}) Xy, neZ,

where \q is chosen as in Theorem 4.1.1. This completes the proof of the theorem.
O

Similarly, by using Theorem 4.1.2 instead of Theorem 4.1.1, we obtain the
following result.

Theorem 4.1.4 Assume that there exist p,o;,; € RT, hy € ZT, i = 1,...r,
where Y ;_qo; =1 and [[;_, B <p <1 such that

(%)
)

.
(s s s 2nen)) < [ B 1o,
=0

forall (n,@p, Tn_pys-- s Tn_p,) € Z° x R Then there exists g € (0,1) such
that every solution {x,} of (4.5) satisfies

< ] n 0
ol < (_gno ) ) %5, m e 2
where Ay 18 chosen as in Theorem 4.1.2.

Remark 4.1.5 In [18], a discrete Halanay-type inequality is given as in Theorem
4.1.1 where the inequality (4.2) is replaced by

Az, < —px, +qmax{T,, Tn_1,...,Tn_r}, nEZ°, (4.7)

where 0 < ¢ < p < 1. Note that if a sequence {z, } ez of positive real numbers
satisfies (4.7), then it also satisfies (4.2). On the other hand, let r = 1, p = 32,
g=q =q = %, then we might easily show that the sequence {%}nezfl satisfies
(4.2) but not (4.7). Indeed,

1 1 1 51 1/1 1 17 1
Ax, < ( )

mn + 27171

42 2n°

Tt T n T gen S T Gan 7
On the other hand,

Az, = ! >—§i—|—lmax{i L}:—§i

2n’ gn-1 42 2n

Therefore, in the case of positive sequences, the discrete type inequality (4.2) is

less conservative than the discrete Halanay-type inequality given by (4.7).

Remark 4.1.6 In [6], it was shown that if p = 1 and

o2
)

I
lf(n, T, Tty ey )| < BH |Tn_i
i=0

for all (n, Z,, Tp_py,- -, Tnon,) € Z° x R™1 then (4.5) is locally asymptotically
stable provided that either Y’ ja; > land f > 0,0r Y, ,a; = land 8 € (0,1).
On the other hand, when p = 1, Theorem 4.1.4 ensures the global stability of
nonlinear difference equation (4.5) provided that >~!_ja; =1 and § € (0,1).
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4.2 Global exponential stability of nonlinear discrete-

time neural networks with time-varying delays

In this section, we introduce new discrete type inequality which will be used to
derive global exponential stability conditions in the next theorem.

Lemma 4.2.1 Let ¢; e RS, k; € ZT,i=1,...7; p,q. € RT, where 0 = ko < ky <
oo < k. and Zq,- <p <1, and let {x;}jcz-x be a sequence of real numbers

=0
satisfying the inequality
r k;
Az, < —px, + Z% an_j, n e Z°. (4.8)
=0  j=0

Then there ezists Ao € (0,1) such that
z, < max{0, 79,7 _1,..., 7 }Ns, n€EZ.

Moreover, A\g might be chosen as the smallest root of the polynomial

ko

k1 k-
PO) = A" — (1= p)A = D AT —gp Y AT — gy YA (4.9)
J=0 j=0

=0
which lies in the interval (0,1).

Proof This proof is to appear [31] , we can following Theorem 4.1.1. Let {y,} be
a solution of the difference equation

r ki
Ayn = —DPYn == Z qi Z ynfja nc ZU' (41())
=0 7=0

Since ¢; € R§ and 0 < p < 1, we show that if z,, satisfies (4.8) and z,, <y, for
n=—"h,,...,0, then z, <y, for all n € Z°. For given K > 0 and X € (0, 1), the
sequence {y,} defined by y, = K" is a solution of equation (4.10) if and only
if A is a root of the polynomial (4.9). Since /\li)rélJr P(\) = —¢, < 0and P(1) =
p—q(1)(k1+1) —Z q(3)(K;+K;_1) > 0, it follows from continuity of P that exists
=2
a smallest real number Ay € (0,1) such that P(\g) = 0. Thus, for any K € K,
the sequence { KA"} is a solution of (4.10). Let Ky = max{0,z,,z_1,...,2_p,}.
Therefore, y, = {Ko\j} is a solution of (4.10) and obviously, we have x, < y,,
for n = —h,,...,0. Hence, by using the first past of proof, we conclude that
Tn < Yp = Koo, n € Z° O
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Next, We consider the following nonlinear discrete-time neural networks with
time-varying delays:

M
u(k+1) = Cu(k) + Af(u(k)) + > B f(u(k — 3(k))) + b, (4.11)

j=1
where u(k) = [ui(k), ..., u,(k)]" € R" is the neuron state vector, b = [by, ..., b,
is constant input vector, 7;(k), j = 1,2,..., M are positive integers denote the

time-varying delay satisfying
OST](]{?) ST]‘, j: 1,2,...7M

where 7; > 0 are known integers, C' = diag(¢;)(¢; € (0,1)), A and B; are the
interconnection matrices and the activation function f;(-) ¢ = 1,...,n is satisfies
the following,

[fi(z) = fi(y) < Lilr —y[, Vo,y eR

The initial conditions with system (4.11) are of the form
’U/Z(l) :(bl(l), 2:1,2,,71,

where [ is an integer with [ € [—7,0]. Let u* = [u], u3, ..., u’] be an equilibrium

rn

point of system (4.11). We shift the equilibrium point u* to the origin by the
transformation z(-) = u(-) — u*. Then, we obtain the new system

z(k+1) = Ca(k) + Ag(z(k)) + Z Bjg(z(k —7;(k))), (4.12)

where z(k) = [z1(k), z2(k), ...,z (k)] is the state vector of the transformed sys-
tem, g;(; () = {g1(1(), - - gn(@n (D)}, 95(2; () = f3(5(k)+uj) = fi(uj), j =

1,2,...,n and the transformed activation functions satisfy the condition
9@ < L],
and 7;(k) are the time-varying delays satisfying
OST](]{}) ST]‘, j:1,2,...,M

where 7; are known positive integers. The initial conditions with system (4.12)
are of the form

Q?z<l) :fl(l), 221,2,,71,

Theorem 4.2.2 The equilibrium point of system (4.12) is globally exponentially

stable if
M

G+ AN+ 1) (7 + DI Bjl| < 1, (4.13)

1
where | = max;(L;) and cmax = max;(c;).
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Proof Consider z(k) = ||x(k)|| and the difference of system is given by
Az(k) = [le(k + D] = [[z(k)]]

=[|Cx(k) + Ag(x +Z (DI = [lz(F)]]
<[[Cz(B)]| + [[Ag( (k)] +Z||ng k=1 (DI = [lz(F)ll
< = (1= cmax = U ANz (k H+ZZHB (k= (k)]

< — (1 = cmax — U Al ||z (k ||+ZZZI|B (k= 2]

]1@0

< = (1 = cmax — Az (R)]] +lz 7+ DBl Y Nk — )]
1=0

=—pz<k>+ij22<k—

=0

where
M M
p=1— o — 1AL Y g =13 (5 + DB
=0 j=1

It follows from assumptions of the Lemma 4.2.1 that there exist Ay € (0, 1) such
that

da<p<l, (4.14)
then we obtain J
(k) = [lz(R)]]
<max{0, z(0), z(—=1),...,z(=7m)}\¢
—max{0, ()], lle(=Dll, .. s(=rar) | ]2
< 1€l A5 (4.15)

By Definition 2.4.14, we conclude that the equation (4.12) is globally exponen-
tially stable the proof is complete. ([l

Remark 4.2.3 In our main result, we derived global exponential stability of dis-
crete time neural network condition for multiple time varying delays by use dis-
crete type inequality. When there have one time varying delays, the sufficient
condition is in [35], the author studied the global exponential stability of dis-
crete time hopfield neural networks is given by theorem 2.9. Nevertheless, the
condition in [35] can not applied to multiple time varying delays.
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Example 4.2.4 Consider the NNs (4.11) with M =2 where

c_ {0.25 0 1 A= { 0.15 —0.2] By = [0.25 —0.1] ’

0 —0.15 —-0.35 04 —-0.3  0.15
B, = —04 —0.25 ’
035 —0.3

(k) =1+ sin(l%r), (k) =2+ sin(kg), fi(s) = tanh(—0.4s) + 0.2sin(s),

fa(s) = tanh(0.2s), and we choose [ = 1,73 =1, and 7, = 2, b =[-0.5 0.6].
It’s easy to check that
||A||1 il (Tl + 1)”31”1 + (TQ -+ 1)||BQ||1 = 0.6 <1 — cpax = 0.75.

Therefore, from Theorem 4.2.2, it follows that the solutions of system (4.11) is
globally exponentially stable.

x ul
0.8% * u2

0.6 ]
g FHH AR FAA AR K KRR AR A KK AR K KKK

0.4 *

0.2

-0.2f
-0.4f
-06f

X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

-0.81

Figure 4.1: The trajectory of solutions of system (4.11) in Example 4.2.4.

Example 4.2.5 Consider the NNs (4.11) with M =2 where

- 02 0 A= —0.2 0.3 By = 02 —-0.1 ’
0 0.1 04 —0.15 -0.3 0.2

B, = —0.25 0.3 7
0.1 —0.15

(k) =1+ sin(kg), (k) =2+ sin(l%ﬂ), fi(s) = tanh(—0.4s) + 0.2 sin(s),

fa(s) = tanh(0.2s), and we chosen [ =1, 7, =1 and 7, = 2.
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It’s easy to check that
Ao + (71 + V|| Bil|oo + (72 + 1)[| Bal|oo = 0.6 < 1 — cpax = 0.8.

Therefore, from Theorem 4.2.2, it follows that the solutions of system (4.11) is
globally exponentially stable.
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Figure 4.2: The trajectory of solutions of system (4.11) in Example 4.2.5.





