
Chapter 4

Global stability criteria of nonlinear

discrete-time systems with

time-varying delay

In this chapter, we present a new approach to the global stability of nonlinear

difference equation and discrete-time neural networks with time-varying delays.

Based on discrete type inequalities, new global stability conditions for nonlinear

difference equations are derive. Numerical examples are given to illustrate the

effectiveness of our theoretical results.

4.1 New discrete type inequalities and global stability

of nonlinear difference equations

Consider the following nonlinear difference equation:

∆xn = f(n, xn, xn−1, . . . , xn−r), n ∈ Z+, (4.1)

where ∆xn = xn+1 − xn, and f : N× Rr+1 → R. The system (4.1) is called gen-

eralized difference equation and we introduce new discrete equation inequalities

which will be used to derive global stability conditions in the next section.

Theorem 4.1.1 Let qi ∈ R+
0 , hi ∈ Z+, i = 1, . . . r; p, qr ∈ R+, where 0 = h0 <

h1 < . . . < hr and
r∑

i=0

qi < p ≤ 1, and let {xj}j∈Z−hr be a sequence of real

numbers satisfying the inequality

△xn ≤ −pxn +
r∑

i=0

qixn−hi
, n ∈ Z0. (4.2)
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Then there exists λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−1, . . . , x−hr}λn
0 , n ∈ Z0.

Moreover, λ0 might be chosen as the smallest root of the polynomial

P (λ) = λhr+1 − (1− p+ q0)λ
hr − q1λ

hr−h1 · · · − qr−1λ
hr−hr−1 − qr (4.3)

which lies in the interval (0, 1).

Proof. Let {yn} be a solution of the difference equation

△yn = −pyn +
r∑

i=0

qiyn−hi
, n ∈ Z0. (4.4)

Since qi ∈ R+
0 and 0 < p < 1, it is straightforward to show that if {xn} satisfies

(4.2) and xn ≤ yn for n = −hr, . . . , 0, then xn ≤ yn for all n ∈ Z0. For a

given K > 0 and λ ∈ (0, 1), the sequence {yn} defined by yn = Kλn is a

solution of the equation (4.4) if and only if λ is a root of the polynomial (4.3).

Since limλ→0+ P (λ) = −qr < 0 and P (1) = p −
r∑

i=0

qi > 0, it follows from

continuity of P that there exists the smallest real number λ0 ∈ (0, 1) such that

P (λ0) = 0. Thus, for any K ∈ R+
0 , the sequence {Kλn

0} is a solution of (4.4).

Let K0 = max{0, x0, x−1, . . . , x−hr}. Then, {yn} = {K0λ
n
0} is a solution of (4.4)

and obviously we have xn ≤ yn, for n = −hr, . . . , 0. Therefore, by using the first

part of the proof, we conclude that xn ≤ yn = K0λ
n
0 , n ∈ Z0. �

By a similar argument used in the proof of Theorem 4.1.1, we obtain the

following result.

Theorem 4.1.2 Let p, αi, βi ∈ R+, hi ∈ Z+, i = 1, . . . r, where 0 = h0 < h1 <

. . . < hr,
r∑

i=0

αi = 1 and
r∏

i=0

βi < p ≤ 1. Let {xn}n∈Z−hr be a sequence of real

numbers such that xαi
n−hi

are defined for all i = 1, . . . r; n ∈ Z0 which satisfies the

inequality

△xn ≤ −pxn +
r∏

i=0

βix
αi
n−hi

, n ∈ Z0.

Then there exists λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−1, . . . , x−hr}λn
0 , n ∈ Z0.

Moreover, λ0 might be chosen as the smallest root of the function

F (λ) = λ−

(
r∏

i=0

βi

)
λ

−

r∑
i=1

hiαi

+ p− 1

which lies in the interval (0, 1).
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We derive global stability conditions for nonlinear difference equation using dis-

crete type inequalities derived in the previous section. Consider the nonlinear

difference equation:

△xn = −pxn + f(n, xn, xn−h1 , . . . , xn−hr), (4.5)

n, hi ∈ Z+, i = 1, . . . r ∈ Z+, p > 0. For any initial string {x−r, x−r+1, . . . , x0},
(4.5) has a unique solution which can be explicitly calculated. However, it is

difficult to obtain stability conditions using that form of solutions. The following

result gives a global stability of solutions of (4.5) by using discrete type inequality

derived in Theorem 4.1.1.

Theorem 4.1.3 Assume that there exist qi ∈ R+
0 , hi ∈ Z+, i = 1, . . . r; qr ∈ R+,

where
r∑

i=0

qi < p ≤ 1 such that

|f(n, xn, xn−h1 , . . . , xn−hr)| ≤
r∑

i=0

qi |xn−hi
| , (4.6)

for all (n, xn, xn−h1 , . . . , xn−hr) ∈ Z0 × Rr+1. Then, there exists λ0 ∈ (0, 1) such

that every solution {xn} of (4.5) satisfies

|xn| ≤
(

max
−hr≤i≤0

{|xi|}
)
λn
0 , n ∈ Z0,

where λ0 is chosen as in Theorem 4.1.1.

Proof. As in [1], it is straightforward to show that every solution {xn} of (4.5) is

written in the form

xn = x0(1− p)n +
n−1∑
i=0

(1− p)n−i−1f(i, xi, xi−h1 , . . . , xi−hr), n ∈ Z0.

By using (4.6), we obtain

|xn| ≤ |x0| (1− p)n +
n−1∑
i=0

r∑
j=0

(1− p)n−i−1qj
∣∣xi−hj

∣∣ , n ∈ Z0.

For each n = −hr, . . . , 0, let vn = |xn| and for each n ∈ Z+, we let

vn = |x0| (1− p)n +
n−1∑
i=0

r∑
j=0

(1− p)n−i−1qj
∣∣xi−hj

∣∣ .
Then, we have |xn| ≤ vn, n ∈ Z−hr , and hence,

△vn = −pvn +
r∑

i=0

qi |xn−hi
| ≤ −pvn +

r∑
i=0

qivn−hi
, n ∈ Z0.
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Therefore, by Theorem 4.1.1, we obtain

|xn| ≤ vn ≤
(

max
−hr≤i≤0

{vi}
)
λn
0 =

(
max

−hr≤i≤0
{|xi|}

)
λn
0 , n ∈ Z0,

where λ0 is chosen as in Theorem 4.1.1. This completes the proof of the theorem.

�
Similarly, by using Theorem 4.1.2 instead of Theorem 4.1.1, we obtain the

following result.

Theorem 4.1.4 Assume that there exist p, αi, βi ∈ R+, hi ∈ Z+, i = 1, . . . r,

where
∑r

i=0 αi = 1 and
∏r

i=0 βi < p ≤ 1 such that

|f(n, xn, xn−h1 , . . . , xn−hr)| ≤
r∏

i=0

βi |xn−hi
|αi ,

for all (n, xn, xn−h1 , . . . , xn−hr) ∈ Z0 × Rr+1. Then there exists λ0 ∈ (0, 1) such

that every solution {xn} of (4.5) satisfies

|xn| ≤
(

max
−hr≤i≤0

{|xi|}
)
λn
0 , n ∈ Z0,

where λ0 is chosen as in Theorem 4.1.2.

Remark 4.1.5 In [18], a discrete Halanay-type inequality is given as in Theorem

4.1.1 where the inequality (4.2) is replaced by

△xn ≤ −pxn + qmax{xn, xn−1, . . . , xn−r}, n ∈ Z0, (4.7)

where 0 < q < p ≤ 1. Note that if a sequence {xn}n∈Z−r of positive real numbers

satisfies (4.7), then it also satisfies (4.2). On the other hand, let r = 1, p = 5
6
,

q = q0 = q1 =
1
7
, then we might easily show that the sequence { 1

2n
}n∈Z−1 satisfies

(4.2) but not (4.7). Indeed,

△xn =
1

2n+1
− 1

2n
= − 1

2n+1
≤ −5

6

1

2n
+

1

7

(
1

2n
+

1

2n−1

)
= −17

42

1

2n
.

On the other hand,

△xn = − 1

2n+1
> −5

6

1

2n
+

1

7
max

{
1

2n
,

1

2n−1

}
= −23

42

1

2n
.

Therefore, in the case of positive sequences, the discrete type inequality (4.2) is

less conservative than the discrete Halanay-type inequality given by (4.7).

Remark 4.1.6 In [6], it was shown that if p = 1 and

|f(n, xn, xn−1, . . . , xn−r)| ≤ β

r∏
i=0

|xn−i|αi ,

for all (n, xn, xn−h1 , . . . , xn−hr) ∈ Z0 × Rr+1, then (4.5) is locally asymptotically

stable provided that either
∑r

i=0 αi > 1 and β > 0, or
∑r

i=0 αi = 1 and β ∈ (0, 1).

On the other hand, when p = 1, Theorem 4.1.4 ensures the global stability of

nonlinear difference equation (4.5) provided that
∑r

i=0 αi = 1 and β ∈ (0, 1).
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4.2 Global exponential stability of nonlinear discrete-

time neural networks with time-varying delays

In this section, we introduce new discrete type inequality which will be used to

derive global exponential stability conditions in the next theorem.

Lemma 4.2.1 Let qi ∈ R+
0 , ki ∈ Z+, i = 1, . . . r; p, qr ∈ R+, where 0 = k0 < k1 <

. . . < kr and
r∑

i=0

qi < p ≤ 1, and let {xj}j∈Z−kr be a sequence of real numbers

satisfying the inequality

△xn ≤ −pxn +
r∑

i=0

qi

ki∑
j=0

xn−j, n ∈ Z0. (4.8)

Then there exists λ0 ∈ (0, 1) such that

xn ≤ max{0, x0, x−1, . . . , x−kr}λn
0 , n ∈ Z0.

Moreover, λ0 might be chosen as the smallest root of the polynomial

P (λ) = λn+1 − (1− p)λn − q1

k1∑
j=0

λn−j − q2

k2∑
j=0

λn−j − · · · − qM

kr∑
j=0

λn−j (4.9)

which lies in the interval (0, 1).

Proof This proof is to appear [31] , we can following Theorem 4.1.1. Let {yn} be

a solution of the difference equation

△yn = −pyn +
r∑

i=0

qi

ki∑
j=0

yn−j, n ∈ Z0. (4.10)

Since qi ∈ R+
0 and 0 < p < 1 , we show that if xn satisfies (4.8) and xn ≤ yn for

n = −hr, . . . , 0, then xn ≤ yn for all n ∈ Z0. For given K > 0 and λ ∈ (0, 1), the

sequence {yn} defined by yn = Kλn is a solution of equation (4.10) if and only

if λ is a root of the polynomial (4.9). Since lim
λ→0+

P (λ) = −qr < 0 and P (1) =

p−q(1)(k1+1)−
r∑

j=2

q(i)(Ki+Ki−1) > 0, it follows from continuity of P that exists

a smallest real number λ0 ∈ (0, 1) such that P (λ0) = 0. Thus, for any K ∈ K+
0 ,

the sequence {Kλn} is a solution of (4.10). Let K0 = max{0, xn, x−1, . . . , x−hr}.
Therefore, yn = {K0λ

n
0} is a solution of (4.10) and obviously, we have xn ≤ yn,

for n = −hr, . . . , 0. Hence, by using the first past of proof, we conclude that

xn ≤ yn = K0λ0, n ∈ Z0 �
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Next, We consider the following nonlinear discrete-time neural networks with

time-varying delays:

u(k + 1) = Cu(k) + Af(u(k)) +
M∑
j=1

Bjf(u(k − τj(k))) + b, (4.11)

where u(k) = [u1(k), . . . , un(k)]
T ∈ Rn is the neuron state vector, b = [b1, . . . , bn]

T

is constant input vector, τj(k), j = 1, 2, . . . ,M are positive integers denote the

time-varying delay satisfying

0 ≤ τj(k) ≤ τj, j = 1, 2, . . . ,M

where τj ≥ 0 are known integers, C = diag(ci)(ci ∈ (0, 1)), A and Bj are the

interconnection matrices and the activation function fi(·) i = 1, . . . , n is satisfies

the following,

|fi(x)− fi(y) ≤ Li|x− y|, ∀x, y ∈ R.

The initial conditions with system (4.11) are of the form

ui(l) = ϕi(l), i = 1, 2, . . . , n,

where l is an integer with l ∈ [−τ, 0]. Let u∗ = [u∗
1, u

∗
2, . . . , u

∗
n] be an equilibrium

point of system (4.11). We shift the equilibrium point u∗ to the origin by the

transformation x(·) = u(·)− u∗. Then, we obtain the new system

x(k + 1) = Cx(k) + Ag(x(k)) +
M∑
j=1

Bjg(x(k − τj(k))), (4.12)

where x(k) = [x1(k), x2(k), . . . , xn(k)] is the state vector of the transformed sys-

tem, gj(xj(·)) = {g1(x1(·)), . . . , gn(xn(·))} , gj(xj(·)) = f̂j(xj(k)+u∗
j)−f̂j(u

∗
j), j =

1, 2, . . . , n and the transformed activation functions satisfy the condition

|gj(x)| ≤ Lj|x|,

and τj(k) are the time-varying delays satisfying

0 ≤ τj(k) ≤ τj, j = 1, 2, . . . ,M

where τj are known positive integers. The initial conditions with system (4.12)

are of the form

xi(l) = ξi(l), i = 1, 2, . . . , n,

Theorem 4.2.2 The equilibrium point of system (4.12) is globally exponentially

stable if

cmax + l∥A∥+ l
M∑
j=1

(τj + 1)∥Bj∥ < 1, (4.13)

where l = maxj(Lj) and cmax = maxj(cj).
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Proof Consider z(k) = ∥x(k)∥ and the difference of system is given by

∆z(k) = ∥x(k + 1)∥ − ∥x(k)∥

=∥Cx(k) + Ag(x(k)) +
M∑
j=1

Bjg(x(k − τj(k)))∥ − ∥x(k)∥

≤∥Cx(k)∥+ ∥Ag(x(k))∥+
M∑
j=1

∥Bjg(x(k − τj(k)))∥ − ∥x(k)∥

≤ − (1− cmax − l∥A∥)∥x(k)∥+ l
M∑
j=1

∥Bj∥∥x(k − τj(k))∥

≤ − (1− cmax − l∥A∥)∥x(k)∥+ l
M∑
j=1

τj∑
i=0

∥Bj∥∥x(k − i)∥

≤ − (1− cmax − l∥A∥)∥x(k)∥+ l

M∑
j=1

(τj + 1)∥Bj∥
τj∑
i=0

∥x(k − i)∥

=− pz(k) +
M∑
j=0

qj

τj∑
i=0

z(k − i),

where

p = 1− cmax − l∥A∥,
M∑
j=0

qj = l

M∑
j=1

(τj + 1)∥Bj∥.

It follows from assumptions of the Lemma 4.2.1 that there exist λ0 ∈ (0, 1) such

that
M∑
i=0

qi < p < 1, (4.14)

then we obtain

z(k) = ∥x(k)∥
≤max{0, z(0), z(−1), . . . , z(−τM)}λn

0

=max{0, ∥x(0)∥ , ∥x(−1)∥ , . . . , ∥x(−τM)∥}λn
0

≤∥ξ∥λn
0 . (4.15)

By Definition 2.4.14, we conclude that the equation (4.12) is globally exponen-

tially stable the proof is complete. �

Remark 4.2.3 In our main result, we derived global exponential stability of dis-

crete time neural network condition for multiple time varying delays by use dis-

crete type inequality. When there have one time varying delays, the sufficient

condition is in [35], the author studied the global exponential stability of dis-

crete time hopfield neural networks is given by theorem 2.9. Nevertheless, the

condition in [35] can not applied to multiple time varying delays.
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Example 4.2.4 Consider the NNs (4.11) with M =2 where

C =

[
0.25 0

0 −0.15

]
, A =

[
0.15 −0.2

−0.35 0.4

]
, B1 =

[
0.25 −0.1

−0.3 0.15

]
,

B2 =

[
−0.4 −0.25

0.35 −0.3

]
,

τ1(k) = 1 + sin(
kπ

2
), τ2(k) = 2 + sin(

kπ

2
), f1(s) = tanh(−0.4s) + 0.2 sin(s),

f2(s) = tanh(0.2s), and we choose l = 1, τ1 = 1, and τ2 = 2, b = [−0.5 0.6].

It’s easy to check that

∥A∥1 + (τ1 + 1)∥B1∥1 + (τ2 + 1)∥B2∥1 = 0.65 < 1− cmax = 0.75.

Therefore, from Theorem 4.2.2, it follows that the solutions of system (4.11) is

globally exponentially stable.
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Figure 4.1: The trajectory of solutions of system (4.11) in Example 4.2.4.

Example 4.2.5 Consider the NNs (4.11) with M =2 where

C =

[
0.2 0

0 0.1

]
, A =

[
−0.2 0.3

0.4 −0.15

]
, B1 =

[
0.2 −0.1

−0.3 0.2

]
,

B2 =

[
−0.25 0.3

0.1 −0.15

]
,

τ1(k) = 1 + sin(
kπ

2
), τ2(k) = 2 + sin(

kπ

2
), f1(s) = tanh(−0.4s) + 0.2 sin(s),

f2(s) = tanh(0.2s), and we chosen l = 1, τ1 = 1 and τ2 = 2.
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It’s easy to check that

∥A∥∞ + (τ1 + 1)∥B1∥∞ + (τ2 + 1)∥B2∥∞ = 0.6 < 1− cmax = 0.8.

Therefore, from Theorem 4.2.2, it follows that the solutions of system (4.11) is

globally exponentially stable.
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Figure 4.2: The trajectory of solutions of system (4.11) in Example 4.2.5.




