

Chapter 2

Basic Concepts and Preliminaries

The purpose of this chapter is to collect notations, terminologies and elementary results used throughout the thesis.

2.1 Metric Spaces

Definition 2.1.1. [56] A *metric space* is a pair (X, d) , where X is a set and d is a metric on X (or distance function on X), that is, a real- valued function defined on $X \times X$ such that for all $x, y, z \in X$ we have:

- (1) $d(x, y) \geq 0$;
- (2) $d(x, y) = 0$ if and only if $x = y$;
- (3) $d(x, y) = d(y, x)$ (symmetry);
- (4) $d(x, y) \leq d(x, z) + d(z, y)$ (triangle inequality).

Example 2.1.2. [12]

- (1) $X = \mathbb{R}$; $d(x, y) = |x - y|$, $\forall x, y \in \mathbb{R}$ is a metric on \mathbb{R} ;
- (2) $X = \mathbb{R}^n$; $d(x, y) = [\sum_{i=1}^n (x_i - y_i)^2]^{1/2}$, $x = (x_1, x_2, \dots, x_n)$, $y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, is a metric on \mathbb{R}^n (euclidian metric). The following mappings:

$$\delta(x, y) = \sum_{i=1}^n |x_i - y_i|, \quad x, y \in \mathbb{R}^n,$$
$$\rho(x, y) = \max_{1 \leq i \leq n} |x_i - y_i|, \quad x, y \in \mathbb{R}^n,$$

are also metrics on \mathbb{R}^n ;

- (3) Let $X = \{f : [a, b] \rightarrow \mathbb{R} : f \text{ is continuous}\}$. We define $d : X \times X \rightarrow \mathbb{R}^+$ by

$$d(f, g) = \max_{x \in [a, b]} |f(x) - g(x)|, \quad \text{for all } f, g \in X.$$

Then d is a metric on X (Chebyshev metric); the metric space (X, d) is denoted by $C[a, b]$;

- (4) Let X be as (3) and let $\delta : X \times X \rightarrow \mathbb{R}^+$ be defined by

$$\delta(f, g) = \max_{x \in [a, b]} (|f(x) - g(x)| e^{-\tau|x-x_0|}),$$

for all $f, g \in X$ where $\tau > 0$ is a constant and x_0 is fixed in $[a, b]$.

Then δ is a metric on X (Bielecki metric), and the metric space (X, δ) is denoted by $B[a, b]$.

Definition 2.1.3. [12] Let (X, d) be a metric space. The topology having as basis the family of all open balls, $B(x, r)$, $x \in X$, $r > 0$, is called the *topology induced by the metric d*.

Definition 2.1.4. [12] Two metrics d_1 and d_2 defined on the set X are called *equivalent* if they induce the same topology on X .

Remark 2.1.5. [12]

(1) Two metrics d_1 and d_2 are metrically equivalent if there exist two constants $m > 0$ and $M > 0$ such that

$$md_1(x, y) \leq d_2(x, y) \leq Md_1(x, y), \quad \text{for all } x, y \in X.$$

(2) In Example 2.1.2, the metrics d , δ and ρ from (2) are equivalent; the metrics d from (3) and ρ from (4) are equivalent as well.

Definition 2.1.6. [56] A sequence $\{x_n\}$ in a metric space $X = (X, d)$ is said to be *convergent* if there exists $x \in X$ such that $\lim_{n \rightarrow \infty} d(x_n, x) = 0$.

Definition 2.1.7. [56] A sequence $\{x_n\}$ in a metric space $X = (X, d)$ is said to be *Cauchy* if for every $\epsilon > 0$ there exists $N(\epsilon) \in \mathbb{N}$ such that $d(x_m, x_n) < \epsilon$ for every $m, n \geq N(\epsilon)$.

Definition 2.1.8. [56] A metric space (X, d) is said to be *complete* if every Cauchy sequence in X converges.

Theorem 2.1.9. [56] *Every convergent sequence in a metric space is a Cauchy sequence.*

Theorem 2.1.10. [65] *Let $\{x_n\}$ be a sequence in \mathbb{R} . If every subsequence $\{x_{n_k}\}$ of $\{x_n\}$ has a convergent subsequence, then $\{x_n\}$ is convergent.*

Definition 2.1.11. [65] Let (X, d) be a metric space. A subset F of X is *closed* if $\{x_n\} \subset F$ and $x_n \rightarrow x$ imply $x \in F$.

Theorem 2.1.12. [103] **(The fundamental properties of closed sets)** *Let (X, d) be a metric space. Then the following conclusions hold:*

(1) X and \emptyset are closed sets;
 (2) any intersection of closed sets in X is closed, that is,

$$F_\mu \ (\mu \in M) \text{ are closed} \Rightarrow \bigcap_{\mu \in M} F_\mu \text{ is closed};$$

(3) any finite union of closed sets in X is closed, that is,

$$F_i \ (i = 1, 2, \dots, m) \text{ are closed} \Rightarrow \bigcup_{i=1}^m F_i \text{ is closed.}$$

Definition 2.1.13. [103] Let X and Y be metric spaces and let f be a mapping of X into Y . Then f is said to be *continuous* at x_0 in X if

$$x_n \rightarrow x_0 \Rightarrow f(x_n) \rightarrow f(x_0).$$

A mapping f of X into Y is continuous if it is continuous at each x in X .

2.2 Banach Spaces and Hilbert spaces

In this section, we give definition and geometric properties in Banach spaces and Hilbert spaces.

Definition 2.2.1. [65] Let X be a linear space (or vector space). A *norm* on X is a real-valued function $\|\cdot\|$ on X such that the following conditions are satisfied by all members x and y of X and each scalar α :

- (1) $\|x\| \geq 0$ and $\|x\| = 0$ if and only if $x = 0$;
- (2) $\|\alpha x\| = |\alpha| \|x\|$;
- (3) $\|x + y\| \leq \|x\| + \|y\|$ (triangle inequality)

The ordered pair $(X, \|\cdot\|)$ is called a *normed space*.

Definition 2.2.2. [65] Let X be a normed space. The *metric induced by the norm* of X is the metric d on X defined by $d(x, y) = \|x - y\|$ for all $x, y \in X$. The *norm topology* of X is the topology obtained from this metric.

Definition 2.2.3. [56] Let x be an element and $\{x_n\}$ a sequence in a normed space X . Then $\{x_n\}$ converges *strongly* to x written by $x_n \rightarrow x$, if $\lim_{n \rightarrow \infty} \|x_n - x\| = 0$.

Definition 2.2.4. [65] A Banach norm or complete norm is a norm that induces a complete metric. A normed space is a *Banach space* or *B-space* or *complete normed space* if its norm is a Banach norm.

Definition 2.2.5. Let X be a normed space and $B(X, \mathbb{R})$ the set of all continuous linear functionals of X into \mathbb{R} . Then $X^* = B(X, \mathbb{R})$ is called the *dual space* of X .

Definition 2.2.6. [65] Let x be an element and $\{x_n\}$ a sequence in a normed space X . Then $\{x_n\}$ converges *weakly* to x written by $x_n \rightharpoonup x$, if $f(x_n) \rightarrow f(x)$ for all $f \in X^*$.

Define the mapping $\varphi : X \rightarrow X^{**}$ by $\varphi(x) = f_x$, $x \in X$. Then φ is called the *natural embedding mapping* from X into X^{**} and has the following properties:

- (1) φ is linear: $\varphi(\alpha x + \beta y) = \alpha\varphi(x) + \beta\varphi(y)$ for all $x, y \in X$ and for all $\alpha, \beta \in \mathbb{F}$;
- (2) $\varphi(x)$ is isometry: $\|\varphi(x)\| = \|x\|$ for all $x \in X$.

Definition 2.2.7. [2] A normed space X is said to be *reflexive* if the natural embedding mapping $\varphi : X \rightarrow X^{**}$ is onto. In this case, we write $X \cong X^{**}$ or $X = X^{**}$.

Lemma 2.2.8. [65] Let X be a normed space. Then (a) \Rightarrow (b) \Rightarrow (c) in the following collection of statements.

- (a) The space X is reflexive.
- (b) Every bounded sequence in X has a weakly convergent subsequence.
- (c) Whenever (C_n) is a sequence of nonempty closed bounded convex sets in X such that $C_{n+1} \subset C_n$ for each n , it follows that $\bigcap_{n=1}^{\infty} C_n \neq \emptyset$.

Remark 2.2.9. [2]

- (1) Every finite-dimensional Banach space is reflexive.
- (2) ℓ_p and L_p for $1 < p < \infty$ are reflexive Banach spaces.
- (3) Every Hilbert space is reflexive.
- (4) ℓ_1, ℓ_∞, L_1 and L_∞ are not reflexive.
- (5) c and c_0 are not reflexive.

Definition 2.2.10. [2, 102] A Banach space X is said to be *strictly convex* if

$$\|x\| = \|y\| = 1 \text{ and } x \neq y \text{ imply } \left\| \frac{x+y}{2} \right\| < 1.$$

Lemma 2.2.11. [2, 102] A Banach space X is strictly convex if $x, y \in X$ with $\|x\| = \|y\| = 1$ and $\|(1-\lambda)x + \lambda y\| = 1$ for all $\lambda \in (0, 1)$ holds if and only if $x = y$.

Theorem 2.2.12. [2] Let C be a nonempty, closed and convex subset of a reflexive and strictly convex Banach space X . Then for $x \in X$, there exists a unique point $z_x \in C$ such that $\|x - z_x\| = D(x, C) = \inf\{\|x - y\| : y \in C\}$.

Example 2.2.13. [2] Let $X = \mathbb{R}^n$, $n \geq 2$ with norm $\|\cdot\|_2$ defined by $\|x\|_2 = \left(\sum_{i=1}^n x_i^2 \right)^{1/2}$, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. Then X is strictly convex.

Example 2.2.14. [2] Let $X = \mathbb{R}^n$, $n \geq 2$ with norm $\|\cdot\|_1$ defined by $\|x\|_1 = \sum_{i=1}^n |x_i|$, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. Then X is not strictly convex.

Example 2.2.15. [2] Let $X = \mathbb{R}^n$, $n \geq 2$ with norm $\|\cdot\|_\infty$ defined by $\|x\|_\infty = \max_{1 \leq i \leq n} |x_i|$, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. Then X is not strictly convex.

Definition 2.2.16. [2, 102] A Banach space X is called *uniformly convex* if for any $\varepsilon \in (0, 2]$, there exists a $\delta = \delta(\varepsilon) > 0$ such that if $x, y \in X$ with $\|x\| = \|y\| = 1$ and $\|x - y\| \geq \varepsilon$, then $\left\| \frac{x+y}{2} \right\| \leq 1 - \delta$.

Let X be a Banach space. The *modulus of convexity* of X is the function $\delta_X : (0, 2] \rightarrow [0, 1]$ defined by

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : \|x\| = \|y\| = 1; \|x - y\| \geq \varepsilon \right\}.$$

Lemma 2.2.17. [2] A Banach space X is uniformly convex if and only if $\delta_X(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$.

Remark 2.2.18. [2]

- (1) $\delta_X(\varepsilon)/\varepsilon$ is a nondecreasing function on $(0, 2]$.
- (2) δ_X is a convex and continuous function.

Example 2.2.19. [2]

- (1) $\delta_H(\varepsilon) = 1 - \sqrt{1 - (\varepsilon/2)^2}$.
- (2) $\delta_{\ell_p}(\varepsilon) = 1 - (1 - (\varepsilon/2)^p)^{p/2}$ ($2 \leq p < \infty$).

(3) If X is uniformly convex, then $\delta_X(\varepsilon) \leq 1 - \sqrt{1 - (\varepsilon/2)^2}$.

Remark 2.2.20. [2]

- (1) Every Hilbert space is uniformly convex.
- (2) The Banach spaces ℓ_p and L_p with $(1 < p < \infty)$ are uniformly convex.
- (3) The Banach spaces $\ell_1, \ell_\infty, c, c_0, L_1$ and L_∞ are not uniformly convex.

Theorem 2.2.21. [102] *Let X be a Banach space. Then the following conditions are equivalent:*

(1) X is uniformly convex;

(2) if for any two sequences $\{x_n\}, \{y_n\}$ in X ,

$$\lim_{n \rightarrow \infty} \|x_n\| = \lim_{n \rightarrow \infty} \|y_n\| = 1 \text{ and } \lim_{n \rightarrow \infty} \|x_n + y_n\| = 2,$$

then $\lim_{n \rightarrow \infty} \|x_n - y_n\| = 0$;

(3) for any ϵ with $0 < \epsilon \leq 2$, there exists $\delta > 0$ depending only on $\epsilon > 0$ such that

$$\left\| \frac{x+y}{2} \right\| \leq 1 - \delta$$

for any $x, y \in X$ with $\|x\| = \|y\| = 1$ and $\|x - y\| \geq \epsilon$.

Theorem 2.2.22. [2, 102] *Every uniformly convex Banach space is strictly convex and reflexive.*

Example 2.2.23. [2] Let $X = c_0$ and let $\beta > 0$ with the norm $\|\cdot\|_\beta$ defined by

$$\|x\|_\beta = \|x\|_{c_0} + \beta \left(\sum_{i=1}^n \left(\frac{x_i}{i} \right)^2 \right), \quad x = \{x_i\} \in c_0.$$

The space $(c_0, \|\cdot\|_\beta)$ for $\beta > 0$ are strictly convex, but not uniformly convex.

Example 2.2.24. [2] Let $X = \mathbb{R}^n$, $n \geq 2$ with the norm $\|\cdot\|_1$ defined by $\|x\|_1 = \sum_{i=1}^n |x_i|$. Then X is reflexive, but not uniformly convex.

Definition 2.2.25. [102] Let X be a Banach space. The multi-valued mapping $J : X \rightarrow 2^{X^*}$ is called the *duality mapping* if

$$J(x) = \{x^* \in X^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$$

for all $x \in X$, where $\langle \cdot, \cdot \rangle$ denotes the pairing between X and X^* .

Definition 2.2.26. [102] Let X be a Banach space and let $S(X) = \{x \in X : \|x\| = 1\}$. Then X is said to be *smooth* if the limit

$$\lim_{t \rightarrow 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2.2.1}$$

exists for each $x, y \in S(X)$. In this case the norm of X is said to be *Gâteaux differentiable*. The space X is said to have a *uniformly Gâteaux differentiable* norm if for each $y \in S(X)$, the limit (2.2.1) is attained uniformly for $x \in S(X)$. The norm of X is said to be *Fréchet differentiable* if for each $x \in X$, the limit (2.2.1) is attained uniformly for $y \in S(X)$. The norm of X is said to be *uniformly Fréchet differentiable* (and X is said to be *uniformly smooth*) if the limit (2.2.1) is attained uniformly for $x, y \in S(X)$.

Let X be a Banach space. The *modulus of smoothness* of X is the function $\rho_X : [0, \infty) \rightarrow [0, \infty)$ defined by

$$\rho_X(t) = \sup \left\{ \frac{1}{2}(\|x+y\| + \|x-y\|) - 1 : \|x\| = 1, \|y\| \leq t \right\}.$$

Example 2.2.27. [2] Let $X = H$ a Hilbert space. Then $\rho_H(t) = \sqrt{1+t^2} - 1$ for all $t \geq 0$.

Lemma 2.2.28. [2] A Banach space X is uniformly smooth if and only if $\lim_{t \rightarrow 0} \frac{\rho_X(t)}{t} = 0$.

Definition 2.2.29. Let $p, q > 1$. A Banach space X is said to be p -uniformly convex (resp. q -uniformly smooth) if there exists a constant $c > 0$ such that $\delta_X(\varepsilon) \geq c\varepsilon^p$ (resp. $\rho_X(t) \leq ct^q$).

Remark 2.2.30. Every p -uniformly convex Banach space (resp. q -uniformly smooth Banach space) is uniformly convex (resp. uniformly smooth).

Theorem 2.2.31. [2] Every uniformly smooth Banach space is reflexive.

We next give examples of the duality mapping J in the uniformly smooth and uniformly convex Banach spaces ℓ_p , L_p and W_m^p , $1 < p < +\infty$.

Example 2.2.32. [3]

- (1) For ℓ_p , $J(x) = \|x\|_{\ell_p}^{2-p}y \in \ell_q$, where $x = \{x_1, x_2, \dots\}$ and $y = \{x_1|x_1|^{p-2}, x_2|x_2|^{p-2}, \dots\}$ with $\frac{1}{p} + \frac{1}{q} = 1$.
- (2) For L_p , $J(x) = \|x\|_{L_p}^{2-p}|x|^{p-2}x \in L_q$, where $\frac{1}{p} + \frac{1}{q} = 1$.
- (3) For W_m^p , $J(x) = \|x\|_{W_m^p}^{2-p} \sum (-1)^{|t|} D^t (|D^t x|^{p-2} D^t x) \in W_{-m}^q$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Proposition 2.2.33. [102] Let X be a Banach space and let $J : X \rightarrow 2^{X^*}$ be the duality mapping. Then

- (1) for each $x \in X$, $J(x)$ is nonempty, bounded, closed and convex;
- (2) $J(0) = \{0\}$;
- (3) for each $x \in X$ and a real α , $J(\alpha x) = \alpha J(x)$;
- (4) for $x, y \in X$, $x^* \in J(x)$ and $y^* \in J(y)$, $\langle x-y, x^*-y^* \rangle \geq 0$;
- (5) for $x, y \in X$, $y^* \in J(y)$, $\|x\|^2 - \|y\|^2 \geq 2\langle x-y, y^* \rangle$.

Proposition 2.2.34. [102] Let X be a Banach space. Then

- (1) if X is smooth, then J is single-valued;
- (2) if X is strictly convex, then J is one-to-one, that is, $x \neq y$ implies $J(x) \cap J(y) = \emptyset$;
- (3) if X is reflexive, then J is onto, that is, for each $x^* \in X^*$, there exists $x \in X$ such that $x^* \in Jx$;
- (4) if X has a Fréchet differentiable norm, then J is norm-to-norm continuous;

(5) if X is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subsets of X .

Theorem 2.2.35. [102] Let X be a Banach space. Then we have the following:

- (1) if X^* is strictly convex, then X is smooth;
- (2) if X^* is smooth, then X is strictly convex.

Remark 2.2.36. [102] The above statements are equivalent if X is a reflexive Banach space.

Theorem 2.2.37. [102] Let X be a Banach space. Then X is uniformly smooth if and only if X^* is uniformly convex.

Definition 2.2.38. [2] Let C be a subset of a Banach space X . Then C is said to be convex if $(1 - \lambda)x + (1 - \lambda)y \in C$ for all $x, y \in C$ and for all $\lambda \in (0, 1)$.

Definition 2.2.39. [2] Let X be a Banach space and let $f : X \rightarrow (-\infty, \infty)$ be a function. Then $D(f) = \{x \in X : f(x) < +\infty\}$ is called the *effective domain* of f . The function f is called *proper* if $D(f) \neq \emptyset$.

Definition 2.2.40. [2] Let X be a Banach space. A function $f : X \rightarrow (-\infty, \infty)$ is *convex* if for any $x, y \in X$ and $t \in (0, 1)$, then $f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)$.

Definition 2.2.41. [102] Let X be a Banach space. Then $f : X \rightarrow (-\infty, \infty)$ is said to be *lower semi-continuous* at $x_0 \in X$, if $\{x_n\}$ is a sequence in X such that $x_n \rightarrow x_0$ and $f(x_n) \rightarrow y$, then $f(x_0) \leq y$.

Lemma 2.2.42. [102] Let X be a Banach space, let $\{x_n\}$ be a bounded sequence of X such that $x_n \rightarrow x$. Then following inequality holds:

$$\|x\| \leq \liminf_{n \rightarrow \infty} \|x_n\|.$$

Definition 2.2.43. [74] A Banach space X is said to satisfy *Opial's condition* if $x_n \rightarrow x$ as $n \rightarrow \infty$ and $x \neq y$ imply that $\limsup_{n \rightarrow \infty} \|x_n - x\| < \limsup_{n \rightarrow \infty} \|x_n - y\|$.

It is well known [74] that all Hilbert spaces and ℓ_p spaces where $1 \leq p < \infty$, have this property, while all L_p spaces do not unless $p = 2$.

Definition 2.2.44. A Banach space X is said to have the *Kadec-Klee property* if for every sequence $\{x_n\}$ in X , $x_n \rightarrow x$ and $\|x_n\| \rightarrow \|x\|$ imply $x_n \rightarrow x$.

Theorem 2.2.45. [65] Every uniformly convex Banach space has the Kadec-Klee property.

Definition 2.2.46. [56, 103] An *inner product space* is a vector space X with an inner product defined on X . A *Hilbert space* is a complete inner product space. Here, an inner product on X is a mapping of $X \times X$ into the scalar field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} ; that is, with every pair of vector x and y there is associated a scalar which is written and is called the inner product of x and y , such that for all vectors x, y, z and scalar $\alpha \in \mathbb{F}$ we have:

- (1) $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$;

- (2) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$;
- (3) $\langle x, y \rangle = \overline{\langle y, x \rangle}$;
- (4) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.

An inner product on X defines a norm on X given by $\|x\| = \sqrt{\langle x, x \rangle}$.

Theorem 2.2.47. [103] (**The Schwarz inequality**) If x and y are any two vectors in an inner product space X , then $|\langle x, y \rangle| \leq \|x\| \|y\|$.

Theorem 2.2.48. [103] (**The parallelogram law**) If x and y are any two vectors in an inner product space X , then

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

Theorem 2.2.49. [103] Let x and y be elements in an inner product space X and let $\lambda \in (0, 1)$. Then the followings hold:

- (1) $\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2\langle x, y \rangle$;
- (2) $\|x - y\|^2 = \|x\|^2 + \|y\|^2 - 2\langle x - y, y \rangle$;
- (3) $\|\lambda x + (1 - \lambda)y\|^2 = \lambda\|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)\|x - y\|^2$.

Lemma 2.2.50. [103] Let X be an inner product space, let $\{x_n\}$ be a sequence of X and let x be an element of X . Then $x_n \rightarrow x$, if for any $y \in X$, $\langle x_n, y \rangle \rightarrow \langle x, y \rangle$.

Let C be a nonempty, closed and convex subset of a real Hilbert space H . For every point $x \in H$, there exists a unique nearest point in C , denoted by $P_C x$, such that

$$\|x - P_C x\| \leq \|x - y\|, \quad \forall y \in C.$$

P_C is called the *metric projection* of H onto C . It is well known that P_C is a nonexpansive mapping of H onto C .

Lemma 2.2.51. [42, 103] Let C be a nonempty, closed and convex subset of a real Hilbert space H and let $x \in H$. Then, for each $y \in C$, the following are equivalent:

- (1) $\langle x - P_C x, y - P_C x \rangle \leq 0$;
- (2) $\|x - P_C x\|^2 + \|P_C x - y\|^2 \leq \|x - y\|^2$.

2.3 Inequalities in Banach Spaces

In this section, we collect some useful inequalities in Banach spaces.

Lemma 2.3.1. [2] Let X be a Banach space and $J : X \rightarrow 2^{X^*}$ the duality mapping. Then we have the following:

- (1) $\|x + y\|^2 \geq \|x\|^2 + 2\langle y, j(x) \rangle$ for all $x, y \in X$, where $j(x) \in J(x)$;
- (2) $\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j(x + y) \rangle$ for all $x, y \in X$, where $j(x + y) \in J(x + y)$.

Remark 2.3.2. In a real Hilbert space H , we have the following inequality:

$$\|x + y\|^2 \leq \|x\|^2 + 2\langle y, x + y \rangle, \quad \forall x, y \in H.$$

Lemma 2.3.3. [114] Let X be a real q -uniformly smooth Banach space. Then the following inequality holds:

$$\|x + y\|^q \leq \|x\|^q + q\langle y, J_q(x) \rangle + C_q\|y\|^q,$$

for all $x, y \in X$ and for some $C_q > 0$.

Lemma 2.3.4. [31, 88, 89] Let X be a uniformly smooth Banach space. Then there exists a nondecreasing continuous function $\beta : [0, \infty) \rightarrow [0, \infty)$ with $\lim_{t \rightarrow 0^+} \beta(t) = 0$ and $\beta(ct) \leq c\beta(t)$ for $c \geq 1$ such that for all $x, y \in X$, the following inequality holds:

$$\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j(x) \rangle + \max\{\|x\|, 1\}\|y\|\beta(\|y\|).$$

Lemma 2.3.5. [114] Let X be a uniformly convex Banach space and let $r > 0$. Then there exists a strictly increasing, continuous and convex function $g : [0, 2r] \rightarrow \mathbb{R}$ such that $g(0) = 0$ and

$$\|tx + (1-t)y\|^2 \leq t\|x\|^2 + (1-t)\|y\|^2 - t(1-t)g(\|x - y\|),$$

where $x, y \in B_r = \{z \in X : \|z\| \leq r\}$ and $t \in [0, 1]$.

Lemma 2.3.6. [31, 114] Let $q > 1$ and $r > 0$ be two fixed real numbers and X be a uniformly smooth Banach space. Then there exists a continuous, strictly increasing and convex function $\Phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$, $\Phi(0) = 0$ such that for every $x, y \in B_r = \{z \in X : \|z\| \leq r\}$ we get

$$\|x + y\|^q \leq \|x\|^q + q\langle y, J_q(x) \rangle + \Phi(\|y\|). \quad (2.3.1)$$

Lemma 2.3.7. [20] Let C be a bounded, closed and convex subset of a uniformly convex Banach space X . Then there exists a strictly increasing, convex and continuous function $\gamma : [0, \infty) \rightarrow [0, \infty)$ such that $\gamma(0) = 0$ and

$$\gamma\left(\left\|T\left(\sum_{i=1}^n \lambda_i x_i\right) - \sum_{i=1}^n \lambda_i T x_i\right\|\right) \leq \max_{1 \leq j \leq k \leq n} (\|x_j - x_k\| - \|T x_j - T x_k\|)$$

for all $n \in \mathbb{N}$, $\{x_1, x_2, \dots, x_n\} \subset C$, $\{\lambda_1, \lambda_2, \dots, \lambda_n\} \subset [0, 1]$ with $\sum_{i=1}^n \lambda_i = 1$ and a nonexpansive mapping T of C into X .

2.4 Some Useful Lemmas, Propositions and Theorems

In this section, we give some useful lemmas, propositions and theorems in order to prove the main results.

Definition 2.4.1. Let B be a subset of topological vector space X . A mapping $G : B \rightarrow 2^X$ is called a *KKM mapping* if $co\{x_1, x_2, \dots, x_m\} \subset \bigcup_{i=1}^m G(x_i)$ for $x_i \in B$ and $i = 1, 2, \dots, m$, where coA denotes the *convex hull* of the set A .

Lemma 2.4.2. [37] Let B be a nonempty subset of a Hausdorff topological vector space X and let $G : B \rightarrow 2^X$ be a KKM mapping. If $G(x)$ is closed for all $x \in B$ and is compact for at least one $x \in B$, then $\bigcap_{x \in B} G(x) \neq \emptyset$.

Lemma 2.4.3. [18, 42] **Demi-closedness principle.** Assume that T is a nonexpansive self-mapping of a nonempty, closed and convex subset C of a real Banach space X . If T has a fixed point, then $I - T$ is demi-closed, that is, whenever $x_n \rightharpoonup x \in C$, and the sequence $(I - T)x_n \rightarrow y$ for some $y \in C$, it follows that $(I - T)x = y$. Here I is the identity operator of X .

Lemma 2.4.4. [123] Let X be a uniformly convex Banach space, C a nonempty, closed and convex subset of X , and $T : C \rightarrow C$ be a continuous pseudocontraction. Then $I - T$ is demi-closed at zero.

Lemma 2.4.5. [123] Let X be a reflexive Banach space which satisfies Opial's condition, C a nonempty, closed and convex subset of X , and $T : C \rightarrow C$ be a continuous pseudocontraction. Then $I - T$ is demi-closed at zero.

Lemma 2.4.6. [116] Let X be a uniformly convex Banach space, let $\{\alpha_n\}$ be a sequence of real numbers such that $0 < b \leq \alpha_n \leq c < 1$ for all $n \geq 1$, and let $\{x_n\}$ and $\{y_n\}$ be sequences in X such that $\limsup_{n \rightarrow \infty} \|x_n\| \leq d$, $\limsup_{n \rightarrow \infty} \|y_n\| \leq d$ and $\lim_{n \rightarrow \infty} \|\alpha_n x_n + (1 - \alpha_n)y_n\| = d$. Then $\lim_{n \rightarrow \infty} \|x_n - y_n\| = 0$.

Lemma 2.4.7. [98] Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in a Banach space X and let $\{b_n\}$ be the sequence in $[0, 1]$ with $0 < \liminf_{n \rightarrow \infty} b_n \leq \limsup_{n \rightarrow \infty} b_n < 1$. Suppose $x_{n+1} = (1 - b_n)y_n + b_n x_n$ for all integers $n \geq 1$ and $\limsup_{n \rightarrow \infty} (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \leq 0$. Then $\lim_{n \rightarrow \infty} \|y_n - x_n\| = 0$.

Lemma 2.4.8. [113] Assume $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \leq (1 - \gamma_n)a_n + \delta_n, \quad n \geq 1,$$

where $\{\gamma_n\}$ is a sequence in $(0, 1)$ and $\{\delta_n\}$ is a sequence such that

- (1) $\sum_{n=1}^{\infty} \gamma_n = +\infty$;
- (2) $\limsup_{n \rightarrow \infty} \delta_n / \gamma_n \leq 0$ or $\sum_{n=1}^{\infty} |\delta_n| < +\infty$.

Then $\lim_{n \rightarrow \infty} a_n = 0$.

Lemma 2.4.9. [101] Let $\{a_n\}$, $\{b_n\}$ and $\{\delta_n\}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \leq (1 + \delta_n)a_n + b_n, \quad n \geq 0.$$

If $\sum_{n=0}^{\infty} \delta_n < +\infty$ and $\sum_{n=0}^{\infty} b_n < +\infty$, then $\lim_{n \rightarrow \infty} a_n$ exists. If, in addition, $\{a_n\}$ has a subsequence converging to 0, then $\lim_{n \rightarrow \infty} a_n = 0$.

Let C be a nonempty, closed and convex subset of a Hilbert space H . Let $A : H \rightarrow H$ be a single-valued nonlinear mapping and let $M : H \rightarrow 2^H$ be a set-valued mapping. The variational inclusion is to find $\hat{x} \in H$ such that

$$\theta \in A(\hat{x}) + M(\hat{x}), \tag{2.4.1}$$

where θ is the zero vector in H . The solutions set of problem (2.4.1) is denoted by $I(A, M)$. Recall that a mapping $A : H \rightarrow H$ is called α -inverse *strongly monotone* if there exists a constant $\alpha > 0$ such that

$$\langle Ax - Ay, x - y \rangle \geq \alpha \|Ax - Ay\|^2, \quad \forall x, y \in H.$$

A set-valued mapping $M : H \rightarrow 2^H$ is called *monotone* if for all $x, y \in H$, $f \in M(x)$, and $g \in M(y)$ imply $\langle x - y, f - g \rangle \geq 0$. A monotone mapping M is *maximal* if its graph $G(M) := \{(f, x) \in H \times H : f \in M(x)\}$ of M is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping M is maximal if and only if for $(x, f) \in H \times H$, $\langle x - y, f - g \rangle \geq 0$ for all $(y, g) \in G(M)$ imply $f \in M(x)$. We define the resolvent operator $J_{M,\lambda}$ associated with M and λ as follows:

$$J_{M,\lambda}(x) = (I + \lambda M)^{-1}(x), \quad x \in H, \lambda > 0. \quad (2.4.2)$$

Lemma 2.4.10. [17] *Let $M : H \rightarrow 2^H$ be a maximal monotone mapping and $A : H \rightarrow H$ be a Lipschitz continuous mapping. Then the mapping $S = M + A : H \rightarrow 2^H$ is a maximal monotone mapping.*

Let X be a Banach space, D a nonempty, closed and convex subset of X , and C a nonempty subset of D . Let $Q : D \rightarrow C$. Then Q is said to be

(1) *sunny* if for each $x \in D$ and $t \in [0, 1]$, we have

$$Q(tx + (1 - t)Qx) = Qx;$$

(2) a *retraction* of D onto C if $Qx = x$ for all $x \in C$;

(3) a *sunny nonexpansive retraction* if Q is sunny, nonexpansive and retract onto C .

See Bruck [21], Goebel-Reich [41] and Reich [90].

Lemma 2.4.11. [91] *Let X be a uniformly smooth Banach space and C a nonempty, closed and convex subset of X . Let $T : C \rightarrow C$ be a nonexpansive mapping with a fixed point and let $z \in C$. For each $t \in (0, 1)$, let z_t be the unique solution of the equation $x = tz + (1 - t)Tx$. Then $\{z_t\}$ converges to a fixed point of T as $t \rightarrow 0$ and*

$$Qz = s - \lim_{t \rightarrow 0} z_t$$

defines the unique sunny nonexpansive retraction from C onto $F(T)$.

Lemma 2.4.12. [123] *Let C be a closed and convex subset of a uniformly smooth Banach space X , and $T : C \rightarrow C$ a nonexpansive mapping with a nonempty fixed point set $F(T)$. Then there exists a unique sunny nonexpansive retraction $Q_{F(T)} : C \rightarrow F(T)$ such that*

$$\limsup_{n \rightarrow \infty} \langle u - Q_{F(T)}u, J(x_n - Q_{F(T)}u) \rangle \leq 0,$$

for any given $u \in C$ and for any bounded approximate fixed point sequence $\{x_n\} \subset C$ of T .

Lemma 2.4.13. [100] Let X be a uniformly convex Banach space with a Fréchet differentiable norm. Let C be a closed and convex subset of X , and $\{S_n\}_{n=1}^\infty$ be a family of L_n -Lipschitzian self-mappings on C such that $\sum_{n=1}^\infty (L_n - 1) < \infty$ and $F = \bigcap_{n=1}^\infty F(S_n) \neq \emptyset$. For arbitrary $x_1 \in C$, define $x_{n+1} = S_n x_n$ for all $n \geq 1$. Then for every $p, q \in F$, $\lim_{n \rightarrow \infty} \langle x_n, j(p - q) \rangle$ exists, in particular, for all $u, v \in \omega_\omega(x_n)$, and $p, q \in F$, $\langle u - v, j(p - q) \rangle = 0$.

Lemma 2.4.14. Let X be a Banach space with the Fréchet differentiable norm. For $x \in X$, let $\beta^*(t)$ be defined for $0 < t < \infty$ by

$$\beta^*(t) = \sup_{y \in S(X)} \left| \frac{\|x + ty\|^2 - \|x\|^2}{t} - 2\langle y, j(x) \rangle \right|.$$

Then $\lim_{t \rightarrow 0^+} \beta^*(t) = 0$, and

$$\|x + h\|^2 \leq \|x\|^2 + 2\langle h, j(x) \rangle + \|h\|\beta^*(\|h\|) \quad (2.4.3)$$

for all $h \in X \setminus \{0\}$.

Proof. Let $x \in X$. Since X has the Fréchet differentiable norm, it follows that

$$\lim_{t \rightarrow 0} \sup_{y \in S(X)} \left| \frac{\frac{1}{2}\|x + ty\|^2 - \frac{1}{2}\|x\|^2}{t} - \langle y, j(x) \rangle \right| = 0.$$

Then $\lim_{t \rightarrow 0^+} \beta^*(t) = 0$ and hence

$$\left| \frac{\|x + ty\|^2 - \|x\|^2}{t} - 2\langle y, j(x) \rangle \right| \leq \beta^*(t) \quad \forall y \in S(X)$$

which implies

$$\|x + ty\|^2 \leq \|x\|^2 + 2t\langle y, j(x) \rangle + t\beta^*(t) \quad \forall y \in S(X). \quad (2.4.4)$$

Suppose $h \neq 0$. Put $y = \frac{h}{\|h\|}$ and $t = \|h\|$. By (2.4.4), we have

$$\|x + h\|^2 \leq \|x\|^2 + 2\langle h, j(x) \rangle + \|h\|\beta^*(\|h\|).$$

This completes the proof. \square

To deal with a family of mappings, the following conditions are introduced: Let C be a subset of a real Banach space X and let $\{T_n\}_{n=1}^\infty$ be a family of mappings of C such that $\bigcap_{n=1}^\infty F(T_n) \neq \emptyset$. Then $\{T_n\}$ is said to satisfy the AKTT-condition [6] if for each bounded subset B of C ,

$$\sum_{n=1}^\infty \sup\{\|T_{n+1}z - T_nz\| : z \in B\} < \infty.$$

Lemma 2.4.15. [6] Let C be a nonempty and closed subset of a Banach space X and let $\{T_n\}$ be a family of mappings of C into itself which satisfies the AKTT-condition. Then, for each $x \in C$, $\{T_nx\}$ converges strongly to a point in C . Moreover, let the mapping T be defined by

$$Tx = \lim_{n \rightarrow \infty} T_n x \quad \forall x \in C.$$

Then for each bounded subset B of C ,

$$\lim_{n \rightarrow \infty} \sup\{\|Tz - T_nz\| : z \in B\} = 0.$$

In the sequel, we will write $(\{T_n\}, T)$ satisfies the AKTT-condition if $\{T_n\}$ satisfies the AKTT-condition and T is defined by Lemma 2.4.15 with $F(T) = \bigcap_{n=1}^{\infty} F(T_n)$.

We next give examples which satisfy the AKTT-condition for a family of nonexpansive mappings.

Example 2.4.16. Let T_1, T_2, \dots be an infinite family of nonexpansive mappings of C into itself and $\gamma_1, \gamma_2, \dots$ be real numbers such that $0 < \gamma_i < 1$ for all $i \in \mathbb{N}$. Moreover, let W_n and W be the W -mappings [94] generated by T_1, T_2, \dots, T_n and $\gamma_1, \gamma_2, \dots, \gamma_n$, and T_1, T_2, \dots and $\gamma_1, \gamma_2, \dots$. Then $(\{W_n\}, W)$ satisfies the AKTT-condition [81, 94].

Example 2.4.17. Let T_1, T_2, \dots be an infinite family of nonexpansive mappings of C into itself. For each $n \in \mathbb{N}$, define the mapping $V_n : C \rightarrow C$ by

$$V_n x = \sum_{i=1}^n \lambda_n^i T_i x, \quad \forall x \in C,$$

where $\{\lambda_n^i\}$ is a family of nonnegative numbers satisfying the following conditions:

- (1) $\sum_{i=1}^n \lambda_n^i = 1$ for each $n \in \mathbb{N}$;
- (2) $\lambda^i := \lim_{n \rightarrow \infty} \lambda_n^i > 0$ for each $i \in \mathbb{N}$;
- (3) $\sum_{n=1}^{\infty} \sum_{i=1}^n |\lambda_{n+1}^i - \lambda_n^i| < +\infty$.

Let $V : C \rightarrow C$ be the mapping defined by

$$V x = \sum_{i=1}^{\infty} \lambda^i T_i x, \quad \forall x \in C.$$

Then $(\{V_n\}, V)$ satisfies the AKTT-condition [6].

The following results can be found in [14, 15].

Lemma 2.4.18. [14, 15] Let C be a closed and convex subset of a smooth Banach space X . Suppose that $\{T_n\}_{n=1}^{\infty}$ is a family of λ -strictly pseudocontractive mappings from C into X with $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ and $\{\mu_n\}_{n=1}^{\infty}$ is a real sequence in $(0, 1)$ such that $\sum_{n=1}^{\infty} \mu_n = 1$. Then the following conclusions hold:

- (1) $G := \sum_{n=1}^{\infty} \mu_n T_n : C \rightarrow X$ is a λ -strictly pseudocontractive mapping;
- (2) $F(G) = \bigcap_{n=1}^{\infty} F(T_n)$.

Lemma 2.4.19. [15] Let C be a closed and convex subset of a smooth Banach space X . Suppose that $\{S_k\}_{k=1}^{\infty}$ is a countable family of λ -strictly pseudocontractive mappings of C into itself with $\bigcap_{k=1}^{\infty} F(S_k) \neq \emptyset$. For each $n \in \mathbb{N}$, define $T_n : C \rightarrow C$ by

$$T_n x = \sum_{k=1}^n \mu_n^k S_k x, \quad x \in C,$$

where $\{\mu_n^k\}$ is a family of nonnegative numbers satisfying

- (1) $\sum_{k=1}^n \mu_n^k = 1$ for all $n \in \mathbb{N}$;
- (2) $\mu^k := \lim_{n \rightarrow \infty} \mu_n^k > 0$ for all $k \in \mathbb{N}$;
- (3) $\sum_{n=1}^{\infty} \sum_{k=1}^n |\mu_{n+1}^k - \mu_n^k| < +\infty$.

Then

- (1) Each T_n is a λ -strictly pseudocontractive mapping.
- (2) $\{T_n\}$ satisfies AKTT-condition.
- (3) If $T : C \rightarrow C$ is defined by

$$Tx = \sum_{k=1}^{\infty} \mu^k S_k x, \quad x \in C.$$

Then $Tx = \lim_{n \rightarrow \infty} T_n x$ and $F(T) = \bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{k=1}^{\infty} F(S_k)$.

Using Lemma 2.3.6, we can prove the following lemma.

Lemma 2.4.20. *Let X be a uniformly smooth Banach space and C a nonempty, bounded and convex subset of X . Let $T : C \rightarrow X$ be a λ -strict pseudocontractions for some $0 < \lambda < 1$. Assume that $\Phi(t) \leq 2t^2$, $t \in [0, \infty)$ where Φ is a function appearing in (2.3.1). For $\alpha \in (0, 1)$, we define $T_\alpha = (1 - \alpha)I + \alpha T$. Then, as $\alpha \in (0, \lambda]$, T_α is nonexpansive such that $F(T_\alpha) = F(T)$.*

Proof. For $x, y \in C$, by Lemma 2.3.6, we have

$$\begin{aligned} \|T_\alpha x - T_\alpha y\|^2 &= \|(x - y) + \alpha(Tx - Ty - (x - y))\|^2 \\ &\leq \|x - y\|^2 + 2\alpha \langle Tx - Ty - (x - y), j(x - y) \rangle \\ &\quad + \Phi\left(\|\alpha(Tx - Ty - (x - y))\|\right) \\ &\leq \|x - y\|^2 - 2\alpha\lambda\|Tx - Ty - (x - y)\|^2 \\ &\quad + 2\alpha^2\|Tx - Ty - (x - y)\|^2 \\ &= \|x - y\|^2 - 2\alpha(\lambda - \alpha)\|Tx - Ty - (x - y)\|^2 \\ &\leq \|x - y\|^2, \end{aligned}$$

which implies that T_α is nonexpansive. \square

Motivated by [8], we next study the class of Lipschitz and quasi-nonexpansive mappings. Let C be a nonempty subset of a Banach space X and let $T : C \rightarrow X$ be a mapping. Then T is called

- (1) *quasi-nonexpansive* if $F(T) \neq \emptyset$ and $\|Tx - p\| \leq \|x - p\|$ for all $x \in C$ and $p \in F(T)$;
- (2) *Lipschitz* if there exists $L > 0$ such that $\|Tx - Ty\| \leq L\|x - y\|$ for all $x, y \in C$.

It is remarked that the class of Lipschitz and quasi-nonexpansive mappings includes that of nonexpansive mappings as special cases.

The following example is a Lipschitz and quasi-nonexpansive mapping but not nonexpansive.

Example 2.4.21. Let $X = \mathbb{R}$ and $C = [0, 1.5]$. Define $T : C \rightarrow \mathbb{R}$ by

$$Tx = \begin{cases} 0, & x \in [0, 1), \\ 2x - 2, & x \in [1, 1.5]. \end{cases}$$

It is clear that $F(T) = \{0\}$ and T is a quasi-nonexpansive and Lipschitz mapping. Indeed, $|Tx - 0| = |Tx| \leq |x| = |x - 0|$ for all $x \in C$ and $|Tx - Ty| \leq 2|x - y|$ for all $x, y \in C$. However, T is not nonexpansive. In fact, if $x = 1$ and $y = 1.5$, then $|Tx - Ty| = 1 > 0.5 = |x - y|$.

Lemma 2.4.22. [45] *Let C be a closed and convex subset of a strictly convex Banach space X , T a quasi-nonexpansive mapping of C into C . Then $F(T)$ is a nonempty, closed and convex set on which T is continuous.*

We first prove some useful lemmas concerning the W -mapping of Lipschitz and quasi-nonexpansive mappings in a strictly convex Banach space.

Lemma 2.4.23. *Let C be a nonempty, closed and convex subset of a strictly convex Banach space X . Let $\{T_i\}_{i=1}^N$ be a finite family of quasi-nonexpansive and L_i -Lipschitz mappings of C into itself such that $F := \bigcap_{i=1}^N F(T_i) \neq \emptyset$ and let $\beta_1, \beta_2, \dots, \beta_N$ be real numbers such that $0 < \beta_i < 1$ for all $i = 1, 2, \dots, N-1$, $0 < \beta_N \leq 1$ and $\sum_{i=1}^N \beta_i = 1$. Let W be the W -mapping generated by T_1, T_2, \dots, T_N and $\beta_1, \beta_2, \dots, \beta_N$. Then the followings hold:*

- (1) $F(W) = \bigcap_{i=1}^N F(T_i)$;
- (2) W is quasi-nonexpansive and Lipschitz.

Proof. (1) Since $F \subset F(W)$ is trivial, it suffices to show that $F(W) \subset F$. To this end, let $p \in F(W)$ and $x^* \in F$. Then we have

$$\begin{aligned}
 \|p - x^*\| &= \|Wp - x^*\| = \|\beta_N(T_N U_{N-1} p - x^*) + (1 - \beta_N)(p - x^*)\| \\
 &\leq \beta_N \|U_{N-1} p - x^*\| + (1 - \beta_N) \|p - x^*\| \\
 &= \beta_N \|\beta_{N-1}(T_{N-1} U_{N-2} p - x^*) + (1 - \beta_{N-1})(p - x^*)\| \\
 &\quad + (1 - \beta_N) \|p - x^*\| \\
 &\leq \beta_N \beta_{N-1} \|U_{N-2} p - x^*\| + (1 - \beta_N \beta_{N-1}) \|p - x^*\| \\
 &= \beta_N \beta_{N-1} \|\beta_{N-2}(T_{N-2} U_{N-3} p - x^*) + (1 - \beta_{N-2})(p - x^*)\| \\
 &\quad + (1 - \beta_N \beta_{N-1}) \|p - x^*\| \\
 &\leq \beta_N \beta_{N-1} \beta_{N-2} \|U_{N-3} p - x^*\| + (1 - \beta_N \beta_{N-1} \beta_{N-2}) \|p - x^*\| \\
 &\quad \vdots \\
 &= \beta_N \beta_{N-1} \cdots \beta_3 \|\beta_2(T_2 U_1 p - x^*) + (1 - \beta_2)(p - x^*)\| \\
 &\quad + (1 - \beta_N \beta_{N-1} \cdots \beta_3) \|p - x^*\| \\
 &\leq \beta_N \beta_{N-1} \cdots \beta_2 \|T_2 U_1 p - x^*\| + (1 - \beta_N \beta_{N-1} \cdots \beta_2) \|p - x^*\| \\
 &\leq \beta_N \beta_{N-1} \cdots \beta_2 \|U_1 p - x^*\| + (1 - \beta_N \beta_{N-1} \cdots \beta_2) \|p - x^*\| \\
 &= \beta_N \beta_{N-1} \cdots \beta_2 \|\beta_1(T_1 p - x^*) + (1 - \beta_1)(p - x^*)\| \\
 &\quad + (1 - \beta_N \beta_{N-1} \cdots \beta_2) \|p - x^*\| \\
 &\leq \beta_N \beta_{N-1} \cdots \beta_2 \beta_1 \|T_1 p - x^*\| + (1 - \beta_N \beta_{N-1} \cdots \beta_2 \beta_1) \|p - x^*\| \\
 &\leq \beta_N \beta_{N-1} \cdots \beta_2 \beta_1 \|p - x^*\| + (1 - \beta_N \beta_{N-1} \cdots \beta_2 \beta_1) \|p - x^*\| \\
 &= \|p - x^*\|. \tag{2.4.5}
 \end{aligned}$$

This shows that

$$\|p - x^*\| = \beta_N \beta_{N-1} \cdots \beta_2 \|\beta_1(T_1 p - x^*) + (1 - \beta_1)(p - x^*)\| + (1 - \beta_N \beta_{N-1} \cdots \beta_2) \|p - x^*\|,$$

hence

$$\|p - x^*\| = \|\beta_1(T_1 p - x^*) + (1 - \beta_1)(p - x^*)\|.$$

Again by (2.4.5), we see that $\|p - x^*\| = \|T_1 p - x^*\|$. Hence

$$\|p - x^*\| = \|T_1 p - x^*\| = \|\beta_1(T_1 p - x^*) + (1 - \beta_1)(p - x^*)\|. \quad (2.4.6)$$

Applying Lemma 2.2.11 to (2.4.6), we get that $T_1 p = p$ and hence $U_1 p = p$.

Again by (2.4.5), we have

$$\|p - x^*\| = \beta_N \beta_{N-1} \cdots \beta_3 \|\beta_2(T_2 U_1 p - x^*) + (1 - \beta_2)(p - x^*)\| + (1 - \beta_N \beta_{N-1} \cdots \beta_3) \|p - x^*\|,$$

hence

$$\|p - x^*\| = \|\beta_2(T_2 U_1 p - x^*) + (1 - \beta_2)(p - x^*)\|.$$

From (2.4.5), we know that $\|U_1 p - x^*\| = \|T_2 U_1 p - x^*\|$. Since $U_1 p = p$, we have

$$\|p - x^*\| = \|T_2 p - x^*\| = \|\beta_2(T_2 p - x^*) + (1 - \beta_2)(p - x^*)\|. \quad (2.4.7)$$

Applying Lemma 2.2.11 to (2.4.7), we get that $T_2 p = p$ and hence $U_2 p = p$.

By proving in the same manner, we can conclude that $T_i p = p$ and $U_i p = p$ for all $i = 1, 2, \dots, N-1$. Finally, we also have

$$\begin{aligned} \|p - T_N p\| &\leq \|p - W p\| + \|W p - T_N p\| \\ &= \|p - W p\| + (1 - \beta_N) \|p - T_N p\|, \end{aligned}$$

which yields that $p = T_N p$ since $p \in F(W)$. Hence $p \in F := \bigcap_{i=1}^N F(T_i)$.

(2) For each $x \in C$ and $z \in F$, we observe that

$$\|T_1 x - z\| \leq \|x - z\|.$$

Let $k \in \{2, 3, \dots, N\}$. Then

$$\begin{aligned} \|U_k x - z\| &= \|\beta_k T_k U_{k-1} x + (1 - \beta_k) x - z\| \\ &\leq \beta_k \|U_{k-1} x - z\| + (1 - \beta_k) \|x - z\|. \end{aligned}$$

So we have

$$\begin{aligned} \|W x - z\| &= \|U_N x - z\| \\ &\leq \beta_N \|U_{N-1} x - z\| + (1 - \beta_N) \|x - z\| \\ &\leq \beta_N (\beta_{N-1} \|U_{N-2} x - z\| + (1 - \beta_{N-1}) \|x - z\|) \\ &\quad + (1 - \beta_N) \|x - z\| \\ &\leq \beta_N (\beta_{N-1} (\beta_{N-2} \|U_{N-3} x - z\| + (1 - \beta_{N-2}) \|x - z\|) \\ &\quad + (1 - \beta_{N-1}) \|x - z\|) + (1 - \beta_N) \|x - z\| \\ &\vdots \end{aligned}$$

$$\begin{aligned}
&\leq \beta_N \left(\beta_{N-1} \left(\beta_{N-2} \cdots \left(\beta_2 (\beta_1 \|T_1 x - z\| + (1 - \beta_1) \|x - z\|) \right. \right. \right. \\
&\quad \left. \left. \left. + (1 - \beta_2) \|x - z\| \right) + \cdots + (1 - \beta_{N-2}) \|x - z\| \right) \\
&\quad \left. + (1 - \beta_{N-1}) \|x - z\| \right) + (1 - \beta_N) \|x - z\| \\
&\leq \beta_N \left(\beta_{N-1} \left(\beta_{N-2} \cdots \left(\beta_2 (\beta_1 \|x - z\| + (1 - \beta_1) \|x - z\|) \right. \right. \right. \\
&\quad \left. \left. \left. + (1 - \beta_2) \|x - z\| \right) + \cdots + (1 - \beta_{N-2}) \|x - z\| \right) \\
&\quad \left. + (1 - \beta_{N-1}) \|x - z\| \right) + (1 - \beta_N) \|x - z\| \\
&= \beta_N \left(\beta_{N-1} \left(\beta_{N-2} \cdots \left(\beta_3 (\beta_2 \|x - z\| + (1 - \beta_2) \|x - z\|) \right. \right. \right. \\
&\quad \left. \left. \left. + (1 - \beta_3) \|x - z\| \right) + \cdots + (1 - \beta_{N-2}) \|x - z\| \right) \\
&\quad \left. + (1 - \beta_{N-1}) \|x - z\| \right) + (1 - \beta_N) \|x - z\| \\
&= \|x - z\|.
\end{aligned}$$

This shows that W is a quasi-nonexpansive mapping.

Next, we show that W is a Lipschitz mapping. Note that T_i is L_i -Lipschitz for all $i = 1, 2, \dots, N$. For each $x, y \in C$, we observe

$$\begin{aligned}
\|U_1 x - U_1 y\| &= \|\beta_1 T_1 x + (1 - \beta_1) x - \beta_1 T_1 y - (1 - \beta_1) y\| \\
&\leq \beta_1 \|T_1 x - T_1 y\| + (1 - \beta_1) \|x - y\| \\
&\leq (\beta_1 L_1 + (1 - \beta_1)) \|x - y\|.
\end{aligned}$$

Let $k \in \{2, 3, \dots, N\}$, then

$$\begin{aligned}
\|U_k x - U_k y\| &= \|\beta_k T_k U_{k-1} x + (1 - \beta_k) x - \beta_k T_k U_{k-1} y - (1 - \beta_k) y\| \\
&\leq \beta_k L_k \|U_{k-1} x - U_{k-1} y\| + (1 - \beta_k) \|x - y\|.
\end{aligned}$$

So we have

$$\begin{aligned}
\|Wx - Wy\| &\leq \beta_N L_N \|U_{N-1} x - U_{N-1} y\| + (1 - \beta_N) \|x - y\| \\
&\leq \beta_N L_N \beta_{N-1} L_{N-1} \|U_{N-2} x - U_{N-2} y\| \\
&\quad + (\beta_N L_N (1 - \beta_{N-1}) + (1 - \beta_N)) \|x - y\| \\
&\vdots
\end{aligned}$$

$$\begin{aligned}
&\leq \beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_2 L_2 \|U_1 x - U_1 y\| \\
&\quad + \left(\beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_3 L_3 (1 - \beta_2) \right. \\
&\quad + \beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_4 L_4 (1 - \beta_3) \\
&\quad \left. + \cdots + \beta_N L_N (1 - \beta_{N-1}) + (1 - \beta_N) \right) \|x - y\| \\
&\leq \beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_2 L_2 \left(\beta_1 L_1 + (1 - \beta_1) \|x - y\| \right) \\
&\quad + \left(\beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_3 L_3 (1 - \beta_2) \right. \\
&\quad + \beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_4 L_4 (1 - \beta_3) \\
&\quad \left. + \cdots + \beta_N L_N (1 - \beta_{N-1}) + (1 - \beta_N) \right) \|x - y\| \\
&= \left(\beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_1 L_1 \right. \\
&\quad + \beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_2 L_2 (1 - \beta_1) \\
&\quad + \beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_3 L_3 (1 - \beta_2) \\
&\quad + \beta_N L_N \beta_{N-1} L_{N-1} \cdots \beta_4 L_4 (1 - \beta_3) \\
&\quad \left. + \cdots + \beta_N L_N (1 - \beta_{N-1}) + (1 - \beta_N) \right) \|x - y\| \\
&\leq \left(L_N L_{N-1} \cdots L_1 + L_N L_{N-1} \cdots L_2 + L_N L_{N-1} \cdots L_3 \right. \\
&\quad \left. + L_N L_{N-1} \cdots L_4 + \cdots + L_N L_{N-1} + L_N + 1 \right) \|x - y\|.
\end{aligned}$$

Since $L_i > 0$ for all $i = 1, 2, \dots, N$, W is a Lipschitz mapping. \square

Lemma 2.4.24. *Let C be a nonempty, closed and convex subset of a Banach space X . Let $\{T_i\}_{i=1}^N$ be a finite family of quasi-nonexpansive and L_i -Lipschitz mappings of C into itself and $\{\beta_{n,i}\}_{i=1}^N$ sequences in $[0, 1]$ such that $\beta_{n,i} \rightarrow \beta_i$ as $n \rightarrow \infty$. Moreover, for every $n \in \mathbb{N}$, let W and W_n be the W -mappings generated by T_1, T_2, \dots, T_N and $\beta_1, \beta_2, \dots, \beta_N$, and T_1, T_2, \dots, T_N and $\beta_{n,1}, \beta_{n,2}, \dots, \beta_{n,N}$, respectively. Then*

$$\lim_{n \rightarrow \infty} \|W_n x - W x\| = 0, \quad \forall x \in C.$$

Proof. Let $x \in C$ and U_k and $U_{n,k}$ be generated by T_1, T_2, \dots, T_k and $\beta_1, \beta_2, \dots, \beta_k$, and T_1, T_2, \dots, T_k and $\beta_{n,1}, \beta_{n,2}, \dots, \beta_{n,k}$, respectively. Then

$$\|U_{n,1} x - U_1 x\| = \|(\beta_{n,1} - \beta_1)(T_1 x - x)\| \leq |\beta_{n,1} - \beta_1| \|T_1 x - x\|.$$

Let $k \in \{2, 3, \dots, N\}$ and $M = \max\{\|T_k U_{k-1} x\| + \|x\| : k = 2, 3, \dots, N\}$. Then

$$\begin{aligned}
\|U_{n,k} x - U_k x\| &= \|\beta_{n,k} T_k U_{n,k-1} x + (1 - \beta_{n,k}) x - \beta_k T_k U_{k-1} x - (1 - \beta_k) x\| \\
&= \|\beta_{n,k} T_k U_{n,k-1} x - \beta_{n,k} x - \beta_k T_k U_{k-1} x + \beta_k x\| \\
&\leq \beta_{n,k} \|T_k U_{n,k-1} x - T_k U_{k-1} x\| + |\beta_{n,k} - \beta_k| \|T_k U_{k-1} x\| \\
&\quad + |\beta_{n,k} - \beta_k| \|x\| \\
&\leq L_k \|U_{n,k-1} x - U_{k-1} x\| + |\beta_{n,k} - \beta_k| M.
\end{aligned}$$

It follows that

$$\begin{aligned}
\|W_n x - Wx\| &= \|U_{n,N}x - U_Nx\| \\
&\leq L_N \|U_{n,N-1}x - U_{N-1}x\| + |\beta_{n,N} - \beta_N|M \\
&\leq L_N \left(L_{N-1} \|U_{n,N-2}x - U_{N-2}x\| + |\beta_{n,N-1} - \beta_{N-1}|M \right) \\
&\quad + |\beta_{n,N} - \beta_N|M \\
&= L_N L_{N-1} \|U_{n,N-2}x - U_{N-2}x\| + L_N |\beta_{n,N-1} - \beta_{N-1}|M \\
&\quad + |\beta_{n,N} - \beta_N|M \\
&\quad \vdots \\
&\leq L_N L_{N-1} \cdots L_3 \left(L_2 \|U_{n,1}x - U_1x\| + |\beta_{n,2} - \beta_2|M \right) \\
&\quad + L_N L_{N-1} \cdots L_4 |\beta_{n,3} - \beta_3|M + \cdots + L_N |\beta_{n,N-1} - \beta_{N-1}|M \\
&\quad + |\beta_{n,N} - \beta_N|M \\
&\leq L_N L_{N-1} \cdots L_2 |\beta_{n,1} - \beta_1| \|T_1x - x\| + L_N L_{N-1} \cdots L_3 |\beta_{n,2} - \beta_2|M \\
&\quad + L_N L_{N-1} \cdots L_4 |\beta_{n,3} - \beta_3|M + \cdots + L_N |\beta_{n,N-1} - \beta_{N-1}|M \\
&\quad + |\beta_{n,N} - \beta_N|M.
\end{aligned}$$

Since $\beta_{n,i} \rightarrow \beta_i$ as $n \rightarrow \infty$ ($i = 1, 2, \dots, N$), we obtain the desired result. \square

We next recall some useful lemmas concerning the generalized metric projection in strictly convex, reflexive and smooth Banach spaces.

Let X be a smooth Banach space. The function $\phi : X \times X \rightarrow \mathbb{R}$ is defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2$$

for all $x, y \in X$.

Remark 2.4.25. We know the following: for each $x, y, z \in X$,

- (1) $(\|x\| - \|y\|)^2 \leq \phi(x, y) \leq (\|x\| + \|y\|)^2$;
- (2) $\phi(x, y) = \phi(x, z) + \phi(z, y) + 2\langle x - z, Jz - Jy \rangle$;
- (3) $\phi(x, y) = \|x - y\|^2$ in a Hilbert space.

Lemma 2.4.26. [48] Let X be a uniformly convex and smooth Banach space and let $\{x_n\}$ and $\{y_n\}$ be sequences of X such that $\{x_n\}$ or $\{y_n\}$ is bounded and $\lim_{n \rightarrow \infty} \phi(x_n, y_n) = 0$. Then $\lim_{n \rightarrow \infty} \|x_n - y_n\| = 0$.

Let X be a reflexive, strictly convex and smooth Banach space and let C be a nonempty, closed and convex subset of X . The *generalized projection mapping*, introduced by Alber [3], is a mapping $\Pi_C : X \rightarrow C$, that assigns to an arbitrary point $x \in X$ the minimum point of the functional $\phi(y, x)$, that is, $\Pi_C x = \bar{x}$, where \bar{x} is the solution to the minimization problem

$$\phi(\bar{x}, x) = \min\{\phi(y, x) : y \in C\}.$$

In fact, we have the following result:

Lemma 2.4.27. [3] Let C be a nonempty, closed and convex subset of a reflexive, strictly convex, and smooth Banach space X and let $x \in X$. Then, there exists a unique element $x_0 \in C$ such that $\phi(x_0, x) = \min\{\phi(z, x) : z \in C\}$.

Lemma 2.4.28. [3, 48] Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth Banach space X , $x \in X$, and $z \in C$. Then $z = \Pi_C x$ if and only if $\langle Jx - Jz, y - z \rangle \leq 0$ for all $y \in C$.

Lemma 2.4.29. [3, 48] Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth Banach space X and let $x \in X$. Then

$$\phi(y, \Pi_C x) + \phi(\Pi_C x, x) \leq \phi(y, x) \quad \forall y \in C.$$

Lemma 2.4.30. [83] Let X be a uniformly convex and uniformly smooth Banach space and let C be a closed and convex subset of X . Then, for points $w, x, y, z \in X$ and a real number $a \in \mathbb{R}$, the set $K := \{v \in C : \phi(v, y) \leq \phi(v, x) + \langle v, Jz - Jw \rangle + a\}$ is closed and convex.

Lemma 2.4.31. [64] Let X be a smooth and strictly convex Banach space and let C be a nonempty, closed and convex subset of X . Let T be a mapping from C into itself such that $F(T)$ is nonempty and $\phi(u, Tx) \leq \phi(u, x)$ for all $(u, x) \in F(T) \times C$. Then $F(T)$ is closed and convex.

Lemma 2.4.32. [48] Let X be a uniformly convex and uniformly smooth Banach space and C a nonempty, closed and convex subset of X . Then Π_C is uniformly norm-to-norm continuous on every bounded set.

Let $\{C_n\}$ be a sequence of nonempty, closed and convex subset of a reflexive Banach space X . We define two subsets $s - \text{Li}_n C_n$ and $w - \text{Ls}_n C_n$ as follows: $x \in s - \text{Li}_n C_n$ if and only if there exists $\{x_n\} \subset X$ such that $\{x_n\}$ converges strongly to x and that $x_n \in C_n$ for all $n \in \mathbb{N}$. Similarly, $y \in w - \text{Ls}_n C_n$ if and only if there exists a subsequence $\{C_{n_i}\}$ of $\{C_n\}$ and a sequence $\{y_i\} \subset E$ such that $\{y_i\}$ converges weakly to y and that $y_i \in C_{n_i}$ for all $i \in \mathbb{N}$. We define the Mosco convergence [66] of $\{C_n\}$ as follows: If C_0 satisfies that $C_0 = s - \text{Li}_n C_n = w - \text{Ls}_n C_n$, it is said that $\{C_n\}$ converges to C_0 in the sense of Mosco and we write $C_0 = M - \lim_{n \rightarrow \infty} C_n$ (see [11]).

Lemma 2.4.33. [44] Let X be a smooth, reflexive and strictly convex Banach space having the Kadec-Klee property. Let $\{R_n\}$ be a sequence of nonempty, closed and convex subset of X . If $R_0 = M - \lim_{n \rightarrow \infty} R_n$ exists and is nonempty, then $\{\Pi_{R_n} x\}$ converges strongly to $\Pi_{R_0} x$ for each $x \in C$.

We also make use of the following mapping V studied in Alber [3]:

$$V(x, x^*) = \|x\|^2 - 2\langle x, x^* \rangle + \|x^*\|^2$$

for all $x \in X$ and $x^* \in X^*$, that is, $V(x, x^*) = \phi(x, J^{-1}(x^*))$.

Lemma 2.4.34. [54] Let X be a reflexive, strictly convex and smooth Banach space. Then

$$V(x, x^*) + 2\langle J^{-1}x^* - x, y^* \rangle \leq V(x, x^* + y^*)$$

for all $x \in X$ and $x^*, y^* \in X^*$.

Lemma 2.4.35. [105] Let C be a closed and convex subset of a uniformly smooth, strictly convex, and reflexive Banach space X , and let f be a bifunction from $C \times C$ to \mathbb{R} which satisfies conditions (A1)-(A4). For all $r > 0$ and $x \in X$, define the mapping $T_r : X \rightarrow C$ as follows:

$$T_r(x) = \{z \in C : f(z, y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \geq 0, \quad \forall y \in C\}.$$

Then, the following statements hold:

- (1) T_r is single-valued;
- (2) T_r is of firmly nonexpansive-type [55], i.e., for all $x, y \in X$,

$$\langle T_r x - T_r y, J T_r x - J T_r y \rangle \leq \langle T_r x - T_r y, J x - J y \rangle;$$

- (3) $F(T_r) = EP(f)$;
- (4) $EP(f)$ is closed and convex.

Lemma 2.4.36. [105] Let C be a closed and convex subset of a smooth, strictly and reflexive Banach space X , let f be a bifunction from $C \times C$ to \mathbb{R} which satisfies conditions (A1) – (A4), let $r > 0$. Then, for all $x \in X$ and $q \in F(T_r)$,

$$\phi(q, T_r x) + \phi(T_r x, x) \leq \phi(q, x).$$

Lemma 2.4.37. [54] Let X be a reflexive, strictly convex and smooth Banach space, let $z \in X$ and let $\{t_i\}_{i=1}^m \subset (0, 1)$ with $\sum_{i=1}^m t_i = 1$. If $\{x_i\}_{i=1}^m$ is a finite sequence in X such that

$$\phi(z, J^{-1}(\sum_{i=1}^m t_i J x_i)) = \sum_{i=1}^m t_i \phi(z, x_i),$$

then $x_1 = x_2 = \dots = x_m$.

Let X be a smooth, strictly convex and reflexive Banach space and C a non-empty, closed and convex subset of X . Let $\{T_i\}_{i=1}^N$ be a finite family of relatively quasi-nonexpansive self-mappings of C such that $\bigcap_{i=1}^N F(T_i) \neq \emptyset$. For each $n \in \mathbb{N}$, we consider the mappings V_n, W_n and K_n defined as follows:

$$V_n = \Pi_C J^{-1}(\beta_{0,n} J + \beta_{1,n} J T_1 + \dots + \beta_{N,n} J T_N), \quad (2.4.8)$$

where Π_C is the generalized projection of X onto C , J is the duality mapping of X and $\beta_{0,n}, \beta_{1,n}, \dots, \beta_{N,n}$ are real sequences in $(0, 1)$ with $\beta_{0,n} + \dots + \beta_{N,n} = 1$.

$$\begin{aligned} U_{1,n} &= \Pi_C J^{-1}(\beta_{1,n} J T_1 + (1 - \beta_{1,n}) J), \\ U_{2,n} &= \Pi_C J^{-1}(\beta_{2,n} J T_2 U_{1,n} + (1 - \beta_{2,n}) J), \\ &\vdots \\ U_{N-1,n} &= \Pi_C J^{-1}(\beta_{N-1,n} J T_{N-1} U_{N-2,n} + (1 - \beta_{N-1,n}) J), \\ W_n &= U_{N,n} = \Pi_C J^{-1}(\beta_{N,n} J T_N U_{N-1,n} + (1 - \beta_{N,n}) J), \end{aligned} \quad (2.4.9)$$

where $\beta_{1,n}, \beta_{2,n}, \dots, \beta_{N,n}$ are real sequences in $(0, 1)$. See [3, 5] for a class of relatively nonexpansive mappings.

$$\begin{aligned} U_{1,n} &= \Pi_C J^{-1}(\beta_{1,n} J T_1 + (1 - \beta_{1,n}) J), \\ U_{2,n} &= \Pi_C J^{-1}(\beta_{2,n} J T_2 U_{1,n} + (1 - \beta_{2,n}) J U_{1,n}), \\ &\vdots \\ U_{N-1,n} &= \Pi_C J^{-1}(\beta_{N-1,n} J T_{N-1} U_{N-2,n} + (1 - \beta_{N-1,n}) J U_{N-2,n}), \\ K_n &= U_{N,n} = \Pi_C J^{-1}(\beta_{N,n} J T_N U_{N-1,n} + (1 - \beta_{N,n}) J U_{N-1,n}), \end{aligned} \quad (2.4.10)$$

where $\beta_{1,n}, \beta_{2,n}, \dots, \beta_{N,n}$ are real sequences in $(0, 1)$.

To study a countable family of relatively quasi-nonexpansive mappings, we make use of the following condition: let C be a closed subset of a Banach space X . A family of mappings $\{T_n\}_{n=1}^{\infty}$ of C into itself with $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ is said to satisfy the $(*)$ -condition [16] if for each sequence $\{z_n\}$ in C ,

$$\lim_{n \rightarrow \infty} \|z_n - T_n z_n\| = 0 \text{ and } z_n \rightarrow z \text{ imply } z \in \bigcap_{n=1}^{\infty} F(T_n).$$

We next prove the crucial lemmas concerning the mappings defined as above.

Lemma 2.4.38. *Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive Banach space X . For each $n \in \mathbb{N}$, let V_n be defined as in (2.4.8). Then the followings hold:*

$$(1) \quad F(V_n) = \bigcap_{i=1}^N F(T_i).$$

(2) V_n is a relatively quasi-nonexpansive mapping.

Proof. (1) Since $\bigcap_{i=1}^N F(T_i) \subset F(V_n)$ is obvious, it suffices to show that $F(V_n) \subset \bigcap_{i=1}^N F(T_i)$. To this end, let $q \in F(V_n)$ and $p \in \bigcap_{i=1}^N F(T_i)$. So we have by the definition of ϕ that

$$\begin{aligned} \phi(p, q) = \phi(p, V_n q) &\leq \phi(p, J^{-1}(\beta_{0,n} J q + \beta_{1,n} J T_1 q + \dots + \beta_{N,n} J T_N q)) \\ &\leq \beta_{0,n} \phi(p, q) + \beta_{1,n} \phi(p, T_1 q) + \dots + \beta_{N,n} \phi(p, T_N q) \\ &\leq \phi(p, q). \end{aligned}$$

By Lemma 2.4.37, we get that $q = T_1 q = \dots = T_N q$. Thus $q \in \bigcap_{i=1}^N F(T_i)$.

(2) The proof is directly obtained from (1). \square

Lemma 2.4.39. *Let C be a nonempty, closed and convex subset of a uniformly smooth Banach space X . For each $n \in \mathbb{N}$, let $V_n : C \rightarrow C$ be defined as in (2.4.8) and let $0 < a \leq \beta_{0,n} \leq b < 1$ and $0 < a \leq \beta_{i,n} \leq b < 1$ for all $i = 1, 2, \dots, N$. If either T_i is closed for all $i = 1, 2, \dots, N$ or $\widehat{F}(T_i) = F(T_i)$ for all $i = 1, 2, \dots, N$, then $\{V_n\}$ satisfies the $(*)$ -condition.*

Proof. Let $p \in \bigcap_{i=1}^N F(T_i)$ and let $\{z_n\}$ be a sequence in C such that $z_n \rightarrow z$ and $\lim_{n \rightarrow \infty} \|z_n - V_n z_n\| = 0$. From Lemma 2.3.5 and X^* is uniformly convex, then there

exists a strictly increasing, continuous and convex function g^* with $g^*(0) = 0$ such that

$$\begin{aligned}
\phi(p, V_n z_n) &\leq \phi(p, J^{-1}(\beta_{0,n} J z_n + \beta_{1,n} J T_1 z_n + \cdots + \beta_{N,n} J T_N z_n)) \\
&= \|p\|^2 - 2\langle p, \beta_{0,n} J z_n + \beta_{1,n} J T_1 z_n + \cdots + \beta_{N,n} J T_N z_n \rangle \\
&\quad + \|\beta_{0,n} J z_n + \beta_{1,n} J T_1 z_n + \cdots + \beta_{N,n} J T_N z_n\|^2 \\
&\leq \beta_{0,n} \phi(p, z_n) + \beta_{1,n} \phi(p, T_1 z_n) + \cdots + \beta_{N,n} \phi(p, T_N z_n) \\
&\quad - \beta_{0,n} \beta_{1,n} g^*(\|J z_n - J T_1 z_n\|) \\
&\leq \phi(p, z_n) - \beta_{0,n} \beta_{1,n} g^*(\|J z_n - J T_1 z_n\|),
\end{aligned}$$

which implies

$$\begin{aligned}
\beta_{0,n} \beta_{1,n} g^*(\|J z_n - J T_1 z_n\|) &\leq \phi(p, z_n) - \phi(p, V_n z_n) \\
&= \|z_n\|^2 - \|V_n z_n\|^2 - 2\langle p, J V_n z_n - J z_n \rangle \\
&\leq \|z_n - V_n z_n\|(\|z_n\| + \|V_n z_n\|) \\
&\quad + 2\|p\| \|J z_n - J V_n z_n\|.
\end{aligned}$$

Since $\beta_{0,n} \beta_{1,n} \geq a^2 > 0$, $\{z_n\}$ is bounded and $\lim_{n \rightarrow \infty} \|z_n - V_n z_n\| = 0$, it follows from the properties of g^* that

$$\lim_{n \rightarrow \infty} \|J z_n - J T_1 z_n\| = 0.$$

Hence, by the uniform continuity of J , we also have

$$\lim_{n \rightarrow \infty} \|z_n - T_1 z_n\| = 0.$$

By changing the role of vectors and proving in the same way, we can conclude that

$$\lim_{n \rightarrow \infty} \|z_n - T_2 z_n\| = \cdots = \lim_{n \rightarrow \infty} \|z_n - T_N z_n\| = 0.$$

Hence $\lim_{n \rightarrow \infty} \|z_n - T_i z_n\| = 0$ for all $i = 1, 2, \dots, N$. If T_i is closed for all $i = 1, 2, \dots, N$, then $z \in \bigcap_{i=1}^N F(T_i)$. On the other hand, we see that $z \in \widehat{F}(T_i)$ for all $i = 1, 2, \dots, N$. So if $\widehat{F}(T_i) = F(T_i)$ for all $i = 1, 2, \dots, N$, then $z \in \bigcap_{i=1}^N F(T_i)$. By Lemma 2.4.38 (1), we get that $z \in F(V_n)$. Thus, the proof is complete. \square

Lemma 2.4.40. *Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive Banach space X . For each $n \in \mathbb{N}$, let W_n be defined as in (2.4.9). Then $F(W_n) = \bigcap_{i=1}^N F(T_i)$.*

Proof. $\bigcap_{i=1}^N F(T_i) \subset F(W_n)$ is obvious. Let $q \in F(W_n)$ and $p \in \bigcap_{i=1}^N F(T_i)$. Then

$$\begin{aligned}
\phi(p, q) &= \phi(p, W_n q) \\
&\leq \phi\left(p, J^{-1}(\beta_{N,n} J T_N U_{N-1,n} q + (1 - \beta_{N,n}) J q)\right) \\
&\leq \beta_{N,n} \phi(p, T_N U_{N-1,n} q) + (1 - \beta_{N,n}) \phi(p, q) \\
&\leq \beta_{N,n} \phi(p, U_{N-1,n} q) + (1 - \beta_{N,n}) \phi(p, q) \\
&\quad \vdots \\
&\leq \beta_{N,n} \left(\beta_{N-1,n} \left(\cdots \left(\beta_{3,n} \phi(p, J^{-1}(\beta_{2,n} J T_2 U_{1,n} q + (1 - \beta_{2,n}) J q)) \right) \right. \right. \\
&\quad \left. \left. + (1 - \beta_{3,n}) \phi(p, q) \right) + \cdots \right) + (1 - \beta_{N-1,n}) \phi(p, q) \right) + (1 - \beta_{N,n}) \phi(p, q)
\end{aligned}$$

$$\begin{aligned}
&\leq \beta_{N,n} \left(\beta_{N-1,n} \left(\cdots \beta_{3,n} \left(\beta_{2,n} \phi(p, T_2 U_{1,n} q) + (1 - \beta_{2,n}) \phi(p, q) \right) \right. \right. \\
&\quad \left. \left. + (1 - \beta_{3,n}) \phi(p, q) \right) + \cdots \right) + (1 - \beta_{N-1,n}) \phi(p, q) \Big) + (1 - \beta_{N,n}) \phi(p, q) \\
&\leq \beta_{N,n} \left(\beta_{N-1,n} \left(\cdots \beta_{3,n} \left(\beta_{2,n} \phi(p, U_{1,n} q) + (1 - \beta_{2,n}) \phi(p, q) \right) \right. \right. \\
&\quad \left. \left. + (1 - \beta_{3,n}) \phi(p, q) \right) + \cdots \right) + (1 - \beta_{N-1,n}) \phi(p, q) \Big) + (1 - \beta_{N,n}) \phi(p, q) \\
&\leq \beta_{N,n} \left(\beta_{N-1,n} \left(\cdots \left(\beta_{2,n} \phi(p, J^{-1}(\beta_{1,n} J T_1 q + (1 - \beta_{1,n}) J q)) \right. \right. \right. \\
&\quad \left. \left. \left. + (1 - \beta_{2,n}) \phi(p, q) \right) + \cdots \right) + (1 - \beta_{N-1,n}) \phi(p, q) \Big) + (1 - \beta_{N,n}) \phi(p, q) \\
&\leq \beta_{N,n} \left(\beta_{N-1,n} \left(\cdots \left(\beta_{2,n} (\beta_{1,n} \phi(p, T_1 q) + (1 - \beta_{1,n}) \phi(p, q)) \right. \right. \right. \\
&\quad \left. \left. \left. + (1 - \beta_{2,n}) \phi(p, q) \right) + \cdots \right) + (1 - \beta_{N-1,n}) \phi(p, q) \Big) + (1 - \beta_{N,n}) \phi(p, q) \\
&\leq \beta_{N,n} \left(\beta_{N-1,n} \left(\cdots \left(\beta_{2,n} (\beta_{1,n} \phi(p, q) + (1 - \beta_{1,n}) \phi(p, q)) \right. \right. \right. \\
&\quad \left. \left. \left. + (1 - \beta_{2,n}) \phi(p, q) \right) + \cdots \right) + (1 - \beta_{N-1,n}) \phi(p, q) \Big) + (1 - \beta_{N,n}) \phi(p, q) \\
&= \phi(p, q). \tag{2.4.11}
\end{aligned}$$

This shows that

$$\beta_{1,n} \phi(p, T_1 q) + (1 - \beta_{1,n}) \phi(p, q) = \phi \left(p, J^{-1} \left(\beta_{1,n} J T_1 q + (1 - \beta_{1,n}) J q \right) \right).$$

From Lemma 2.4.37, we have $q = T_1 q$ and hence $q \in F(T_1)$. Again, from (2.4.11) we see that

$$\beta_{2,n} \phi(p, T_2 U_{1,n} q) + (1 - \beta_{2,n}) \phi(p, U_{1,n} q) = \phi \left(p, J^{-1} \left(\beta_{2,n} J T_2 U_{1,n} q + (1 - \beta_{2,n}) J q \right) \right).$$

We note, by (2.4.9), that $U_{1,n} q = q$ for all $n \in \mathbb{N}$. So Lemma 2.4.37 implies that $q = T_2 q$; consequently $q \in F(T_2)$. Similarly, we can show that $q \in F(T_i)$ for all $i = 3, 4, \dots, N$. Hence $q \in \bigcap_{i=1}^N F(T_i)$. This completes the proof. \square

Lemma 2.4.41. *Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive Banach space X . For each $n \in \mathbb{N}$, let W_n be defined as in (2.4.9). Then W_n is a relatively quasi-nonexpansive mapping.*

Proof. Lemma 2.4.40 asserts that $F(W_n) = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $x \in C$ and $p \in \bigcap_{i=1}^N F(T_i)$. Since T_i is relatively quasi-nonexpansive for all $i = 1, 2, \dots, N$, it is easy to see that $\phi(p, W_n x) \leq \phi(p, x)$. Thus W_n is a relatively quasi-nonexpansive mapping. \square

Lemma 2.4.42. Let C be a nonempty, closed and convex subset of a uniformly smooth Banach space X . For each $n \in \mathbb{N}$, let W_n be defined as in (2.4.9) and let $0 < a \leq \beta_{i,n} \leq b < 1$ for all $i = 1, 2, \dots, N$. If either T_i is closed for all $i = 1, 2, \dots, N$ or $\widehat{F}(T_i) = F(T_i)$ for all $i = 1, 2, \dots, N$, then $\{W_n\}$ satisfies the $(*)$ -condition.

Proof. Let $p \in \bigcap_{i=1}^N F(T_i)$ and let $\{z_n\} \subset C$ be such that $z_n \rightarrow z$ and $\lim_{n \rightarrow \infty} \|z_n - W_n z_n\| = 0$. From Lemma 2.3.5 and X^* is uniformly convex, then there exists a strictly increasing, continuous and convex function g^* with $g^*(0) = 0$ such that

$$\begin{aligned}
\phi(p, W_n z_n) &\leq \phi\left(p, J^{-1}\left(\beta_{N,n} J T_N U_{N-1,n} z_n + (1 - \beta_{N,n}) J z_n\right)\right) \\
&= \|p\|^2 - 2\langle p, \beta_{N,n} J T_N U_{N-1,n} z_n + (1 - \beta_{N,n}) J z_n \rangle \\
&\quad + \|\beta_{N,n} J T_N U_{N-1,n} z_n + (1 - \beta_{N,n}) J z_n\|^2 \\
&\leq \|p\|^2 - 2\langle p, \beta_{N,n} J T_N U_{N-1,n} z_n + (1 - \beta_{N,n}) J z_n \rangle \\
&\quad + \beta_{N,n} \|T_N U_{N-1,n} z_n\|^2 + (1 - \beta_{N,n}) \|z_n\|^2 \\
&\quad - \beta_{N,n} (1 - \beta_{N,n}) g^*(\|J z_n - J T_N U_{N-1,n} z_n\|) \\
&= \beta_{N,n} \phi(p, T_N U_{N-1,n} z_n) + (1 - \beta_{N,n}) \phi(p, z_n) \\
&\quad - \beta_{N,n} (1 - \beta_{N,n}) g^*(\|J z_n - J T_N U_{N-1,n} z_n\|) \\
&\leq \beta_{N,n} \phi(p, U_{N-1,n} z_n) + (1 - \beta_{N,n}) \phi(p, z_n) \\
&\quad - \beta_{N,n} (1 - \beta_{N,n}) g^*(\|J z_n - J T_N U_{N-1,n} z_n\|) \\
&\leq \beta_{N,n} \left(\beta_{N-1,n} \phi(p, U_{N-2,n} z_n) + (1 - \beta_{N-1,n}) \phi(p, z_n) \right) \\
&\quad + (1 - \beta_{N,n}) \phi(p, z_n) \\
&\quad - \beta_{N,n} \beta_{N-1,n} (1 - \beta_{N-1,n}) g^*(\|J z_n - J T_{N-1} U_{N-2,n} z_n\|) \\
&\quad - \beta_{N,n} (1 - \beta_{N,n}) g^*(\|J z_n - J T_N U_{N-1,n} z_n\|) \\
&\quad \vdots \\
&\leq \phi(p, z_n) - \prod_{i=1}^N \beta_{i,n} (1 - \beta_{1,n}) g^*(\|J z_n - J T_1 z_n\|) \\
&\quad - \prod_{i=2}^N \beta_{i,n} (1 - \beta_{2,n}) g^*(\|J z_n - J T_2 U_{1,n} z_n\|) \\
&\quad - \dots - \beta_{N,n} \beta_{N-1,n} (1 - \beta_{N-1,n}) g^*(\|J z_n - J T_{N-1} U_{N-2,n} z_n\|) \\
&\quad - \beta_{N,n} (1 - \beta_{N,n}) g^*(\|J z_n - J T_N U_{N-1,n} z_n\|), \tag{2.4.12}
\end{aligned}$$

which implies

$$\prod_{i=1}^N \beta_{i,n} (1 - \beta_{1,n}) g^*(\|J z_n - J T_1 z_n\|) \leq \phi(p, z_n) - \phi(p, W_n z_n).$$

Since $\prod_{i=1}^N \beta_{i,n} (1 - \beta_{1,n}) \geq a^N (1 - b) > 0$ and $\lim_{n \rightarrow \infty} \|z_n - W_n z_n\| = 0$, it follows from the properties of g^* and the uniform continuity of J that

$$\lim_{n \rightarrow \infty} \|z_n - T_1 z_n\| = 0.$$

If T_i is closed for all $i = 1, 2, \dots, N$, we get that $z \in F(T_1)$. Also, by (2.4.12), we obtain

$$\lim_{n \rightarrow \infty} \|z_n - T_2 U_{1,n} z_n\| = \dots = \lim_{n \rightarrow \infty} \|z_n - T_N U_{N-1,n} z_n\| = 0. \tag{2.4.13}$$

We observe

$$\begin{aligned}\phi(z_n, U_{1,n}z_n) &\leq \phi\left(z_n, J^{-1}(\beta_{1,n}JT_1z_n + (1 - \beta_{1,n})Jz_n)\right) \\ &\leq \beta_{1,n}\phi(z_n, T_1z_n) + (1 - \beta_{1,n})\phi(z_n, z_n).\end{aligned}$$

So, by Lemma 2.4.26, we get

$$\lim_{n \rightarrow \infty} \|z_n - U_{1,n}z_n\| = 0. \quad (2.4.14)$$

Therefore $U_{1,n}z_n \rightarrow z$ as $n \rightarrow \infty$. From (4.2.11) and (2.4.14) we see that

$$\|T_2U_{1,n}z_n - U_{1,n}z_n\| \leq \|T_2U_{1,n}z_n - z_n\| + \|z_n - U_{1,n}z_n\| \rightarrow 0, \quad (2.4.15)$$

as $n \rightarrow \infty$. Since T_2 is closed, $z \in F(T_2)$. Similarly, we can show that $z \in F(T_i)$ for all $i = 3, 4, \dots, N$. Thus $z \in \bigcap_{i=1}^N F(T_i)$. From Lemma 2.4.40, we can conclude that $z \in F(W_n)$. If $\widehat{F}(T_i) = F(T_i)$ for all $i = 1, 2, \dots, N$, by using the same proof as in the first case, we can show that $z \in F(W_n)$. This completes the proof. \square

Lemma 2.4.43. *Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive Banach space X . For each $n \in \mathbb{N}$, let K_n be defined as in (2.4.10). Then $F(K_n) = \bigcap_{i=1}^N F(T_i)$.*

Proof. Let $q \in F(K_n)$ and let $p \in \bigcap_{i=1}^N F(T_i)$. So we have

$$\begin{aligned}\phi(p, q) &= \phi(p, K_nq) \\ &\leq \phi\left(p, J^{-1}(\beta_{N,n}JT_NU_{N-1,n}q + (1 - \beta_{N,n})JU_{N-1,n}q)\right) \\ &\leq \beta_{N,n}\phi(p, T_NU_{N-1,n}q) + (1 - \beta_{N,n})\phi(p, U_{N-1,n}q) \\ &\leq \phi(p, U_{N-1,n}q) \\ &\vdots \\ &\leq \phi\left(p, J^{-1}(\beta_{2,n}JT_2U_{1,n}q + (1 - \beta_{2,n})JU_{1,n}q)\right) \\ &\leq \beta_{2,n}\phi(p, T_2U_{1,n}q) + (1 - \beta_{2,n})\phi(p, U_{1,n}q) \\ &\leq \phi(p, U_{1,n}q) \\ &\leq \phi\left(p, J^{-1}(\beta_{1,n}JT_1q + (1 - \beta_{1,n})Jq)\right) \\ &\leq \beta_{1,n}\phi(p, T_1q) + (1 - \beta_{1,n})\phi(p, q) \\ &\leq \phi(p, q),\end{aligned} \quad (2.4.16)$$

which implies $\beta_{1,n}\phi(p, T_1q) + (1 - \beta_{1,n})\phi(p, q) = \phi\left(p, J^{-1}(\beta_{1,n}JT_1q + (1 - \beta_{1,n})Jq)\right)$. By Lemma 2.4.37, we obtain that $q = T_1q$ and hence $q \in F(T_1)$. From (5.1.18) we see that $\beta_{2,n}\phi(p, T_2U_{1,n}q) + (1 - \beta_{2,n})\phi(p, U_{1,n}q) = \phi(p, J^{-1}(\beta_{2,n}JT_2U_{1,n}q + (1 - \beta_{2,n})JU_{1,n}q))$. Also, Lemma 2.4.37 implies that $U_{1,n}q = T_2U_{1,n}q$. Since $q = U_{1,n}q$ by (2.4.10), we have $q \in F(T_2)$. Similarly, we can verify that $q \in F(T_i)$ for all $i = 3, 4, \dots, N$ and hence $q \in \bigcap_{i=1}^N F(T_i)$. This completes the proof. \square

Lemma 2.4.44. *Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive Banach space X . For each $n \in \mathbb{N}$, let K_n be defined as in (2.4.10). Then K_n is a relatively quasi-nonexpansive mapping.*

Proof. From Lemma 2.4.43 and by the relative quasi-nonexpansiviness of T_i for all $i = 1, 2, \dots, N$, we immediately obtain the desired result. \square

Lemma 2.4.45. *Let C be a nonempty, closed and convex subset of a uniformly smooth Banach space X . For each $n \in \mathbb{N}$, let K_n be defined as in (2.4.10) and let $0 < a \leq \beta_{i,n} \leq b < 1$ for all $i = 1, 2, \dots, N$. If either T_i is closed for all $i = 1, 2, \dots, N$ or $\widehat{F}(T_i) = F(T_i)$ for all $i = 1, 2, \dots, N$, then $\{K_n\}$ satisfies the $(*)$ -condition.*

Proof. Let $p \in \bigcap_{i=1}^N F(T_i)$ and let $\{z_n\}$ be a sequence in C such that $z_n \rightarrow z$ and $\lim_{n \rightarrow \infty} \|z_n - K_n z_n\| = 0$. For each $n \in \mathbb{N}$, let $U_{0,n}$ be the identity mapping. From Lemma 2.3.5 and X^* is uniformly convex, then there exists a strictly increasing, continuous and convex function g^* with $g^*(0) = 0$ such that

$$\begin{aligned}
\phi(p, K_n z_n) &\leq \phi\left(p, J^{-1}(\beta_{N,n} J T_N U_{N-1,n} z_n + (1 - \beta_{N,n}) J U_{N-1,n} z_n)\right) \\
&= \|p\|^2 - 2\langle p, \beta_{N,n} J T_N U_{N-1,n} z_n + (1 - \beta_{N,n}) J U_{N-1,n} z_n \rangle \\
&\quad + \|\beta_{N,n} J T_N U_{N-1,n} z_n + (1 - \beta_{N,n}) J U_{N-1,n} z_n\|^2 \\
&\leq \|p\|^2 - 2\langle p, \beta_{N,n} J T_N U_{N-1,n} z_n + (1 - \beta_{N,n}) J U_{N-1,n} z_n \rangle \\
&\quad + \beta_{N,n} \|T_N U_{N-1,n} z_n\|^2 + (1 - \beta_{N,n}) \|U_{N-1,n} z_n\|^2 \\
&\quad - \beta_{N,n} (1 - \beta_{N,n}) g^*(\|U_{N-1,n} z_n - T_N U_{N-1,n} z_n\|) \\
&= \beta_{N,n} \phi(p, T_N U_{N-1,n} z_n) + (1 - \beta_{N,n}) \phi(p, U_{N-1,n} z_n) \\
&\quad - \beta_{N,n} (1 - \beta_{N,n}) g^*(\|J U_{N-1,n} z_n - J T_N U_{N-1,n} z_n\|) \\
&\leq \phi(p, U_{N-1,n} z_n) - \beta_{N,n} (1 - \beta_{N,n}) g^*(\|J U_{N-1,n} z_n - J T_N U_{N-1,n} z_n\|) \\
&\quad \vdots \\
&\leq \phi(p, z_n) - \sum_{i=1}^N \beta_{i,n} (1 - \beta_{i,n}) g^*(\|J T_i U_{i-1,n} z_n - J U_{i-1,n} z_n\|),
\end{aligned}$$

which yields

$$\sum_{i=1}^N \beta_{i,n} (1 - \beta_{i,n}) g^*(\|J T_i U_{i-1,n} z_n - J U_{i-1,n} z_n\|) \leq \phi(p, z_n) - \phi(p, K_n z_n).$$

Since $\beta_{i,n} (1 - \beta_{i,n}) \geq a(1 - b) > 0$ for all $i = 1, 2, \dots, N$ and $\lim_{n \rightarrow \infty} \|z_n - K_n z_n\| = 0$, it follows from the properties of g^* and the uniform continuity of J that

$$\lim_{n \rightarrow \infty} \|T_i U_{i-1,n} z_n - U_{i-1,n} z_n\| = 0, \tag{2.4.17}$$

for all $i = 1, 2, \dots, N$. In particular, we have

$$\lim_{n \rightarrow \infty} \|T_1 z_n - z_n\| = 0. \tag{2.4.18}$$

We observe that

$$\begin{aligned}
\phi(z_n, U_{1,n} z_n) &\leq \phi\left(z_n, J^{-1}(\beta_{1,n} J T_1 z_n + (1 - \beta_{1,n}) J z_n)\right) \\
&\leq \beta_{1,n} \phi(z_n, T_1 z_n) + (1 - \beta_{1,n}) \phi(z_n, z_n),
\end{aligned}$$

which implies from Lemma 2.4.26 and (2.4.18) that

$$\lim_{n \rightarrow \infty} \|z_n - U_{1,n} z_n\| = 0. \tag{2.4.19}$$

From (4.2.16) and (2.4.17), we have

$$\|T_2 U_{1,n} z_n - z_n\| \leq \|T_2 U_{1,n} z_n - U_{1,n} z_n\| + \|U_{1,n} z_n - z_n\| \rightarrow 0, \tag{2.4.20}$$

as $n \rightarrow \infty$. Hence

$$\begin{aligned}\phi(z_n, U_{2,n}z_n) &\leq \phi\left(z_n, J^{-1}\left(\beta_{2,n}JT_2U_{1,n}z_n + (1 - \beta_{2,n})JU_{1,n}z_n\right)\right) \\ &\leq \beta_{2,n}\phi(z_n, T_2U_{1,n}z_n) + (1 - \beta_{2,n})\phi(z_n, U_{1,n}z_n),\end{aligned}$$

which implies from (4.2.16) and (2.4.20) that

$$\lim_{n \rightarrow \infty} \|z_n - U_{2,n}z_n\| = 0.$$

By proving in the same manner, we can conclude that

$$\lim_{n \rightarrow \infty} \|z_n - U_{i,n}z_n\| = 0.$$

for all $i = 1, 2, \dots, N$. Since $z_n \rightarrow z$, $U_{i,n}z_n \rightarrow z$. If T_i is closed for all $i = 1, 2, \dots, N$, it follows from (2.4.17) that $z \in \bigcap_{i=1}^N F(T_i)$. If $\widehat{F}(T_i) = F(T_i)$ for all $i = 1, 2, \dots, N$, by (2.4.17), $z \in \bigcap_{i=1}^N \widehat{F}(T_i) = \bigcap_{i=1}^N F(T_i)$. From Lemma 2.4.43, we can conclude that $z \in F(K_n)$. This completes the proof. \square