Chapter 2
Basic Concepts and Preliminaries

The purpose of this chapter is to collect notations, terminologies and elementary
results used throughout the thesis.

2.1 Metric Spaces

Definition 2.1.1. [56] A metric space is a pair (X, d), where X is a set and d is a metric
on X (or distance function on X)), that is, a real- valued function defined on X x X such
that for all z,y, 2 € X we have:

(1) d(z,y) > 0;
(2) d
(3) d(z,y) = d(y, ) (symmetry);
(4) d

Example 2.1.2. [12]

(z,y) = 0 if and only if z = y;
(x,y) < d(z,z) 4+ d(z,y) (triangle inequality).

(1) X =R; d(z,y) = | — y|, Vo,y € R is a metric on R;
(2) X = an d(l‘7 y) = [Z:L:l(l‘l - yi)2]1/27 r = (171, Lo, 71'71)7 Yy = (yhyQ: e 7yn) S
R™, is a metric on R™ (euclidian metric). The following mappings:

n

Say) =Y |wi—ul, @y R
i=1
p(r,y) = max [z, —yl, @,y e€R",
are also metrics on R";

(3) Let X = {f :[a,b] — R : f is continuous}. We define d : X x X — R* by

d(f,g) = max |f(x) — g(z)|, forall f,g € X.

z€[a,b]

Then d is a metric on X (Chebyshev metric); the metric space (X, d) is denoted
by Cla, b];
(4) Let X be as (3) and let 6 : X x X — RT be defined by

8(f.9) = max (| f(z) — g(z)[e” T+,

z€[a,b]

for all f,g € X where 7 > 0 is a constant and x is fixed in [a, b].

Then § is a metric on X (Bielecki metric), and the metric space (X, J) is denoted
by Bla, b].
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Definition 2.1.3. [12] Let (X, d) be a metric space. The topology having as basis the
family of all open balls, B(z,r), z € X, r > 0, is called the topology induced by the
metric d.

Definition 2.1.4. [12] Two metrics d; and dy defined on the set X are called equivalent
if they induce the same topology on X.

Remark 2.1.5. [12]

(1) Two metrics d; and dy are metrically equivalent if there exist two constants m > 0
and M > 0 such that

mdy(z,y) < dy(z,y) < Mdy(z,y), forall z,y € X,

(2) In Example 2.1.2, the metrics d, and p from (2) are equivalent; the metrics d
from (3) and p from (4) are equivalent as well.

Definition 2.1.6. [56] A sequence {z,} in a metric space X = (X,d) is said to be
convergent if there exists © € X such that lim,,_ ., d(z,,z) = 0.

Definition 2.1.7. [56] A sequence {x,} in a metric space X = (X, d) is said to be Cauchy
if for every € > 0 there exists N(¢) € N such that d(x,,,z,) < € for every m,n > N(e).

Definition 2.1.8. [56] A metric space (X,d) is said to be complete if every Cauchy
sequence in X converges.

Theorem 2.1.9. [56] Fvery convergent sequence in a metric space is a Cauchy sequence.

Theorem 2.1.10. [65] Let {z,} be a sequence in R. If every subsequence {x,, } of {z,}
has a convergent subsequence, then {x,} is convergent.

Definition 2.1.11. [65] Let (X,d) be a metric space. A subset F' of X is closed if
{z,} C F and x, — z imply z € F.

Theorem 2.1.12. [103] (The fundamental properties of closed sets) Let (X, d) be a
metric space. Then the following conclusions hold:

(1) X and O are closed sets;

(2) any intersection of closed sets in X is closed, that is,

F, (n€ M) are closed = ﬂ F,, is closed;
neM

(3) any finite union of closed sets in X is closed, that is,
F, (i=1,2,---,m) are closed = UE 15 closed.
i=1

Definition 2.1.13. [103] Let X and Y be metric spaces and let f be a mapping of X
into Y. Then f is said to be continuous at zy in X if

A mapping f of X into Y is continuous if it is continuous at each x in X.
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2.2 Banach Spaces and Hilbert spaces

In this section, we give definition and geometric properties in Banach spaces
and Hilbert spaces.

Definition 2.2.1. [65] Let X be a linear space (or vector space). A norm on X is a
real-valued function || - || on X such that the following conditions are satisfied by all
members x and y of X and each scalar a:

(1) ||z|| > 0 and ||z|| =0 if and only if x = 0;
(2) [lez] = [l
(3) [z + ]l < llall + 1y (triangle incquality)

The ordered pair (X, || - ||) is called a normed space .

Definition 2.2.2. [65] Let X be a normed space. The metric induced by the norm of X
is the metric d on X defined by d(z,y) = ||z — y|| for all z,y € X. The norm topology
of X is the topology obtained from this metric.

Definition 2.2.3. [56] Let = be an element and {x,} a sequence in a normed space X.
Then {z,} converges strongly to x written by x, — x, if lim, . ||z, — z|| = 0.

Definition 2.2.4. [65] A Banach norm or complete norm is a norm that induces a com-
plete metric. A normed space is a Banach space or B-space or complete normed space
if its norm is a Banach norm.

Definition 2.2.5. Let X be a normed space and B(X,R) the set of all continuous linear
functionals of X into R. Then X* = B(X,R) is called the dual space of X.

Definition 2.2.6. [65] Let = be an element and {x,} a sequence in a normed space X.
Then {x,} converges weakly to x written by z,, — x, if f(x,) — f(z) for all f € X*.

Define the mapping ¢ : X — X** by ¢(z) = fs, * € X. Then ¢ is called the
natural embedding mapping from X into X** and has the following properties:

(1) ¢ is linear: p(ax + By) = ap(z) + Be(y) for all z,y € X and for all «, § € F;
(2) ¢(x) is isometry: ||p(z)| = ||=| for all z € X.

Definition 2.2.7. [2] A normed space X is said to be reflezive if the natural embedding
mapping ¢ : X — X** is onto. In this case, we write X = X** or X = X**.

Lemma 2.2.8. [65] Let X be a normed space. Then (a) = (b) = (c) in the following
collection of statements.

(a) The space X is reflexive.

(b) Every bounded sequence in X has a weakly convergent subsequence.

(¢) Whenever (C,,) is a sequence of nonempty closed bounded convex sets in X such
that Cyq C C, for each n, it follows that (),—, Cy, # 0.

Remark 2.2.9. [2]
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U1, 0, L1 and L., are not reflexive.
5) ¢ and ¢y are not reflexive.
Definition 2.2.10. [2, 102] A Banach space X is said to be strictly convex if
ol = llgll = L and & # y imply | 52| < 1
Lemma 2.2.11. [2, 102] A Banach space X is strictly convex if x,y € X with ||z| =
lyll =1 and ||[(1 — N)ax + Ay|| =1 for all X € (0,1) holds if and only if x = y.

Theorem 2.2.12. [2] Let C' be a nonempty, closed and conver subset of a reflexive and
strictly conver Banach space X. Then for x € X, there exists a unique point z, € C
such that ||x — z;|| = D(z,C) = inf{||lx — y| : y € C}.

1/2
Example 2.2.13. [2] Let X = R", n > 2 with norm ||-||2 defined by ||z||2 = <Z" x2> :

i=1"1

x = (21,29, -+ ,x,) € R". Then X is strictly convex.

Example 2.2.14. [2] Let X = R™ n > 2 with norm || - ||; defined by |lz||; = >, |2,

x = (21,29, -+ ,x,) € R". Then X is not strictly convex.
Example 2.2.15. [2] Let X = R" n > 2 with norm || - ||, defined by ||z]. =
maxi<j<p |Zi|, * = (x1, 29, -+ ,x,) € R™. Then X is not strictly convex.

Definition 2.2.16. [2, 102] A Banach space X is called uniformly convez if for any
e € (0,2], there exists a § = d(¢) > 0 such that if x,y € X with |jz|| = ||y]| = 1 and
o —yll >, then || Z52]| <1 4.

Let X be a Banach space. The modulus of convexity of X is the function
dx : (0,2] — [0, 1] defined by

T+y
2

ox(e) =inf {1~ | 52| <zl =yl = 15l = wil = ).

Lemma 2.2.17. [2] A Banach space X is uniformly convez if and only if 6x(g) > 0 for
all e € (0,2].

Remark 2.2.18. [2]
(1) 0x(e)/e is a nondecreasing function on (0, 2].
(2) dx is a convex and continuous function.
Example 2.2.19. [2]
(1) u(e) =1 — /T— (/2]

(2) 64,(c) = 1— (1= (e/2)7)"* (2 < p < ).
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(3) If X is uniformly convex, then dx(¢) <1 — /1 — (¢/2)2.
Remark 2.2.20. [2]
(1) Every Hilbert space is uniformly convex.
(2) The Banach spaces ¢, and L, with (1 < p < 00) are uniformly convex.
(3) The Banach spaces {1, o, ¢, co, L1 and L, are not uniformly convex.

Theorem 2.2.21. [102] Let X be a Banach space. Then the following conditions are
equivalent:

(1) X is uniformly convex;

(2) if for any two sequences {x,}, {yn} in X,

lim ||z,|| = lim ||y,|| =1 and lim ||z, + y.| = 2,
then lim, o0 ||Tn — ynl| = 0;

(3) for any € with 0 < € < 2, there exists 6 > 0 depending only on € > 0 such that

Hery
2

for any z,y € X with ||z|| = ||y|]| =1 and ||z — y|| > €.

J<1-

Theorem 2.2.22. [2, 102] Every uniformly conver Banach space is strictly convex and
reflezive.

Example 2.2.23. [2] Let X = ¢y and let § > 0 with the norm || - ||g defined by

ol = el +8( 3 (2)7), = (o} e o

The space (co, || - ||g) for > 0 are strictly convex, but not uniformly convex.

Example 2.2.24. [2] Let X = R"”, n > 2 with the norm ||-||; defined by ||z|; = > i, |2l
Then X is reflexive, but not uniformly convex.

Definition 2.2.25. [102] Let X be a Banach space. The multi-valued mapping J : X —
2X" is called the duality mapping if

J(z) = {z" € X*: (z,2%) = |lz]* = [|2"]|*}
for all z € X, where (-, -) denotes the pairing between X and X*.

Definition 2.2.26. [102] Let X be a Banach space and let S(X) = {z € X : |z|| = 1}.
Then X is said to be smooth if the limit

t —
L+t = el

lim , (2.2.1)

exists for each x,y € S(X). In this case the norm of X is said to be Gdteaux differen-
tiable. The space X is said to have a uniformly Gateaux differentiable norm if for each
y € S(X), the limit (2.2.1) is attained uniformly for x € S(X). The norm of X is said
to be Fréchet differentiable if for each € X, the limit (2.2.1) is attained uniformly for
y € S(X). The norm of X is said to be uniformly Fréchet differentiable (and X is said
to be uniformly smooth) if the limit (2.2.1) is attained uniformly for z,y € S(X).
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Let X be a Banach space. The modulus of smoothness of X is the function
px :0,00) — [0, 00) defined by

px(t) ZSUP{%(H?UWIIJFlll‘—yll)—l ]l =1, llyll <t}

Example 2.2.27. [2] Let X = H a Hilbert space. Then py(t) = v1+t2—1for all ¢t > 0.
Lemma 2.2.28. [2] A Banach space X is uniformly smooth if and only if lim,_q 2 ex® — g,

Definition 2.2.29. Let p,q > 1. A Banach space X is said to be p-uniformly convex
(resp. q-uniformly smooth) if there exists a constant ¢ > 0 such that dx(¢) > ceP (resp.

px(t) < ct?).

Remark 2.2.30. Every p-uniformly convex Banach space (resp. g¢-uniformly smooth
Banach space) is uniformly convex (resp. uniformly smooth).

Theorem 2.2.31. [2] Every uniformly smooth Banach space is reflexive.

We next give examples of the duality mapping J in the uniformly smooth and
uniformly convex Banach spaces £, L, and WP 1 < p < +o0.

Example 2.2.32. [3]

(1) For ¢, J(x) = ||x|\§p_py € {,, where z = {x1, 79, ...} and y = {@1|21|P72, z2|z2P 72, ...}
with + 2 = 1.

(2) For Ly, J(x) = ||}, |ef~2x € Ly, where £+ 1 =1,
(3) For We, J(x) = Hﬂ\ﬁ;é’ (—1)¥D!(|Dtz|p=2D'z) € W, where Iri=1.

Proposition 2.2.33. [102] Let X be a Banach space and let J : X — 2% be the duality
mapping. Then

(1) for each x € X, J(x) is nonempty, bounded, closed and convex;
(2) J(0) = {0};
(3) for each x € X and a real o, J(ax) = aJ(x);
(4) forxz,y € X, z* € J(x) and y* € J(y), (v —y,z* —y*) > 0;
(5) for z,y € X, y* € J(y), llxl” = lyll* = 20z — y,97).
Proposition 2.2.34. [102] Let X be a Banach space. Then
(1) if X is smooth, then J is single-valued;
(2) if X is strictly convex, then J is one-to-one, that is, x # y implies J(x)NJ(y) = 0;

(3) if X is reflexive, then J is onto, that is, for each x* € X*, there exists v € X
such that x* € Jx;

(4) if X has a Fréchet differentiable norm, then J is norm-to-norm continuous;
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(5) if X is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subsets of X.

Theorem 2.2.35. [102] Let X be a Banach space. Then we have the following:
(1) if X* is strictly convex, then X is smooth;
(2) if X* is smooth, then X is strictly convex.

Remark 2.2.36. [102] The above statements are equivalent if X is a reflexive Banach
space.

Theorem 2.2.37. [102] Let X be a Banach space. Then X is uniformly smooth if and
only if X* is uniformly convez.

Definition 2.2.38. [2] Let C' be a subset of a Banach space X. Then C is said to be
convez if (1 =Nz + (1 — Ny € C for all z,y € C and for all X € (0,1).

Definition 2.2.39. [2] Let X be a Banach space and let f : X — (—o00, 00) be a function.
Then D(f) = {z € X : f(z) < 400} is called the effective domain of f. The function
f is called proper if D(f) # 0.

Definition 2.2.40. [2] Let X be a Banach space. A function f : X — (—o00,00) is convex
if for any z,y € X and t € (0,1), then f(tx + (1 —t)y) < tf(z)+ (1 —1t)f(y).

Definition 2.2.41. [102] Let X be a Banach space. Then f : X — (—o00,00) is said to
be lower semi-continuous at xo € X, if {x,} is a sequence in X such that x, — z and

f(x) =y, then f(zo) <.

Lemma 2.2.42. [102] Let X be a Banach space, let {x,} be a bounded sequence of X
such that x, — x. Then following inequality holds:

|z|| < liminf ||z,||.
n—oo

Definition 2.2.43. [74] A Banach space X is said to satisfy Opial’s condition if z,, — x
as n — oo and = # y imply that limsup,,_, . ||z, — z|| <limsup,,_ . ||z — |-

It is well known [74] that all Hilbert spaces and ¢, spaces where 1 < p < o0,
have this property, while all L, spaces do not unless p = 2.

Definition 2.2.44. A Banach space X is said to have the Kadec-Klee property if for
every sequence {z,} in X, z, — z and ||z,| — ||z| imply z, — =.

Theorem 2.2.45. [65] Every uniformly conver Banach space has the Kadec-Klee prop-
erty.

Definition 2.2.46. [56, 103] An inner product space is a vector space X with an inner
product defined on X. A Hilbert space is a complete inner product space. Here, an
inner product on X is a mapping of X x X into the scalar field F = R or C; that is,
with every pair of vector x and y there is associated a scalar which is written and is
called the inner product of x and y, such that for all vectors x, vy, z and scalar o € F we
have:

(1) (xz,z) > 0 and (x,z) =0 < z = 0;
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(2) {az,y) = afz,y);
(3) (,9) = {y, );
(4) {z+y,2) = (z,2) + {y,2).
An inner product on X defines a norm on X given by ||z = v/(z, z).

Theorem 2.2.47. [103](The Schwarz inequality) If  and y are any two vectors in an
inner product space X, then |(z,y)| < ||z||||v]|-

Theorem 2.2.48. [103] (The parallelogram law) If z and y are any two vectors in an
inner product space X, then

lz + ylI* + llz = yl* = 2[|=]” + 2]lyl*

Theorem 2.2.49. [103] Let = and y be elements in an inner product space X and let
A € (0,1). Then the followings hold:

(1) Mz +yll* = Nzl + llyll* + 2{z, y);
2) Nz = yl* = ll=lI* = Iyll* = 2¢z =y, v);
(3) Az + (1= Nyll* = All[* + (1 = Mlgll* = AL = Nz —yl*.

Lemma 2.2.50. [103] Let X be an inner product space, let {z,} be a sequence of X and
let x be an element of X. Then z, — z, if for any y € X, (x,,y) — (z,9).

Let C be a nonempty, closed and convex subset of a real Hilbert space H. For
every point x € H, there exists a unique nearest point in C', denoted by Pox, such that

[ = Poxl| < |lz —yll, VyeC.

Pp¢ is called the metric projection of H onto C'. It is well known that Pg is a nonexpansive
mapping of H onto C.

Lemma 2.2.51. [42, 103] Let C' be a nonempty, closed and convex subset of a real Hilbert
space H and let x € H. Then, for each y € C, the following are equivalent:

(1) <$_P0$ay—PCx> SO?

(2) llz = Pex|® + | Pox — y|I* < [la — ylI*.

2.3 Inequalities in Banach Spaces

In this section, we collect some useful inequalities in Banach spaces.

Lemma 2.3.1. (2] Let X be a Banach space and J : X — 2" the duality mapping. Then
we have the following:

(1) ||z +yll* > ||z||* + 2y, j(x)) for all x,y € X, where j(x) € J(x);

(2) lle+yl? < llal* +2{y, j(z + y)) for all z,y € X, where j(x +y) € J(x +y).
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Remark 2.3.2. In a real Hilbert space H, we have the following inequality:
=+ ylI* < llz)|* + 2y, = + y), Yo,y € H.

Lemma 2.3.3. [114] Let X be a real g-uniformly smooth Banach space. Then the fol-
lowing inequality holds:

Iz +yll* < lz|” + qly, Jo(2)) + Cllyll?,
forall z,y € X and for some C, > 0.

Lemma 2.3.4. [31, 88, 89] Let X be a uniformly smooth Banach space. Then there
exists a nondecreasing continuous function 3 : [0,00) — [0,00) with lim; o+ 5(t) = 0
and B(ct) < cf(t) for ¢ > 1 such that for all x,y € X, the following inequality holds:

lz+ yll* < [l=)l* + 2(y, j () + max{||z ||, LHyllB(yl)-

Lemma 2.3.5. [114] Let X be a uniformly convexr Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,2r] — R such
that g(0) = 0 and

[tz + (1= t)yl* < tlaf* + 1 = )llyll* — t(1 = )g(l= — ylD),
where x,y € B, ={z€ X : ||z]| <r} and t € [0, 1].

Lemma 2.3.6. [31, 114] Let ¢ > 1 and r > 0 be two fized real numbers and X be a
uniformly smooth Banach space. Then there exists a continuous, strictly increasing and
convex function ® : R — R*, ®(0) = 0 such that for every z,y € B, = {z € X :
2|l < 7} we get

[l +yll* < Nz[|” + ¢y, Jo(x)) + 2([lyl])- (2.3.1)

Lemma 2.3.7. [20] Let C' be a bounded, closed and convex subset of a uniformly convex
Banach space X . Then there exists a strictly increasing, convex and continuous function
7 :[0,00) — [0,00) such that v(0) =0 and

i=1 =1

for all n € N, {x1,29,....,2,} C C, {\, A2, ...; \} C [0,1] with > N\ = 1 and a

nonexpansive mapping T of C' into X.

T 1<j<k<n

) < max (||xj — x|l — | Tx; — Ta:k||)

2.4 Some Useful Lemmas, Propositions and Theorems

In this section, we give some useful lemmas, propositions and theorems in order
to prove the main results.

Definition 2.4.1. Let B be a subset of topological vector space X. A mapping G :
B — 2% is called a KKM mapping if co{z1,z9, - ,xm} C Ui, G(z;) for z; € B and
1=1,2,---,m, where coA denotes the conver hull of the set A.
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Lemma 2.4.2. [37] Let B be a nonempty subset of a Hausdorff topological vector space
X and let G : B — 2% be a KKM mapping. If G(z) is closed for all x € B and is
compact for at least one v € B, then (.5 G(x) # 0.

Lemma 2.4.3. [18, 42] Demi-closedness principle. Assume that T is a nonexpansive
self-mapping of a nonempty, closed and convex subset C' of a real Banach space X . If
T has a fixed point, then I — T is demi-closed, that is, whenever x, — x € C, and the
sequence (I —T)x, — y for some y € C, it follows that (I —T)x =y. Here I is the
identity operator of X.

Lemma 2.4.4. [123] Let X be a uniformly convexr Banach space, C' a nonempty, closed
and convex subset of X, andT' : C'— C' be a continuous pseudocontraction. Then I —T
18 demi-closed at zero.

Lemma 2.4.5. [123] Let X be a reflezive Banach space which satisfies Opial’s condi-
tion, C' a nonempty, closed and convex subset of X, and T : C' — C' be a continuous
pseudocontraction. Then I — T is demi-closed at zero.

Lemma 2.4.6. [116] Let X be a uniformly conver Banach space, let {a,,} be a sequence
of real numbers such that 0 < b < «a,, < ¢ < 1 for all n > 1, and let {x,} and
{yn} be sequences in X such that limsup,_ . ||z.| < d, imsup,_ . ||y.|| < d and
limy, o0 [Ty + (1 — o)yl = d. Then lim, o ||z, — yn|| = 0.

Lemma 2.4.7. [98] Let {z,} and {y,} be bounded sequences in a Banach space X and
let {b,} be the sequence in [0,1] with 0 < liminf,, b, < limsup,,_,. b, < 1. Suppose
Tni1 = (1 = bp)yn + bpxy, for all integers n > 1 and limsup,,_, o (||[yn+1 — Ynll — || Tns1 —
Tp||) £ 0. Then lim, .o ||y — || = 0.

Lemma 2.4.8. [113] Assume {a,} is a sequence of nonnegative real numbers such that
ani1 < (1 —yn)an + 0p, n > 1,
where {v,} is a sequence in (0, 1) and {d,} is a sequence such that
(1) 22021 T = +00;
(2) lmsup, .o 0n/7n < 0or > 7 |0,] < +o00.
Then lim,,_, a,, = 0.

Lemma 2.4.9. [101] Let {a,},{b,} and {6,} be sequences of nonnegative real numbers
satisfying the inequality

Ap+1 S (1 + 571)@71 + bn> n 2 0.

If > 0 0n < 400 and y b, < 400, then lim,_. a, exists. If, in addition, {a,} has
a subsequence converging to 0, then lim, ., a, = 0.

Let C' be a nonempty, closed and convex subset of a Hilbert space H. Let
A : H — H be a single-valued nonlinear mapping and let M : H — 29 be a set-valued
mapping. The variational inclusion is to find £ € H such that

0 € A(Z) + M(3), (2.4.1)
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where 6 is the zero vector in H. The solutions set of problem (2.4.1) is denoted by
I(A, M). Recall that a mapping A : H — H is called a-inverse strongly monotone if
there exists a constant a > 0 such that

<AI - Ay?'r - y> = Oé”AJI - Ay”27 vxay € H.

A set-valued mapping M : H — 2% is called monotone if for all z,y € H, f €
M(z), and g € M(y) imply (x —y, f — g) > 0. A monotone mapping M is mazximal
if its graph G(M) := {(f,z) € H x H : f € M(x)} of M is not properly contained in
the graph of any other monotone mapping. It is known that a monotone mapping M is
maximal if and only if for (z, f) € H x H,(x —y, f —g) > 0 for all (y, g) € G(M) imply
[ € M(z). We define the resolvent operator Jy \ associated with M and A as follows:

Jux(@) =T +IM)  (z), € HX>0. (2.4.2)

Lemma 2.4.10. [17] Let M : H — 28 be a mazimal monotone mapping and A : H — H
be a Lipschitz continuous mapping. Then the mapping S = M + A : H — 28 4s q
mazimal monotone mapping.

Let X be a Banach space, D a nonempty, closed and convex subset of X, and
C a nonempty subset of D. Let @ : D — C. Then @ is said to be

(1) sunny if for each x € D and ¢ € [0, 1], we have
Qtz + (1 —t)Qz) = Qu;

(2) a retraction of D onto C if Qv =z for all x € C;
(3) a sunny nonezpansive retraction if () is sunny, nonexpansive and retract onto C'.
See Bruck [21], Goebel-Reich [41] and Reich [90].

Lemma 2.4.11. [91] Let X be a uniformly smooth Banach space and C a nonempty,
closed and convex subset of X. Let T : C' — C be a nonexpansive mapping with a fixved
point and let z € C. For each t € (0,1), let z; be the unique solution of the equation
x=tz+ (1 —t)Tx. Then {z} converges to a fized point of T ast — 0 and

Qz=s—limz
t—0

defines the unique sunny nonexpansive retraction from C' onto F(T).

Lemma 2.4.12. [123] Let C be a closed and convex subset of a uniformly smooth Banach
space X, and T : C' — C' a nonexpansive mapping with a nonempty fized point set F(T)).
Then there exists a unique sunny nonexpansive retraction Qpery : C — F(T') such that

limsup(u — Qryu, J(zn — Qrryu)) <0,

n—oo

for any given u € C' and for any bounded approximate fized point sequence {x,} C C
of T.
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Lemma 2.4.13. [100] Let X be a uniformly convex Banach space with a Fréchet dif-
ferentiable norm. Let C be a closed and convexr subset of X, and {S,}°, be a fam-
ily of L,-Lipschitzian self-mappings on C such that Y >~ (L, —1) < oo and F =
Moo, F(S,) # 0. For arbitrary z, € C, define x,41 = Sy, for alln > 1. Then for
every p,q € F, lim,_.(x,, j(p — q)) ewxists, in particular, for all u,v € wy(r,), and
p,q€F, (u—wv,jlp—q) =0

Lemma 2.4.14. Let X be a Banach space with the Fréchet differentiable norm. For
x € X, let 5*(t) be defined for 0 <t < oo by

l + tyl® = fll* _

5(0) - t 2(y. ()|
yeS(X)
Then lim; o+ 5*(t) = 0, and
l2 4+ R)* < flz]|* + 2(h, 5 (2)) + | RllB*(I|]) (2.4.3)

for all h € X \ {0}.
Proof. Let x € X. Since X has the Fréchet differentiable norm, it follows that

glle+tyll” — 5ll=)*
t

lim sup

Then lim; o+ 8*(t) = 0 and hence
lz + tyl* — ll=l*

()] =o.

t 20y.3(2))| < B(8) Wy € S(X)
which implies
lz+ tyl|* < lloll* + 2t(y, (2)) +6°(t) Vy € S(X). (2.4.4)
Suppose h # 0. Put y = ﬁ and ¢t = ||h|. By (2.4.4), we have

[l + Rl* < [lz)|* + 2(h, j (@) + 1Bl 5*(|A]])-
This completes the proof. n

To deal with a family of mappings, the following conditions are introduced: Let
C be a subset of a real Banach space X and let {7,}22; be a family of mappings of C'
such that (>, F(T,,) # 0. Then {T,} is said to satisfy the AKTT-condition (6] if for
each bounded subset B of C,

Zsup{HTnHz —T.z|| : z € B} < 0.

n=1
Lemma 2.4.15. [6] Let C' be a nonempty and closed subset of a Banach space X and
let {T,,} be a family of mappings of C' into itself which satisfies the AKTT-condition.
Then, for each v € C, {T,x} converges strongly to a point in C. Moreover, let the
mapping T be defined by

Tr = lim T,x Vx e C.

n—oo

Then for each bounded subset B of C,
lim sup{||7z — T,z| : z € B} = 0.
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In the sequel, we will write ({7},},T) satisfies the AKTT-condition if {7,,} sat-
isfies the AKTT-condition and T is defined by Lemma 2.4.15 with F(T) = (., F(T,).

We next give examples which satisfy the AKTT-condition for a family of non-
expansive mappings.

Example 2.4.16. Let 77,75, --- , be an infinite family of nonexpansive mappings of C'
into itself and 71,79, -+ be real numbers such that 0 < v; < 1 for all i € N. Moreover,
let W,, and W be the W-mappings [94] generated by 11,75, - , T, and y1,92, - , Vn,
and 17, T5,--- and ~q,79,---. Then ({Wn}, W) satisfies the AKTT-condition [81, 94].

Example 2.4.17. Let 77,75, --- be an infinite family of nonexpansive mappings of C'
into itself. For each n € N, define the mapping V,, : C — C by

Var =Y MNTw, VeeC,
=1

where {\’} is a family of nonnegative numbers satisfying the following conditions:
(1) D27 AL =1 for each n € N;
(2) A" :=1lim, o A, > 0 for each i € N;
(3) 2ooti 2oy X = Al < +oo.
Let V : C' — C be the mapping defined by

V= Z NTx, VzeC.
i=1

Then ({V,},V) satisfies the AKTT-condition [6].

The following results can be found in [14, 15].

Lemma 2.4.18. [14, 15] Let C be a closed and convex subset of a smooth Banach space X .
Suppose that {T,}>°, is a family of A-strictly pseudocontractive mappings from C' into
X with (), F(T,) # 0 and {p,}32, is a real sequence in (0,1) such thaty > | ju, = 1.
Then the following conclusions hold:

(1) G:=>""7 T, : C — X is a A\-strictly pseudocontractive mapping;
(2) F(G)=N,Z F(T).

Lemma 2.4.19. [15] Let C' be a closed and convex subset of a smooth Banach space X .

Suppose that {Sk}32, is a countable family of \-strictly pseudocontractive mappings of
C into itself with (\,—, F(Sk) # 0. For each n € N, define T,, : C' — C' by

T,x = Z,uflSka:, x e (),

k=1

where {uk} is a family of nonnegative numbers satisfying
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(1) Sor_ uF =1 foralln € N;
(2) p* = 1lim, o uf >0 for all k € N;
(3) Domiy Dy gy — pan] < 400
Then
(1) Each T, is a A-strictly pseudocontractive mapping.
(2) {T,.} satisfies AKTT-condition.
(3) If T :C — C is defined by

Tx = ZukSkx, x e C.
k=1

Then Tx = lim,_.o T,z and F(T) = (,_, F(T,) = ey F(Sk)-
Using Lemma 2.3.6, we can prove the following lemma.

Lemma 2.4.20. Let X be a uniformly smooth Banach space and C' a nonempty, bounded
and conver subset of X. Let T : C' — X be a A-strict pseudocontractions for some
0 < X< 1. Assume that ®(t) < 2t%, t € [0,00) where ® is a function appearing in
(2.3.1). For a € (0,1), we define T, = (1 — a)l + oT. Then, as o € (0,A], T, is
nonezpansive such that F(T,) = F(T).

Proof. For x,y € C', by Lemma 2.3.6, we have

ITor = Tuyl?* = l(x—y) +a(Tz — Ty~ (z —y))|
lz = yl* + 20(T2 = Ty — (x — y), j(x — y))
o (fla(Te— Ty~ (=~ v)|))
lz = yl* = 20\ T2 — Ty — (z — y)|*
+20°| T2 = Ty — (z - y)|*
= |lz = yl* = 2a(\ = )| Tz = Ty — (z — )|
lz = yl1%,

which implies that T, is nonexpansive. O

IN

IN

IN

Motivated by [8], we next study the class of Lipschitz and quasi-nonexpansive
mappings. Let C' be a nonempty subset of a Banach space X and let T: C' — X be a
mapping. Then T is called

(1) quasi-nonexpansive if F(T) # 0 and |Tx — p|| < ||z — p|| for all z € C and
p e F(T);

(2) Lipschitz if there exists L > 0 such that ||Tz — Ty|| < L|jz — y|| for all z,y € C.

It is remarked that the class of Lipschitz and quasi-nonexpansive mappings
includes that of nonexpansive mappings as special cases.

The following example is a Lipschitz and quasi-nonexpansive mapping but not
nonexpansive.
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Example 2.4.21. Let X = R and C = [0,1.5]. Define T': C' — R by

[0, xz €[0,1),
T‘”‘{ 20— 2, z€[l,1.5].

It is clear that F'(T) = {0} and T is a quasi-nonexpansive and Lipschitz map-
ping. Indeed, |Tx — 0| = |Tz| < |z| = |z — 0| for all x € C and |Tx — Ty| < 2|z — y|
for all x,y € C. However, T' is not nonexpansive. In fact, if x = 1 and y = 1.5, then
|Tx —Ty|l=1>05= |z —y|.

Lemma 2.4.22. [45] Let C be a closed and convex subset of a strictly convex Banach
space X, T a quasi-nonexpansive mapping of C into C. Then F(T') is a nonempty,
closed and convex set on which T s continuous.

We first prove some useful lemmas concerning the W-mapping of Lipschitz and
quasi-nonexpansive mappings in a strictly convex Banach space.

Lemma 2.4.23. Let C' be a nonempty, closed and convex subset of a strictly convex
Banach space X. Let {T;}Y., be a finite family of quasi-nonexpansive and L;-Lipschitz
mappings of C' into itself such that F := ﬂf\il F(T;) # 0 and let By, B2, -+ , By be real
numbers such that 0 < 3; <1 foralli=1,2,--- , N—1, 0< Gy <1 andzij\il@ = 1.
Let W be the W-mapping generated by Ty, Ts,--- Ty and (1, P2, -+ ,Bn. Then the
followings hold:

(1) F(W) =L, F(T);
(2) W is quasi-nonexpansive and Lipschitz.

Proof. (1) Since F' C F(W) is trivial, it suffices to show that F(W) C F. To this end,
let pe F(W) and 2* € F. Then we have

lp—a*| = [[Wp—2a"|| =||Bn(TnUn_ip — ")+ (1 = Bn)(p — ")
BullUn-1p — z*[| + (1 = Bn)|lp — 27|
BnlBN-1(TN-1Un—2p — ") + (1 = Bn_1)(p — z")||

+ (1= 6n)llp — 27|

BnON-1l|lUn—2p — 27[| + (1 = BnfBn-1)llp — °||

= OnOn-1llBn—2(Tn_2Un—sp —x") + (1 — Bn_2)(p — 27)||
+ (1= BnBn-1)llp — 27|

BnBn-188-2||Un-3p — 2*[| + (1 — BnBn-18n—2)|lp — 27|

IN

IN

IA

BByt B3| Bo(ToUrp — %) 4 (1 — B2)(p — 2¥)||

+ (1 = BnBn=1---Bs)|lp— 2"

BnBn-1-- '52||T2U1p - I*H + (1 — BNBN-1 - ﬂ2)”p - x*H
BnBN-1-+ - Bao||lUip — || + (1 = BnBn—1- - Bo)llp — 7|

BnBn-1- - Bo| Bi(Tip — %) + (1 = Bi)(p — 27)|

+ (1= BnBn-1---B2)|lp — 27|

BuBN-1- Bofhl|Tap — 2% + (1 = BnBn-1 - Baf1)lp — 27|
BnBn-1---Bofullp — 2™ || + (1 — BnBn-1--- B2P1)||p — ¥

lp —2"]. (2.4.5)

IA A

IN A
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This shows that

Ip—2"]| = By By -+~ Ball B (Tup— ) + (1= B) (p—") |+ (L~ By Bv—s - - Bo) lp—2”
hence
Ip— 2]l = |8:(Tip — ") + (1 = B)(p — )]l
Again by (2.4.5), we see that ||p — 2*| = |Tip — «*. Hence
Ip = 2"l = | Tip — 2| = | B:(Tip — ") + (L - B)(p — )]l (2.4.6)

Applying Lemma 2.2.11 to (2.4.6), we get that T\p = p and hence U;p = p.
Again by (2.4.5), we have

[p—a*[| = BnBy-1- - Bs]| Bo(TeUip— ")+ (1= F2) (p— ") [[+ (1= BnBn—1 - - - B) [Ip— 7|,
hence
lp = 2"l = B2(ToUrp — 27) + (1 = B2) (p — 27)]|.
From (2.4.5), we know that ||U;p — z*|| = || ToU1p — «*||. Since Uyp = p, we have
lp — =¥\ = Tap — ™| = [|B2(Top — 27) + (1 = B2)(p — 27)|[. (2.4.7)

Applying Lemma 2.2.11 to (2.4.7), we get that Top = p and hence Usp = p.
By proving in the same manner, we can conclude that T;p = p and U;p = p for
alli=1,2,-.-- | N — 1. Finally, we also have

lp = Twpll < [lp = Wol[ + [[Wp = Tip|
= lp=Wpl + (1 = Bn)llp = Twpl|;
which yields that p = Typ since p € F(W). Hence p € F := ﬂf\il F(T).
(2) For each x € C' and z € F, we observe that
T2 — z[| <l — z]|.
Let k € {2,3,--- ,N}. Then
Uz — 2| = [BeTkUk—12 + (1 = By)z — 2|

< BillUk—1z — 2| + (1 = B) |z — 2]|.
So we have
Wz —z|| = [|[Unz — z||
< ByllUn-1z — 2|+ (1 = By)llz — 2|
< Bn <5N—1||UN—2$ —z|| + (1 — Bn-a) |l — z||>

+ (1= Bn)llz — 2|
< Bn (5N1 <5N72HUN7395 — 2|+ (1 = Bn_2)||z — ZH)

£ (1= Byl - zu> =Byl
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< By (ﬁN_l (Bv-a (BT 21+ (0= i)l =)
F (1= Bl —ol)) 4+ (1= Bv-a)le - =)
+ (L= Byl - zn> (1= Byl — 2]

< by (ﬁN_l (s (Baouhe =l + (1= Bl - 21)

+ 1= Bl = o) o+ (1= y-llo o]

+ (1= Fn-)lle - Z||> + (1= Bw)llz - 2|

= On <5N—1 (51\7—2 e (ﬁs(ﬁz“x — 2|+ (1 = Bo)||z — =)
b (1= Blle = 2l) 4o+ (1= o =2

+ (1= fy-)llz - ZH) + (1= Bw)llz — 2|

= lz—zl|
This shows that W is a quasi-nonexpansive mapping.

Next, we show that W is a Lipschitz mapping. Note that T; is L;-Lipschitz for

alli=1,2,---,N. For each z,y € C, we observe
Uiz = Uyl = |81z + (1= Bz — STy — (1 - Byl
< BillTiz — Tyl + (1 = Bo)[lz — v
< (51L1+(1_ﬁ1))||$—?/||-

Let k € {2,3,--- , N}, then

|Urz — Upy|| 186 Tk Uk 12 + (1 — Br)x — BTiUr—1y — (1 — Br)yl
B Li||Up—12 — Up—1y|| + (1 = Be) ||z — y]|.

IN

So we have

Wz — Wyl < BynLn||Uv-17 —Un_1y| + (1 = By)|lz — 9|
< BNLNBN-1LN-1||Un—2x — Un_2y||

+ (BvLn(t = By-1) + (1= ) ) e — y]



29

< BNLnBn-1Ln-1--- PaLls||Uix — Uryl|
+ <5NLN5N—1LN—1 - B3 Lg(1 — [32)
+ ONLNBNn-1Ln-1-- BaLls(1 — [33)
oo ByDn(L = By1) + (1= 6v) ) 2 =y
< BNLnBn-iLy—i---B2Lo <@1L1 + (1 =8> — yl!)

+ <BNLNﬁN—1LN—1 -+ B3L3(1 — (o)
+ BNLnBn-1Ln-1 - BaLla(1l = Bs)
+ o+ By L= By + (1= By)) e =l

= (ﬁNLNﬁN—lLN—1 By

+ ONLNBn-1Ln-1---[aLa(1 — 1)
+ ONLNBn-1Ln—1---[3L3(1 — [2)
+ BnLnBN-1Ln-1-- ‘54L4(1 — Bs)

o BN I (= By )+ (1= By)) o — |
S <LNLN—1"'L1+LNLN—1"'L2+LNLN—1"'L3

-+ LNLNfl N 'L4 +§ .- +LNLN71 _'_LN + 1)“]7 —yH
Since L; > 0 for all e =1,2,--- | N, W is a Lipschitz mapping. m
Lemma 2.4.24. Let C be a nonempty, closed and convex subset of a Banach space X.
Let {T;}Y, be a finite family of quasi-nonexpansive and L;-Lipschitz mappings of C

into itself and {B,;}Y., sequences in [0,1] such that B,; — B; as n — oo. Moreover,
for every n € N, let W and W,, be the W-mappings generated by T1,T5,--- , T and

517 527 e )ﬁNz and T17 T27 A 7TN and B’n,la ﬁn,% - 76717]\7; respectively. Then
lim ||[W,z —Wzx| =0, VxeC.
Proof. Let x € C' and Uy and U, be generated by T,T5,--- , Ty and 5y, B2, -, Bk,
and 11, Ty, -+, T and By1, Bn2, -+, Buk, respectively. Then
[Unpz — Ur|| = [|(Bra — 1) (Thx — 2)|| < |Bny — Bul | Tra — |-
Let k € {2,3,--- , N} and M = max{||TxUg_1z|| + ||z|| : k =2,3,--- , N}. Then

Unir — Uzl = ||BoxTkUnsi—12 + (1 — Bug)r — GpTkUr—1 — (1 — Gr)x||
= |BukTikUni—12 — Boix — Bk TkUx—1 + Brx||

< BuillTiUnp—12 — TiU—12|| + |Brk — Bell| Tk Uk—12||
+ | Bk — Bulllz ]|
< Li||Up 12 — Ug—rz|| + | Boe — Bi| M.
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It follows that
|Wpx — Wzl = ||[Uynz—Uyz|

< Ly|Upn-1z = Unarz| + |Bpn — By | M

< Ly (LN—1||Un,N—2$ — Un_oz|| + |Ban-1 — 5N-1|M)
+ [Bn. N — BN M

= LNLn_1||UyN—2x —Un_oz| + Ly|Bnn-1 — Bn-1|M
+ [Bn.n — By M

< LyLy-1---Ls <L2||Un,1l’ — Uizl + |Bp2 — ﬁz\M)
+ LnLy_1--- La|Bns — Bs|M + -+ -+ Ln|Bnn-1 — Bn_a1|M
+ [Bn, N — BN M

< LyLn_y--Ls|Bny — Bill|The — z|| + LNLn—1 - - L3|Bn2 — Bo| M
+ LyLn_1--Ly4|Bns — B3| M + -+ + Ln|Bpn-1 — On-1|M
+ [Bu,ny — B[ M.

Since f8,; — fiasn — oo (i =1,2,--- ,N), we obtain the desired result. ]

We next recall some useful lemmas concerning the generalized metric projection
in strictly convex, reflexive and smooth Banach spaces.

Let X be a smooth Banach space. The function ¢ : X x X — R is defined by
oz, y) = ll=l* — 2z, Jy) + [ly]*
for all z,y € X.

Remark 2.4.25. We know the following: for each z,y, 2z € X,

@ (lzl = llyl)* < o, m) < (=l + llyl)*
(2) ¢($7y> = (b(x"z) + ¢(Zay> + 2<$ — 2 Jz — Jy),
(3) ¢(z,y) = ||z — y||* in a Hilbert space.

Lemma 2.4.26. [48] Let X be a uniformly convex and smooth Banach space and let {z,}
and {y,} be sequences of X such that {x,} or{y,} is bounded and lim,_ ¢(zn,y,) = 0.
Then lim, o ||Tn — yu|| = 0.

Let X be a reflexive, strictly convex and smooth Banach space and let C' be a
nonempty, closed and convex subset of X. The generalized projection mapping, intro-
duced by Alber [3], is a mapping /1o : X — C, that assigns to an arbitrary point x € X
the minimum point of the functional ¢(y, x), that is, Ilcx = Z, where Z is the solution
to the minimization problem

o(z,x) = min{o(y,x) : y € C}.

In fact, we have the following result:
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Lemma 2.4.27. [3] Let C' be a nonempty, closed and convez subset of a reflexive, strictly
convex, and smooth Banach space X and let x € X. Then, there exists a unique element
xo € C such that ¢(xg, x) = min{p(z,z) : z € C'}.

Lemma 2.4.28. [3, 48] Let C' be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space X, v € X, and z € C. Then z = llgx if and
only Zf<Jx —Jz,y — z> <0 forally € C.

Lemma 2.4.29. [3, 48] Let C' be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space X and let x € X. Then

oy, o) + o(Hlcgx,z) < p(y,z) Vy e C.

Lemma 2.4.30. [83] Let X be a uniformly convex and uniformly smooth Banach space
and let C' be a closed and convex subset of X. Then, for points w,x,y,z € X and a
real number a € R, the set K := {v € C: ¢(v,y) < ¢p(v,x)+ (v, Jz — Jw) +a} is closed
and convex.

Lemma 2.4.31. [64] Let X be a smooth and strictly convex Banach space and let C' be a
nonempty, closed and convex subset of X. Let T be a mapping from C' into itself such
that F(T) is nonempty and ¢(u, Tx) < ¢(u,z) for all (u,z) € F(T) x C. Then F(T)
15 closed and convez.

Lemma 2.4.32. [48] Let X be a uniformly convex and uniformly smooth Banach space
and C' a nonempty, closed and convex subset of X. Then Il is uniformly norm-to-norm
continuous on every bounded set.

Let {C,} be a sequence of nonempty, closed and convex subset of a reflexive
Banach space X. We define two subsets s — Li,,(C,, and w — Ls,C,, as follows: z €
s — Li,C, if and only if there exists {z,} C X such that {z,} converges strongly to x
and that x,, € C, for all n € N. Similarly, y € w — Ls,,C,, if and only if there exists a
subsequence {Cy,} of {C,,} and a sequence {y;} C E such that {y;} converges weakly
to y and that y; € C,, for all i € N. We define the Mosco convergence [66] of {C,} as
follows: If Cj satisfies that Cy = s — Li,,C,, = w — Ls,,C,,, it is said that {C,,} converges
to Cp in the sense of Mosco and we write Cy = M — lim,,_,o, C,, (see [11]).

Lemma 2.4.33. [44] Let X be a smooth, reflexive and strictly convex Banach space having
the Kadec-Klee property. Let {R,} be a sequence of nonempty, closed and convex subset
of X. If Ry = M —lim,, .o R, ezists and is nonempty, then {IIg, x} converges strongly
to Ilg,z for each x € C.

We also make use of the following mapping V' studied in Alber [3]:
V(z,2) = ||lz|® - 2(z, 2*) + [la*|”
for all z € X and 2* € X*, that is, V(z,2*) = ¢(z, J~ (7).

Lemma 2.4.34. [54] Let X be a reflexive, strictly convexr and smooth Banach space.
Then

V(z,z*) +2(J 2" —x,y*) < V(z,2* +y")

forall z € X and x*,y* € X*.
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Lemma 2.4.35. [105] Let C be a closed and convex subset of a uniformly smooth, strictly
convez, and reflexive Banach space X, and let f be a bifunction from C' x C to R which
satisfies conditions (A1)-(A4). Forallr > 0 andx € X, define the mapping T, : X — C
as follows:

T.(z)={2€C: f(z,y) —1—%(3/—,2, Jz—Jx) >0, YyeC}.

Then, the following statements hold:
(1) T, is single-valued;
(2) T, is of firmly nonexpansive-type [55], i.e., for all x,y € X,

(Thx — Ty, JT,x — JTy) < (Thx — Ty, Jo — Jy);

(3) F(T)) = EP(f);
(4) EP(f) is closed and convex.

Lemma 2.4.36. [105] Let C' be a closed and convexr subset of a smooth, strictly and
reflexive Banach space X, let f be a bifunction from CxC to R which satisfies conditions
(A1) — (A4), let v > 0. Then, for allz € X and q € F(T,),

¢(q, Trx) + ¢(Trw,x) < ¢(q, ).

Lemma 2.4.37. [54] Let X be a reflexive, strictly conver and smooth Banach space, let
z € X and let {t;}7, C (0,1) with Y ", ¢; = 1. If {x;} is a finite sequence in X
such that

(=, J_I(Z tiJz;)) = Z tip(z, i),

then x1 = T9 = -+ = Zyy.

Let X be a smooth, strictly convex and reflexive Banach space and C' a non-
empty, closed and convex subset of X. Let {T;}, be a finite family of relatively
quasi-nonexpansive self-mappings of C' such that ﬂf\il F(T;) # 0. For each n € N, we
consider the mappings V,,, W,, and K,, defined as follows:

Vo= Hod Y (Bond + BindTi + -+ Bynd Tn), (2.4.8)

where /1 is the generalized projection of X onto C', J is the duality mapping of X and
Bons Bims -+ 5 Bnn are real sequences in (0,1) with By, + -+ + By = 1.

Un = IeJ™! (51,nJT1 +(1— 51,71)])7
UZ,n = Hojfl (ﬁQ,nJTZUl,n + (1 - BQ,n)J)7

Un_ipn = HCJ_l(ﬁN—1,nJTN—1UN—2,n + (1 - ﬁN—l,n)J)7
W, = Unp=HcJ  (Bynd TnUn-1+ (1 = Byn)d), (2.4.9)
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where (1, Bon, -+, Bnn are real sequences in (0,1). See [3, 5] for a class of relatively
nonexpansive mappings.

Ul,n = HC’J_l (ﬁl,nJTl + (1 - ﬁl,n)J);
U2,n = ]]C'J_1 (52,nJT2U1,n + (1 —~ ﬁ?,n)JUl,n)v

Un1n = HgJ7! (ﬁNfl,nJTNflUNfQ,n +(1— ﬁNfl,n)JUNon)?
K, = Unp=1HcJ " (ByndTnUn-10 + (1 = Bnn) JUn-1,0), (2.4.10)

where (1 ., B2, -+ , Bn,n are real sequences in (0, 1).

To study a countable family of relatively quasi-nonexpansive mappings, we
make use of the following condition: let C' be a closed subset of a Banach space X. A
family of mappings {7,}°°, of C into itself with ()~ F/(T,,) # 0 is said to satisfy the
(x)-condition [16] if for each sequence {z,} in C,

lim ||z, — Thzn|| =0 and z, — z imply z € ﬂ F(T,).

n=1
We next prove the crucial lemmas concerning the mappings defined as above.

Lemma 2.4.38. Let C' be a nonempty, closed and convexr subset of a smooth, strictly
convez and reflexive Banach space X. For each n € N, let V,, be defined as in (2.4.8).
Then the followings hold:

(1) F(Va) = Ni, F(T).
(2) Vi, is a relatively quasi-nonexpansive mapping.

Proof. (1) Since o, F(T;) € F(V,) is obvious, it suffices to show that F(V,) C
NY, F(T;). To this end, let ¢ € F(V,) and p € MY, F(T}). So we have by the
definition of ¢ that

o(p,q) = o(p,Vog) < 0, T (Bondq + BradThg + - - + By ndTng))
S 50,n¢(p7 q) + ﬁl,nqs(pa TlQ) + o+ ﬁN,n¢<pa TNQ)
< 9(p.a)
By Lemma 2.4.37, we get that ¢ =T1q=---=Tyq. Thus q € ﬂfvzl F(T;).
(2) The proof is directly obtained from (1). O

Lemma 2.4.39. Let C' be a nonempty, closed and convexr subset of a uniformly smooth
Banach space X. For each n € N, let V,, : C — C be defined as in (2.4.8) and let
0<a<fBypn<b<landO<a<pf, <b<1lforali=12,--- /N. If either T,
is closed for all i = 1,2,--- ,N or ﬁ(TJ = F(T;) for alli =1,2,--- N, then {V,}
satisfies the (x)-condition.

Proof. Let p € ﬂf\ilF(TZ) and let {z,} be a sequence in C' such that z, — z and
limy, oo ||2n — Vizn|| = 0. From Lemma 2.3.5 and X* is uniformly convex, then there
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exists a strictly increasing, continuous and convex function g* with ¢*(0) = 0 such that
¢(p7 Vnzn) S ¢(p> Jﬁl(ﬁo,njzn + ﬁl,nJlen +-+ ﬁN,nJTNZn))
= ||p||2 - 2<p7 ﬁO,nJZn + ﬁl,nJlen +---+ 6N,nJTNZn>
+ Hﬂo,njzn =5 ﬁl,nJlen et ﬂN,nJTNZnH2

< 50,n¢<p7 Zﬂ) + ﬁl,n¢(p7 len) +oee BN,n¢<p7 TNZTL)
— BonbBrng” (|20 — JT120 )
S ¢(p7 Zn) - ﬁO,nﬂl,ng*(HJzn - JTIZnH)y

which implies

ﬁo,nﬁl,ng*(HJZn . ‘]TIZNH) ¢(p7 zn) - ¢(p7 Vnzn)
120l = Vazall* = 2(p, TVi2n = J20)
< lzn = Vazall([2a]] + [[Vazal)
+ 2/[pll[| T2 = JVazal|-
Since BynfB1, > a* > 0, {2,} is bounded and lim,, .« ||z, — Vyu2a|| = 0, it follows from
the properties of ¢g* that

IN

lim ||Jz, — JT1z,|| = 0.
n—oo
Hence, by the uniform continuity of J, we also have
lim ||z, — T2/ = 0.
n—oo
By changing the role of vectors and proving in the same way, we can conclude that
lim ||z, — Tazy|| = -+ = lim ||z, — Tnza]| = 0.
n—00 n—00

Hence lim,, .o ||z, — Tiznl] = 0 for all ¢ = 1,2,--- | N. If T; is closed for all i =
1,2,--+ N, then z € ﬂi\;l F(T;). On the other hand, we see that z € ﬁ(T,) for all
i=1,2,---,N. Soif F(T}) = F(T}) for all i = 1,2,--- , N, then z € N, F(T}). By
Lemma 2.4.38 (1), we get that z € F(V,,). Thus, the proof is complete. ]

Lemma 2.4.40. Let C' be a nonempty, closed and convexr subset of a smooth, strictly

convex and reflexive Banach space X. For each n € N, let W,, be defined as in (2.4.9).

Then F(W,) = Y, F(T;).

Proof. (v, F(T;) € F(W,,) is obvious. Let ¢ € F(W,) and p € N, F(T;). Then
¢(p,q) = o(p, Waq)

&(p, 7 By TNUn 100+ (1 = Bx)Ja))

Bun®(P, TNUn-10q) + (1 — Bnn)0(p, q)
ﬁN,n¢(p7 UN—LnQ) + (1 - BN,n)QS(pa q)

IN

ININA

IN

BN (BN_l,n ( e (53,n¢(p, I (Bon I ToUr g + (1 = B20)Jq))

1= ol )+ ) + (1= ol q>) (1= Ba)olp.q)
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< Bun <6N_1,n ( By (62,n¢(p, ToUing) + (1= Ban)¢(p, Q)>

+ (1= B.0)0(p, Q)> +- ) + (1= An-12)9(p, Q)> + (1= Brw)o(p, q)
< Bnn <6N_1,n ( - Ban (6z,n¢(p, Urng) + (1 = Bon)o (P Q))

+ (L= B3n)0 ) ) (1= Bn-1.0)0(p Q)> + (1= Brw)o(p, q)
< By (ﬁN m( (Bt (0. T (B Tia + (1= Br)T0))

(1= o)) -+ )+ (1= 1)l q>) (L= Br)o(p.0)
< ﬁNn(ﬁN ( (B (Brndlp, Tia) + (1 = 51,)0(,0)

1= ol )+ )+ (1= Ba,)olp q>) + (L= Bya)o(p.a)
< Bum (ﬁzvl,n ( e (ﬁQ,n (Brnd(p, @) + (1 = Bin)é(p, q))

+ (1 = Ban)d(p, q)) + - ) + (1 = Bn_1,2)8(p, q)) + (1 = Bnn)d(p, q)

= o(p,q) (2.4.11)
This shows that

Bind(p, Tia) + (1 = Bia)8(p, a) = 6 (p, T (Buad Tia + (1 = 1) q) ).

From Lemma 2.4.37, we have ¢ = T1q and hence ¢ € F(T}). Again, from (2.4.11) we
see that

ﬁ2,n¢(p7 T2U1,nq) + (1 - 62,n)¢(p7 ULTLQ) = ¢(pa J_l(ﬁQ,nJTQUl,nq + (1 - ﬁZ,n)JQ)

We note, by (2.4.9), that U ,,¢ = ¢ for all n € N. So Lemma 2.4.37 implies that ¢ = T5q;
consequently ¢ € F(T5,). Similarly, we can show that ¢ € F/(7T;) for all i = 3,4,--- | N.
Hence ¢ € (X, F(T}). This completes the proof. O

Lemma 2.4.41. Let C' be a nonempty, closed and convexr subset of a smooth, strictly
convez and reflexive Banach space X. For each n € N, let W, be defined as in (2.4.9).
Then W, is a relatively quasi-nonexpansive mapping.

Proof. Lemma 2.4.40 asserts that F(W,) = ﬂl (F(T;) # 0. Let x € C and p €

ﬂz | F(T;). Since T; is relatively quasi-nonexpansive for all i =1,2,--- , N, it is easy to
see that ¢(p, W,z) < ¢(p, x). Thus W, is a relatively quasi- nonexpansive mapping. [J
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Lemma 2.4.42. Let C' be a nonempty, closed and convexr subset of a uniformly smooth
Banach space X. For each n € N, let W,, be defined as in (2.4.9) and let 0 < a <
Bin <b<1foralli=1,2---,N. If either T; is closed for all i = 1,2,--- /N or
F(T)) = F(T}) for alli =1,2,--- , N, then {W,} satisfies the (x)-condition.

Proof. Let p € (i, F(T;) and let {z,} C C be such that z, — z and lim, ., ||z, —
Wyzn|| = 0. From Lemma 2.3.5 and X* is uniformly convex, then there exists a strictly
increasing, continuous and convex function ¢* with ¢*(0) = 0 such that

6, Waza) < 6(p, T (Buad TNUn-102 + (1= Byn)2n) )

= |IpII” = 2(p, B INUn-1020 + (1 = Bnp)J 20)
+ 11BN I TNUn 1020 + (1 — Bnn) 2|

I1pl1> = 2(p, By I TNUn—1020 + (1 — Brn) T 2)
+ BrallTNUn—1,02nl” + (1 = B ) |20l

— Bun(l = Bnn)g*([[T2n — JINUn-1,n20]])

= 6N,n§b(p7 TNUN—LnZn) + (1 - BN,n)Qb(pa Zn)

— Onn(1 = Bnn)g" (J2n — JTNUN_1020]|)
ﬁN,n¢(pv UN—l,nZn) + (1 - ﬁN,n)QS(pa Zn)

— Byn(l = Byn)g*([[V 20 — JTNUn-1020]])

ﬁN,n <5N71,n¢<p7 UN*Q,nzn) + (1 T ﬁNfl,n)(b(pu Zn))

+ (1= Bnn)@(D; 2n)
- ﬁN,nﬁNfl,n(l 1 /6N71,n>g*(H=]Zn =3 JTNflUN72,nZnH)
—BNn(1 = Bnn)g" (|20 — JINUn-1n2n]|)

IN

IN

IN

IN

p,zn Hﬂzn 6171 (”‘]ZH_JT].ZHH)

—Hﬁm — Ban)g" (120 = TToU1 )

— ONnBN-12(1 = Bn=10)G" (| T2 — JTN-1UN—9.n2n||)
—Bnn(L = Bnn)g" (| J2n — JINUN-1n2x]l), (2.4.12)

which implies

Hﬁzn ﬁln Nz = JThiznl]) < 6, 2n) — O(p, Wazn).

Since Hi:l Bin(1 = Brn) > a™(1—b) > 0 and lim, .« |20 — Wyza|| = 0, it follows from
the properties of ¢g* and the uniform continuity of J that

lim ||z, — Thz,| = 0.
If T; is closed for all i = 1,2,--- , N, we get that z € F(T}). Also, by (2.4.12), we obtain

lim ||z, — ToUy p2s|| = -+ = lim ||z, — TnUn—102| = 0. (2.4.13)

n—oo n—oo
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We observe
O(2n, Urnzn) < gb(zn, Jt (ﬁLnJlen +(1- ﬁlyn)Jzn)>
< Brn®(zn, Tizn) + (1= Brn)d(2n, 20).
So, by Lemma 2.4.26, we get
JLH;O |12 — Ut n2nl| = 0. (2.4.14)
Therefore Uy 2, — z as n — 0o0. From (4.2.11) and (2.4.14) we see that
| T2U1 n2n — Urnznl|| < | T2Uinzn — Zul|l + |20 — Urnznl] — 0, (2.4.15)

as n — oo. Since Ty is closed, z € F(T3). Similarly, we can show that z € F(T;) for
all i = 3,4,--- ,N. Thus z € ﬂf\il F(T;). From Lemma 2.4.40, we can conclude that

z € F(W,). If ﬁ(Tl) = F(T;) for all i = 1,2,--- | N, by using the same proof as in the
first case, we can show that z € F'(W,,). This completes the proof. O

Lemma 2.4.43. Let C' be a nonempty, closed and convexr subset of a smooth, strictly
convez and reflexive Banach space X. For each n € N, let K,, be defined as in (2.4.10).
Then F(K,) =N, F(T}).

Proof. Let ¢ € F(K,) and let p € N, F(T}). So we have

op.q) = ¢(p, Knq)
< 6(p I (Bwnd TwUn 100 + (1 = Bp) JUn-1,00))
< Bund(0, TNUn-10q) + (1 = Bnn)0(0, Un—1,nq)
< (P, Un-19)
< 6(p. I (Bond BUing + (1 = B2, IUs00))
< Bond(p, ToUrnq) + (1 = B20)0(p, Urnq)
< ¢(p, Urnq)
< 6(p. I (BindTag + (1 = Bra)Ja) )
< Biad(p, T1q) + (1 = Bra)d(p; q)
< o(p,9), (2.4.16)

which implies 1,6(p, Tig) + (1 = B1,)é(p,q) = 6(p, /" (BradTig + (1= Bi)Ja) ).
By Lemma 2.4.37, we obtain that ¢ = T1¢ and hence ¢ € F(T}). From (5.1.18) we see
that 52,¢(p, ToU1,0q) + (1 = B2,0) (D, Urnq) = ¢(p. T~ (Bon S ToU1,nq + (1 = B2,0) JU1nq).-
Also, Lemma 2.4.37 implies that Uy ,,q = T3U; »,q. Since ¢ = Uy ,q by (2.4.10), we have
q € F(T). Similarly, we can verify that ¢ € F(T;) for all i = 3,4,--- ;N and hence
g € N, F(T;). This completes the proof. O

Lemma 2.4.44. Let C' be a nonempty, closed and convexr subset of a smooth, strictly
convez and reflexive Banach space X. For eachn € N, let K,, be defined as in (2.4.10).
Then K, is a relatively quasi-nonexpansive mapping.

Proof. From Lemma 2.4.43 and by the relative quasi-nonexpansiviness of 7; for all
1=1,2,--- /N, we immediately obtain the desired result. O
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Lemma 2.4.45. Let C' be a nonempty, closed and convexr subset of a uniformly smooth
Banach space X. For each n € N, let K,, be defined as in (2.4.10) and let 0 < a <
Bin <b<1foralli=1,2---,N. If either T; is closed for all i = 1,2,--- /N or
F(T)) = F(T}) for alli =1,2,--- N, then {K,} satisfies the (x)-condition.

Proof. Let p € (v, F(T;) and let {2,} be a sequence in C' such that z, — 2z and
lim,, o0 [|2n — Knzn|| = 0. For each n € N, let Uy, be the identity mapping. From
Lemma 2.3.5 and X* is uniformly convex, then there exists a strictly increasing, con-
tinuous and convex function g* with ¢*(0) = 0 such that

¢(p7 ann) S ¢<p7 J_l (ﬁN,nJTNUN—l,nZn + (1 ~ 5N,n)JUN—1,nzn)>

= |pl* - 2<P> BNn I TNUn—1n2n + (1 — ﬂN,n)JUNfl,nZn>

+ 188 I TNUN 1020 + (1 = Bnn) JUN_ 1020 ?

IplI* = 2(p, By I TNUn—-1,020 + (1 = Bnn) JUN—1,0%n)

+ ﬁN,nHTNUNfl,nZnH2 +(1 - ﬁN,n)HUNfl,nznuz

— Bnn(l = Byn)g" (IUn-1,020 — TNnUn-1,n20]])

= Bnnd(0, TNUn-1n2n) + (1 = Bnn) 00, UN-1,n2n)

- ﬁN,n(l = 6N,n)g*(HJUN—l,nzn - JTNUN—l,nZnH)

¢ Un-1n20) — Bnn(1 = Brn) 9" ([ TUN-1,020 — JINUn-124]])

IA

IN

IN

p: Zn Zﬁzn ﬂzn (HJT;Ui—l,nzn - JUi—l,nzn”)7
which yields
Zﬁzn ﬁzn (”JT;Ui—l,nzn = JUi—l,nan) S ¢(p7 Zn) - ¢(p7 ann)-

Since ﬂm( —Gin) > a(l—=0b)>0foralli=1,2,--- N and lim,,_, ||z, — Kpnzs]| =0
it follows from the properties of ¢g* and the uniform continuity of J that

lim HT%U'ifl,nZn — Uifl,nan — O, (2417)
forall : =1,2,--- , N. In particular, we have
lim || 112, — 2| = 0. (2.4.18)

We observe that
¢(Zn7 Ul,nzn) S Cb(Zn, J_l (ﬁl,nJlen + (1 - ﬁl,n)t]zn)>

S ﬁl,n¢<zna len) + (1 - ﬁl,n)¢<zna Zn)a
which implies from Lemma 2.4.26 and (2.4.18) that

lim ||z, — Upnza|| = 0. (2.4.19)

From (4.2.16) and (2.4.17), we have

HTQUl,nZn — Zn” S HT2U1,nZn — Ul,nan + HULnZn — ZnH — 0, (2420)
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as n — 0o. Hence
¢(2n7 UZ,nzn> S ¢<Zn7 Jil (ﬁQ,nJTQUl,nZn + (1 - ﬁZ,n)JUl,nZn))

S 62,n¢(zm T2U1,nzn) + (1 - ﬁQ,n)Qb(Zm Ul,nzn)7
which implies from (4.2.16) and (2.4.20) that

lim ||z, — Usnza|| = 0.
n—oo
By proving in the same manner, we can conclude that
lim ||z, — Uinza| = 0.
n—oo

forallv=1,2,--- ,N. Since 2, — 2, U; n2, — 2. It T} is closed for all ¢+ =1,2,--- | N,
it follows from (2.4.17) that z € O~ , F(T}). If F(T}) = F(T}) for all i = 1,2,--- , N,
by (2.4.17), z € N, F(T;) = N, F(T;). From Lemma 2.4.43, we can conclude that
z € F(K,). This completes the proof. O



