Chapter 6

Conclusion

In this thesis, we study the stability analysis problem for discrete-time neural
networks with time-varying delays. The system under study involve stochastic
disturbance, linear parameter dependent, norm bounded uncertainties. We used
the Lyapunov stability theory, a discrete type inequality and S-procedure as our
main tools. First, we obtain sufficient condition of LPD and LPD stochastic
neural networks in term of LMIs which are solvable by several available algo-
rithms. Next, we consider global stability problem of nonlinear difference with
time-varying delays by using some discrete types inequalities. Finally, we study
the problem of H, filter for discrete-time neural networks with time-varying de-
lays. The result have been derived in term of LMIs which are easily checked using
the LMI toolbox in MATLAB. Numerical examples are also given to show the
effectiveness of our theoretical results.

The results of this thesis are summarized as follows.

6.1 Robust Stability Criteria of LPD Neural Networks
with time-varying delay

1. The origin of system (3.7) with polytopic type uncertainties (3.2) is robustly
stable if there exist P, = PF' > 0, Q; = QF > 0, T;, = diag{ti;, tos, -, tni} >
0, S; = diag{s1;, S2i,.-.,Sni} > 0 and scalars eg; > 0, ¢; > 0 and ey; > 0, i =
1,2,..., N satisfying the following conditions
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((l) Mi,i,i+Ni<_Ia7::1727---31\];
. 1
(ZZ) Mi,i,j + Mj,i,i + Mi,j,i + 2Nz + Nj < m[,
i=1,2,. .. N, i+j j=12. . . N:
(ZZ’L) Mi,j,l + Mi,l,j -+ Mj,i,l -+ Mj,l,i + Ml,i,j + Ml,j,i

+2N; + 2N, + 2N, < I,

(N —1)
L 1=1,2,.... N—-2, y=:+1,2,..., N—-1,1=1,2,...,N,
where
—§011 0 w13 Yuu Y15 Pi6 9017-
* 0 0 0 0 0 0
* * * P31 P35 P36 P37
Mi,j,l = | * * * * P45 P46 P47 |
* * * * * P56  Ps7
* * * * * Y6  Per
| * * * * * * el
1,09 0 —2L,T,; 0 0 0 0 |
0 —Q; — 2V1S; 0 —2V5.S; 0 0 0
—2L5T; 0 H33(i) 0 0 0 0
N, = 0 —2V5.S; 0 H44(i) 0 0 0
0 0 0 0 H55(z') 0 0
0 0 0 0 0 H66(i) 0
0 0 0 0 0 0 H77(z')

and p11 = AT PjA;, p13 = —ATPW,, p1u = —ATP;Wy, @15 = AT P;Hy,

16 = —AT'PiH, 17 = —ATPjHy, o34 =i’ P;Why, @35 = —W;I P;Hy,

P36 = I/ViTPjH- P37 = W@-TPth P45 = —Wf;Pme P16 = WEPjH,

PYar = Wf;Pth Ps6 = —HOTPz'Ha P57 = —HgHHh P66 = HTPZ'H7

wer = H'PH,, @77 = H PH,

T=n-n+1 [[,,(0) = e Ef Eo — P+ 7Q; — 2L, T;, ls3(¢) = —2T; +e;ETE,

[1u(7) = =2Si + e BT By, [ls5(0) = —eaid, [lgs(i) = —eid, Tl77(i) = —eul,

- +- + -
o . +1— 47— 41— T 17+ I3+l I+
Ll— dlag(llll7l2l27"'7lnln)7 Lg—dlag(—1217—222,...,—"2n),
+ - + - + —
— & o= oy~ +0y— — i vy Fv vy Fv Y +Vn
Vi = diag(vi vy ,v5v,,...,0 v, ) and V5 = diag(— -5+, =252, ..., — 20,
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6.2 Robust stability of stochastic LPD neural net-
works with time-varying delay

1. The DSNNs (3.22) with polytopic type uncertainties (3.23) is robustly sta-
ble in the mean square if there exist B, = PI' > 0, Q; = QF > 0, T, =
diag{t1;, toi, ..., tni} >0, S; = diag{s1s, $2i,- .-, Sni} > 0 and scalars eg; > 0, €; >
0, e;>0and A\; >0,i=1,2,..., N satisfying the following conditions

(Z) Mi7i,i+Ni<—I, 1=1,2,..., N,

.. 1
(46) M+ M+ M +2N; + N; < —(N — 1)217

i=1,2,....N, i#j, j=12,... N:
(t30) M1+ Mg+ M+ M+ My + M,

6
ON, + 2N, + 2N, < —> T,
e ey el < (v Ty

i=1,2...,N-2 j=i+1,2,....N—1,1=1,2,...,N;
(iv) P, < A1,

where
(011 0 ¢35 via @15 P16 P17
* 0 0 0 0 0 0
* * * P34 P35 P36 P37
M; =] * * * * Pas  Pa6 Pat|
% * g * - P56 Ps7
* * * * * P66 Lot
| * * * * * * ored
RINO) 0 —2L,T; 0 0 0 0 ]
0 [15(2) 0 —2V5S; 0 0 0
—2L5T; 0 H33(i) 0 0 0 0
N, = 0 —2V4S; 0 [ (%) 0 0 0 ’
0 0 0 0 H55(i) 0 0
0 0 0 0 0 H66(i) 0
0 0 0 0 0 0 H77(i)

Hll<i) = eoiEgEo - Pz + %Qz o 2L1T; + )\:pll, HQQ(Z) = _Qz -3 2‘/151 + )\;kpgl,
[[s5(0) = 2T + ;BT E, [],(i) = =28 + e, BV By, [[55(0) = —enil,

H66(i) =—el, H??(i) =—eul, 7T=1—11 +1,

T + -
T +1— g+7— 47— T 7+l l5+1 Ir+1
Ll—dlag(llll7l2l27...,lnln>,LQ—dlag(_1217_2227...,_n2n>7
ST +o-
— o= o Fa— +0y— — di vy Fv Vg Fv Un +0p
Vi = diag(v vy , 030y, ..., v v, ), and Vy = diag(— =25+, — 252, .., —=5o),



75

6.3 New discrete type inequalities and global
stability of nonlinear difference equations

1. Let g e Ry, h; € ZF,i=1,...7; p,q. € RT, where 0 = hg < hy < ... < h,
and Z% <p <1, and let {z;},cz-n be a sequence of real numbers satisfying

i=0
the inequality

Az, < —pzx, + Zqixn_hi, ne 7°. (6.1)
=0
Then there exists A\g € (0,1) such that

r, <max{0, 20,7 1,...,T_p N, n€Z
Moreover, A\gmight be chosen as the smallest root of the polynomial
PA) =N — (T—p+ o)\ — A — g Nt — g, (6.2)
which lies in the interval (0, 1).

2. Let p,a;,3; € RY, h; € Z*, i = 1,...r, where 0 = hg < hy < ... < h,,

Z a; = 1 and Hﬁi < p < 1. Let {x,},ez-n be a sequence of real numbers such
i=0 i=0
that ;" , are defined for all i = 1,...7;n € Z° which satisfies the inequality

T
Az, < —px, + Hﬁixzi_hi, neZ°.
i=0

Then there exists A\g € (0,1) such that
r, <max{0, 70,7 _1,...,T_p N, n€Z

Moreover, A\g might be chosen as the smallest root of the function

T

r —th‘@z‘
F(A) =X— (Hﬁ,-)A i=1 +p—1

1=0

which lies in the interval (0,1).

3. Assume that there exist ¢ € RY, h; € ZT, i = 1,...r; ¢, € RT, where

Z% < p < 1 such that
i=0

‘f(na Tny Tn—hyy--- 7$n*hr)‘ < Z q; ’mn*hi ) (63)
=0
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for all (n, Zp, Tp_nys -, Tn_n,) € Z° x R™™L. Then, there exists Ay € (0,1) such
that every solution {z,} of (4.5) satisfies

|z, | < ( max {|x,|}> o, n€Z,

—h,<i<0

where Ag is chosen as in Theorem 4.1.1.

4. Assume that there exist p,a;, 5; € RY, h; € ZT,i=1,...r,where ) |_ o; =1
and []'_, 8; < p < 1 such that

Qg
)

r
’f(n7 Tn, '/I"nfhlv SO 7xn7h,«)| S Hﬁz ’xnfhi
=0

forall (n,p, Tn_nys -3 Tpn,) € Z° x R™™L. Then there exists Ay € (0,1)such
that every solution {x,} of (4.5) satisfies

ol < (g {hel} ) 35, me 2

where )\g is chosen as in Theorem 4.1.2.

6.4 Global exponential stability of nonlinear discrete-
time neural networks with time-varying delays
l.Letg; eRy, k; €ZT,i=1,...7; p,g. € RT, where 0 = ky < k1 < ... < k,and
i% < p <1, and let {z;},cz-+ be a sequence of real numbers satisfying the
iiggquality .
Az, < —pzx, + zr:qii:mn_j, n e 7Z°
=0 j=0
Then there exists A\g € (0,1) such that
z, <max{0,20,7_1,...,T_p, }As, n € Z°.

Moreover, Ao might be chosen as the smallest root of the polynomial
k1 k2 k.
PO) = X = (1= A = 0 3N gy 3N gy 3N (6.4)
=0 j=0 j=0
which lies in the interval (0, 1).

2. The equilibrium point of system (4.12) is globally exponentially stable if

M
Coax AN+ 1) (75 + DI Bjl| < 1, (6.5)

j=1

where | = max;(L;) and ¢pax = max;(c;).
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6.5 H. filtering problem for nonlinear discrete-time
system with time-varying delay

1. Given the filter parameters Ap, Br, Cr and Dp. Then, the filtering error sys-
tem (5.6) with time-varying delay 7(k) satisfying (5.2) with w(k) = 0 is asymp-
totically stable if there exist P, = Pl > 0, P, = P >0, Q = QT > 0,
T = diag{ty,ta,...,t,} >0, S = diag{s1, s2,...,s,} > 0 satisfying the following

conditions
M, MlT P, M2T P,

M= % -P 0 <0,
* * —P
where _
—P, =20 T+7Q P 0 —2L,T 0
* —P 0 0 0
My = * * —@Q —2V1S 0 =258 |,
* * * =2T 0
* * * * -25

Ml — [Al 00A2 Ag], M2 - [Al —AF 0.42 Ag], Al - Al_BFCI 5 A2 = AQ—BFCQ7
A3:A3—BF03, 72:7'2—7'14‘1.

2. Given the filter parameters Ap, Bp, Cr, D and scalar v > 0. Then, the fil-
tering error system (5.6) with time-varying delay 7(k) satisfying (5.2). is asymp-
totically stable if there exist P, = PI > 0, P, = Pl >0, Q = QT > 0,
T = diag{ty,ta,...,t,} >0, S = diag{si, 2, ..., s,} > 0 satisfying the following

conditions : - o . P
My M, P, My P, M;s

M= =i 0 0 1< 0,
* * —bB 0
* * * -1
where
—P,—2L,T+7Q B 0 —2L,T 0 0 ]
* P 0 0 0 0
A * * —@Q — 21 S 0 —2WLbS 0
MO = )
* * * =2T 0 0
* * * * —25 0
* * * * * —~1 |

Mlz[AloOAz Ag B],MQZ[A1 —AFO/IQ Ag B],MgZ[K1 —CFOKQ Kg G],
Ay = Ay — BpCy, Ay = Ay — BrpCy, A3 = A3 — BrC3, B= B — BrpD,
Ky =K, — DpCy, Ky =Ky — DpCy, K3 = K3 — DpCs, G=G — DgD,

:7'2—7'1—|'1.

>
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3. Given the scalar v > 0. Then, the nonlinear discrete-time neural network
(5.1) an Hy filter (5.5) can be designed such that the filtering error system (5.6)
with time-varying delay 7(k) satisfying (5.2) if there exist P, = Pl >0, P, =
PQT >0, Q= QT > 0, AF, BF, CTF, EF, T = diag{tl,tg,...,tn} > 0,
S = diag{si, $2, ..., Sp} > 0 satisfying the following conditions :

My M,"P, My P, M
* —P; 0 0
* * -bB 0
* * * —1I

M = <0

where My, M, M,, M are defined in Theorem 5.1.2. Moreover, the filter param-
eters of the form (5.5) is designed as follows

Ap = —P;'Ap,Bp = —P;'Bp,Cr = —Cp, Dp = Dp.





