Chapter 5

H~o filtering problem for nonlinear
discrete-time neural networks with
time-varying delay

In this chapter, we study H,, filtering problem for discrete-time neural net-
works with time-varying delay. Based on Lyapunov stability theory and the
S-procedure, we derive criteria in terms of LMIs. Numerical examples are given
to illustrate the effectiveness of our theoretical results.

We consider the following discrete-time neural network with time-varying delay:

w(k+1) = Ave(k) + Ao f (2(F)) + Asg(z(k — 7(k))) + Bw(k)
y(k) = Cra(k) + Cof (x(k)) + Csg(z(k — 7(k))) + Dw(k) (5.1)
2(k) = Kyw(k) + Ko f (x(k)) + Ksg(a(k — 7(k))) + Gw(k) '

(

.I'k) (), k:—TQ,TQ—l—l,...,O,

where z(k) € R” is the neuron state vector, y(k) € R™ is the measurement vector,
w(k) € RY is the noise signal vector belonging to I3]0, +00), 7(k) is a time-varying
delay satisfying

n < 7(k) < 7, (5-2)
where 7, 75 > 0 are known integers, Ay, As, A3, B, Cy, Cy, Cs, D, Ky, Ky, K3
and G are the constant matrices with appropriate dimensions (the interconnection
matrices) and the activation functions f;(+) i = 1,...,nand ¢g;(-) i = 1,...,n
satisfy the following conditions

- i) = fily :
l] S%y]()glj an yERa I#i% j:1727"'7n7 (53)
~_9i(@) —g;(y) :
vy <= s <of Vo, yeR, z#y, j=1,2,...,n, (5.4)

r—y
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where lj_, lj, v,

order filter for system (5.1) as follows:

vj, 7 =1,2,...,n are known constants. We design a full-
#(k+ 1) =Api(k) + Bry(k), #(0) =0 (5.5)

where (k) € R" is the filter state, 2(k) is the estimation of z(k), Ar € R"™", Bp €
R»>™ Cp € RP*" Dp € RP*™ are filter parameters to be designed for system
(5.1). Let z(k) = x(k) — 2(k) and e(k) = z(k) — 2(k). Then, we obtain the filter
error dynamics can be described by

(k+1) = Ajz(k) — Apa(k) + Ao f(2(k)) + Azg(z(k — 7(k))) + Bw(k)
e(k) = Kiz(k) — Cpi(k) + Ky f (2(k)) + Ksg(z(k — 7(k))) + Guw(k)
(k)ng(k), k:—TQ,TQ+1,...,O,

Kl

&I

(5.6)
where Al :Al—BFCl 3 Ag :AQ—BFCQ " Ag = A3—BF03 y B = B—BFD >
K, =K, — DpCy, Ky=Ky— DpCy, Ky=Ky— DpCy, G =G — DpD.

Our goal is to design a robust H filter of the form (5.5) such that the filtering
error system (5.6) satisfy the following two conditions hold:

Given integers 7o > 7 > 0 and scalar v > 0

(i) The filtering error system (5.6) with w(k) = 0 is asymptotically stable ; and
(ii) The H., performance

lefl2 < yllwll2 (5.7)

is guaranteed under zero-initial conditions for all nonzero w(k) € I3[0, +00) and
a prescribed v > 0.

5.1 Stability analysis

First, we derive asymptotic stability condition of system (5.6) with w(k) = 0.

Proposition 5.1.1 Given the filter parameters Ap, Bp,Cr and Dg. Then, the
filtering error system (5.6) with time-varying delay (k) satisfying (5.2) with
w(k) = 0 is asymptotically stable if there exvist P, = Pl > 0, P, = P} >
0, Q=0QT >0, T = diag{ty,ts,...,t,} >0, S = diag{sy,s9,...,8,} > 0
satisfying the following conditions

My, MTP, MIP,
M=|x -Pp 0 | <o, (5.8)

* * —P2
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where
—P -2 T+7Q P 0 —2L,T 0
* -P 0 0 0
My = * * —Q —2V;iS 0 =255,
* * * —2T 0
* * * * —25 ]

Ml = [Al 0 O_AQ A3]a M2 - [Al _AF 0 A2 143], Al SN Al \ BFCI ) A2 =
AQ—BFCQ, A3:A3—BF03, 7A':7'2—7'1+1.

Proof Consider the Lyapunov function candidate

V(k) = Vi(k) + Va(k) + Va(k) + Vi(k),

where
Vi(k) = 2" (k)P (k), Va(k) = 2" (k) Pz (k), Va(k) = Ei 2" (D)Qux (1),
I1=k—(k)

Valk) = > Z =" (1)Qz(1).

The Lyapunov difference along trajectory of solution of system is given by

AVy(k) =2 (k + 1) Pix(k + 1) — 27 (k) Pio(k)
=[Avz(k) + Ao f (x(k)) + Azg(x(k — (k)] Pi[Arz(k) + Axf (x(k))

+ Asg(a(k — 7(k)))] — 2" (k) P (k)
=y" (k)M P.Myy(k) — 2" (k) Piz(k),

where

y(k) =[a" (k) " (k) «" (k — 7(k)) f* (2(k)) g" (x(k — 7(K)))]",
:[Al 0 O Ag Ag],

and

AVy(k) =27 (k + 1) Pz(k + 1)
=[Ayz(k) — Apa(k) + Asf (x(k)) + Asg(z(k — 7(k)))]" Pa[ Ay (k)
— Apz(k) + Asf(z(k)) + Asg(x(k — 7(k)))] — " (k) Pz (k)
=y" (k)My PyMay(k) — [x" (k) Pyx(k) — &7 (k) Py (k) — 27 (k) Pyi (k)
+ &7 (k) Py (k)]
=y (k)M PyMyy(k) — x7 (k) Pox(k) + 227 (k) Pyx(k) — &7 (k) Py (k),
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where M2 = [Al - AF 0 /Ig /Ig]
Similarly, we obtain

AR = Y Qi) — Y 2" (1)Qe()
I=k+1—7(k+1) I=k—7(k)
=Y Q) + 2T (R)Qu(k) — T (k= 7(k)Qalk — 7(F)
I=k—71(k+1)
Y A0 - S TR (5.9)
kt1—71 I=k+1—7(k)
Since 7(k) > 11, we get
S0 - Y AT ()Qs() <0,
k+1—m I=k+1—7(k)
which implies that
k—T1
AVs(k) < Y 2" ()Qx(l) + 2 (k)Qu(k) — 2™ (k — 7(k)Qu(k — (k).
I=k—(k-+1)
We have
—71+1 k—1 k—1
G = Y [F0Qat + X o matm) - X o (m)Qelm)]
l=—my+2 m=k-+j m=k+j—1
k—m1
= () WQek) — S T ()Qu(k)

From AV3(k) and AVy(k), we get

AVi(k) + AVi(k) < 77 (k)Qa(k) — 2™ (k = 7(k))Qu(k — (k)

k—T1 k—T1
+ > 20— D 2" (k)Qu(k),
I=k-+1 I=k+1—7

where 7 = 15 — 71 + 1. Since 7(k) < 73, we obtain

k—11 k—T1
Yoo 2Oz~ D 2"(k)Qu(k) 0.
I=k+1—7(k+1) l=k+1—72

Thus,

AVs(k) + AVi(k) < 7o' (k)Qu(k) — 2" (k — 7(k))Qu(k — 7(k)).
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As a result, we have

AV (k) = AVi(k) + AVa (k) + AVs(k) + AV,(k)
< y" (k)M P,Myy(k) + y" (k) My PyMay(k) — & (k) Py (k) + 22" (k) Py (k)
— 2T(k)Pya (k) + 727 (k)Qu(k) — 27 (k — 7(k))Qx(k — 7(k)). (5.10)

From (5.3) and (5.4), we have
(33 (0)) = Uy (D) (R)) — Ly (k) < 0, j = 1,24,

and

(9(x;(k — 7(k))) — v 2;(k = 7(K)))(g;(x;(k — 7(k))) — v;2;(k = 7(k))) <0,

Thus,

(fi(zi(k)) = (k) (fi( (k) — [7(k) <0, j=1,2,...,n, (5.11)
and
(gj(2(k = 7(k))) —vjw;(k —7(K)))(g;(x;(k — 7(K))) — vy z;(k — 7(k))) <0,

i=1,2,....n,
(5.12)

which are equivalent to

o) " [ pradr SSEadr) [ e 4 n
-f(x(k»} [_l;—;lj_ djd? djd? ] {f(:c(k))} <0, j=12...,n,
(5.13)
ok () ] vy vy did; _UJ;U; d;dj | [ @(k —71(k))
g(z(k — T(/{;)))} [_v;LJQrvj djdjr djd? ] L(x(k ~ T(k)))} <0, (5.14)
17=12....n

where d;, denotes the unit column vector having “1 ”element on its kth row
and zeros elsewhere. By (5.11), (5.12) and the S-procedure, AV (k) < 0 if the
following inequality holds,

AV (k) -2 Z ti(fi(x;(k)) — UFa; (k) (fi(z; (k) — 17 2;(k)) — 2 Z sj(g;(z;(k

= 7(K))) = vfw;(k — 7(k)))(g;(x; (k — 7(k))) — vy a;(k — 7(k))) <0.  (5.15)
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We will now show that, under assumptions of the theorem, (5.15) holds. From
(5.13) and (5.14), we have

VI(k) =2 t5(fi(wi(k)) = s (k) (F (k) = (k)

—2 Z si(g;(xj(k = 7(k))) — vfw;(k = 7(k))) (g (a; (k — 7(k))) — vy a;(k — 7(k)))

n

_ [4 o) V[ ytdd —Sradf] [ o)
- v =23 i) | [Wm ! Hf@(k))]

_2;% L}x(k:—T(k‘)) ]T [ oy ddd  —g, dT] [gm(k—T(k))

vy +”; d;d? d dr (w(k — T(k)))] '

n T
z(k —7(k)) ] {Vl VQ} l x(k —7(k)) }
—2 5.16
2% s B [ (>10)
where Ly = diag(if Iy, 11y, ..., [f17), Ly = diag(—"5x li—5l2’ L,y
Vi = diag(vi vy, v vy, ..., vy v, ) and V; = diag(— v +v1 ,_Uz e _vﬁgvz ).
Therefore,
“oTak) 1 [L L] [ (k)
V(k)=2) t; ! 2} {
) Z’[xm = e

)
22 i (<kk)>)>>] R e 3y
<y (k)[MOJerTPlMl MTP2M2} (F)-

By Lemma 2.4.15, it follows from (5.8) that M, + M{ P M; + M P,M, < 0
which implies that (5.16) holds. Hence, the error system (5.6) with w(k) = 0 is
asymptotically stable. This completes the proof of the theorem. O
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Now, we provide a sufficient condition of H., filtering problem for (5.6).

Theorem 5.1.2 Given the filter parameters Ap, Bp,Cr, D and scalar v > 0.
Then, the filtering error system (5.6) with time-varying delay 7(k) satisfying (5.2)
is asymptotically stable if there exist Py = PL >0, P, =P} >0, Q = Q" >0,
T = diag{ty,ts,...,t,} >0, S = diag{sy, s2, ..., Sn} > 0 satisfying the following

conditions : \ = ) I o
My My P, My P, M;s

m=|* ~h 0 01 <o, (5.18)
* * —P 0
* * * -1
where
[—P, 2L T+7Q P, 0 —2L,T 0 0 ]
* P 0 0 0 0
My = * * —Q —2V1S 0 =258 0
* * * =27 0 0 i
* * * * 25 0
* * * * * —721_

My =[A100 Ay A3 B|,My =[A, — Ap 0 Ay A3 B],Ms =[K, —Cr 0 Ky K3 G],
K, =K, —DpCy, Ky =Ky — DpCs, K3 =Ks;— DpCs, G=G — DpD,
T=7m—1+1

Proof Consider the following Lypunov function candidate

V(k) = Vi(k) + Va(k) + Vs(k) + Va(k),

where
Vi(k) = " (k) Pia(k), Va(k) = 2" (k)P (k), Vs(k) = i " (HQux(1),
I=k—1(k)
kz (k) 1= kz 1

One may show, with the same argument as in the proof of Theorem 5.1.1, that
the Lyapunov difference along any trajectory of solution of (5.6) satisfies

03 Zi“‘ [fcc((kzz)J o 7w
22 [ <kk: (fk);))] [5 ﬂ [g<(<kk—(<kk)>)>>]

<y (/{J) |:M0 + MlTlel + M2TP2M2] g(k?),
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where
[P, — 2L, T+7Q P, 0 —2L,T 0 0]
* —P 0 0 0 0
* * —Q —2V1S 0 =25 0
MO = 3
* * * =2T 0 0
* * * * -25 0
* * * * * 0

Ml == [Al 0 O AQ A5 B],Mg = [/Il 7 AF O AQ /Ig B], Al — Al - BFCL
AQZAQ_BFCQ, AgZAg—BFC?,,B:B—BFD,f':TQ—Tl—f—]_,
(k) = [o7 (k) 27(k) 27 (k = 7(k)) [ (2(k)) ¢" (2(k = 7(k))) w(k)]".

We are now ready to deal with the H,, performance of the filtering process.
We denote

T(n) 2= ST (R)e(k) — 7 (B ()],
k=0
where n is any nonnegative integer. We will now show that J(n) < 0, for all
n € Z". Under the zero initial condition, we get

n

J(n) = Z[eT(k)e(k) — YWl (kB)w(k) + AV(K)] = V(n + 1)

<3 [IRun(k) = Cri(k) + Kaf (2 (k) + Kagla(k — (k) + Guo(k)]" [y (k)

k=0

— Cri(k) + Ky f (x(k)) + Ksg(x(k — 7(k))) + Gu(k)] — ¥*w" (k)w(k)
+ g7 (k) [Mo + My Py M, + My" PyMy)y(k)

=3 [57 (0 [Mo + N, P, + N, P, + M5 M g (), (5.19)
k=0
where
[—P, — 20, T +7Q P, 0 —2L,T 0 0
* P, 0 0 0 0
\ * * —Q — 211 S 0 —2V5 8 0
MO == 5
* * * -2T 0 0
* * * * 285 0
* * * * * —72]_

M, =[A1 00 Ay A3 B],My =[A; — Ap 0 Ay A3 B], M3 =K, —Cr 0 K, K3 G,
Ki =K, — DpCy, Ky =Ky — DpCy, K3 =Kz — DpCs, G =G — DgD,
y(k) = [z"(k) 2" (k) 2" (k = 7(k)) f"(x(k)) 9" (x(k — 7(k))) w(k)]".
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By Lemma 2.4.15 and (5.18), we obtain Mo+M; " PyM;+ M, PyMo+M;' Ms < 0,
which implies that J(n) < 0 from (5.21). Let n — oo, we obtain

lellz < yllwll2-

This completes the proof of the theorem. O

5.2 H, filter design

In this section, we consider the H,, filter design problem which is based on
Theorem 5.1.2.

Theorem 5.2.1 Given the scalar~y > 0. Then, the nonlinear discrete-time neural
network (5.1) an Hu filter (5.5) can be designed such that the filtering error
system (5.6) with time-varying delay 7(k) satisfying (5.2) if there exist P, = Pl >
0, ,=PI'>0, Q=QT >0, Ar, Bp, Cr, Dp, T =diag{t) ts,... , ty} >
0, S = diag{si, sa, ..., Sn} > 0 satisfying the following conditions

MO MlTpl M2TP2 M?)T

m=|* h 0 01 <o (5.20)
* * —P 0
* * * -1

where My, My, My, M are defined in Theorem 5.1.2. Moreover, the filter param-
eters of the form (5.5) is given as follows

Ap = =Py 'Ap, Bp = —P; 'Bp, Cp = =Cp, Dp = Dp.
Proof Asin Theorem 5.1.2, we consider the following Lypunov function candidate

V(k) = Vi(k) + Va(k) + Va(k) + Va(k),

where
Vi(k) = o7 (W) Pra(h), Va(k) = T (W)Poz(h), Valk) = 3 4T (DQal),
I1=k—(k)
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One may show, with the same argument as in the proof of Theorem 5.1.1, that
the Lyapunov difference along any trajectory of solution of (5.6) satisfies

’ﬂ—Qi’fJ‘ {fﬁ(kg))r [E Lz} { (56((1{2))]

22 [ (ol - (fk);))] [v 12} L(fk—(@)}))]

<y (k}) |:M0 + MlTlel + MQTP2M2] ?j(k)v

where
[P, 2L T+7Q P, 0 —2L,T 0 0]
* * —@Q — 218 0 =255 0
MO - )
* * * 2T 0 0
* * * * —28 0
* * * * * 0

Ml == [Al 0 O AQ A3 B],MQ = [/Il _AF 0 AQ /Ig B], Al == Al —BFC'1,
Ay = Ay — BpCy, Ay = A3 — BpC3, B=B—BpD, T =1 —7 +1,
(k) = [T (k) &7 (k) =7 (k = 7(k)) fT(2(k)) ¢" (x(k — (k) w(k)]".

We are now ready to deal with the H,, performance of the filtering process.

Denote
n

J(n) =Y [e" (k)e(k) = 7w (k)w(k)],

k=0
where n is any nonnegative integer. We will now show that J(n) < 0.
Under the zero initial condition, we get

n) < Z [QT(k)[Mo + MlTlel + MQTP2M2 + MSTMBT]ﬂ(k’)]a (5.21)

where
[P, — 2L, T +7Q P, 0 —2L,T 0 0 ]
* —P 0 0 0 0
A * * —Q — 2V, S 0 =2V, 8 0
P — * * * =2T 0 0 (
* * * * —25 0
i * * * * * —~*1 |
Mlz[Al 00A2 A3 ] [Al —AFOAQ Ag ] [Kl —OFOKQ K3 G],

Ky, = K, — DpCy, Ky = K2 — DpCh, Ky = K — DF03, G =G —DgD,
g(k) = [a" (k) 2" (k) «" (k — 7(k)) f*(x(k)) g" (2(k = 7(k))) w(k)]".
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As, the filter parameters of the form (5.5) is designed as follows
Ap = —Py'Ap,Bp = —P; 'Bp,Cp = —Cp, Dp = Dp.

Thus, by Lemma 2.4.15 and (5.18), we obtain M, + ]\7[1TP1M1 + MQTPQMQ +
My My < 0, which implies that J(n) < 0 from (5.21). Let n — oo, we obtain

lellz < llwll2-

This completes the proof of the theorem.

Example 5.2.2 Consider the nonlinear NNs (5.1) where

0.1 0 —0.1 0.1 -01 0
A;=1(01 04 01|, A =101 -025 0 |,
01 0 04 0 —02 —0.1
02 01 0 -
2 —04 04
A;=[-02 03 01],C = {_002 002 81 :
| 0.1 —02 03 [ ' -
0.04 —0.02 0.04 —-0.26 023 —0.12
02 — 9 CS == 9
0.02 0.04 0.01 —-0.29 0.04 —0.09
K, —]02 03 0 K, — -03 0 01 |
02 0 03] 02 -02 0
i ; 08 0 0 -03 0 0
0.1 -02 -0.1
Ks=10y o1 o1l T=]0 09 0f, L=} 0 02 0],
-4 ' - 0 0 07 0 0 0.1
-012 0 0 02 0 0 -0.2 0
Vi=| 0 04 0|,V=|0 -01 0 |,B=]|-01 0.1},
0 0 0 0 0 —0.2 0 02
0.2 0.1 0.1 —0.1 1 0
D_[0.1 0.2]’ _{0 0.3]’1_[0 1}’

s X
v =1.3999, 7(k) =4+ sin(g), 7 =3, =5, fi(s) = tanh(0.6s) — 0.2sin s,

fo(s) = tanh(—0.45), fs(s) = tanh(—0.2s), gi(s) = tanh(—0.4s) 4 0.2sin s,
1
Ck+1

By using the Matlab LMI toolbox, we can solve for P, , P,, @), S and T, which
satisfy the conditions (5.18) in Theorem 5.1.2. Thus, the error system (5.6) is

g2(s) = tanh(0.2s), gs(s) = tanh(0.4s), w(k)
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asymptotically stable. A set of solutions of (5.6) are given below

2.8402  —0.3187 —0.0675 1.9960 —-0.3677 —0.1774
P = [-0.3187 2.1536 0.1289 |, P,= [-0.3677 1.7160 —0.2612],
—0.0675  0.1289 2.2039 —0.1774 —-0.2612  1.7863
[ 1.4326 —0.0158 0.0191 1.7245 0 0
Q= 1-0.0158 1.3882 —0.0826|, S = 0 1.7245 0 )
| 0.0191 —0.0826 1.2292 0 0 1.7245
[4.1849 0 0
T = 0 4.1849 0
| 0 0 4.1849
Then, the corresponding filter parameters are
—0.1156 0.1235 —0.4062 0.4130 —0.3012
Ap = [-0.1067 0.3007 —0.2127| ,Br = |—0.1202 —0.3121
—0.1206 0.2765 —0.4026 —0.1303  0.3021
O — —0.1056 —0.2104 0.3014 ~10.2515  —0.1051
P 1-02026 03215 —0.1905| " " |0.3451  0.4062 |
0.1701 —0.0869 0.6611 —0.8917  0.5400
Ap = [0.1091 —0.3984 0.1105| ,Bp = | 0.3241 0.5037 |,
0.1671 —0.3935 0.5915 0.2746  —0.6746

CTF:OF, DF:DF7

and by solving the condition (5.6), the minimum value v may be calculated as

Ymin = 0.4565 in Example 5.2.2 is feasible.
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Figure 5.1: The trajectory of solutions z(k) of system (5.1) in Example 5.2.2.
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Figure 5.2: The trajectory of solutions Z(k) of system (5.5) in Example 5.2.2.
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Figure 5.3: The trajectory of solutions Z(k) of system (5.6) in Example 5.2.2.

Example 5.2.3 Consider the nonlinear NNs (5.1) where

05 0 0.1 02 01 0
A =101 —-04 01|, A =101 02 0|,
01 0 04 0.1 02 0.1]
0.1 0 0.1
1 8 0.7
As;=101 02 0|, Clz[_(m gg 06],
01 0 0.1 ‘ ‘ ‘
\ 08 0 0
—0.1 1
K, = _81 _81 00],L1: 0 09 0],
- ’ 0o 0 0.7
—03 0 0 —0.12 0 0
el ol To20 0 ), m=|l © 04 0f,
L0 0 0.1 0 0 0
02 0 0 —-02 0
V=10 —-01 0 |,B=|-01 01|, D= {8‘2 _ooﬂ’
0 0 —02 0 02 ' '

k
I= lé (1)] .y = 0.8, 7(k) :4+sin(§), n=1, m=2

By using the Matlab LMI toolbox, we can solve for P, , P, ), S and T', which
satisfy the conditions (5.18) in Theorem 5.1.2. Thus, the error system (5.6) is
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asymptotically stable. A set of solutions of (5.6) are given below

0.9971  —0.1660 —0.0475 1.0179  —0.1341 —0.1319
P = [-0.1660 1.2169 —0.0709|, P, = |—0.1341 0.6369 —0.2239] ,
—0.0475 —0.0709  1.1162 —0.1319 —0.2239  0.9074
[ 0.6446  0.0169 —0.0195 0.7035 0 0
Q=1 0.0169 07178 0.0159 |, S= 0 0.7035 0 ,
| —0.0195 0.0159  0.6222 0 0 0.7035
2.0623 0 0
T = 0 2.0623 0
0 0 2.0623
The corresponding filter parameters are
0.2173 —0.1319  0.0590 0.2057 —0.1876
Ap = 1-0.2965 —0.2322 0.4101 |, B = |0.3118 —0.4662
0.1903 —0.1228 —0.1073 0.0516 —0.2525

Remark 5.2.4 We now compare our obtained results with those obtained in [21].
In our main results, we derived asymptotically stable conditions for discrete-time
nonlinear system, our system is in the following form

x(k+1)= Ajx(k)+ Asf(z(k)) + Asg(z(k — 7(k))) + Bw(k)
(k) = Cix(k) 4+ Dw(k)

)
5.22
z2(k) = Kiz(k) (5:22)
$(l€)=¢(l€), k=-m,m+1,...,0,
We design a full-order filter for system (5.22) as follows:
&(k +1) =Api(k) + Bry(k), #(0)=0 (5.23)

(k) =K2(k).

Then, we obtained the filter error dynamics as

T(k+1) = Aye(k) — Api(k) + Ao f (x(k)) + Asg(x(k — 7(k))) + Bw(k)
e(k) = Kyx(k) — Kyz(k)
z(k)=o¢(k), k=-m,mn+1,...,0,
(5.24)
where 141 :AI_BFCI ] AQ :AQ—BFCQ y Ag :A3—3F03 3 B:B—BFD
If we consider system without stochastic disturbance and without uncertain-
ties, the system considered in [21] and in this thesis are the same. Moreover,
in Example 5.2.3, if we let 74 = 1 and 7, = 2, then by using our main results
(Theorem 5.1.2), the minimum value v may be calculated as v, = 0.1221. How-
ever, by using LMI in the main results of [21], the H,, filter in Example 5.2.3 is
infeasible.





