
Chapter 2
Basic Concepts and Preliminaries

The purpose of this chapter is to collect notations, terminologies and elementary
results used throughout the thesis.

2.1 Metric Spaces

Definition 2.1.1. [56] A metric space is a pair (X, d), where X is a set and d is a metric
on X(or distance function on X), that is, a real- valued function defined on X×X such
that for all x, y, z ∈ X we have:

(1) d(x, y) ≥ 0;

(2) d(x, y) = 0 if and only if x = y;

(3) d(x, y) = d(y, x) (symmetry);

(4) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

Example 2.1.2. [12]

(1) X = R; d(x, y) = |x− y|, ∀x, y ∈ R is a metric on R;

(2) X = Rn; d(x, y) = [
∑n

i=1(xi − yi)
2]1/2, x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈

Rn, is a metric on Rn (euclidian metric). The following mappings:

δ(x, y) =
n∑

i=1

|xi − yi|, x, y ∈ Rn,

ρ(x, y) = max
1≤1≤n

|xi − yi|, x, y ∈ Rn,

are also metrics on Rn;

(3) Let X = {f : [a, b] → R : f is continuous}. We define d : X ×X → R+ by

d(f, g) = max
x∈[a,b]

|f(x)− g(x)|, for all f, g ∈ X.

Then d is a metric on X (Chebyshev metric); the metric space (X, d) is denoted
by C[a, b];

(4) Let X be as (3) and let δ : X ×X → R+ be defined by

δ(f, g) = max
x∈[a,b]

(|f(x)− g(x)|e−τ |x−x0|),

for all f, g ∈ X where τ > 0 is a constant and x0 is fixed in [a, b].

Then δ is a metric on X (Bielecki metric), and the metric space (X, δ) is denoted
by B[a, b].
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Definition 2.1.3. [12] Let (X, d) be a metric space. The topology having as basis the
family of all open balls, B(x, r), x ∈ X, r > 0, is called the topology induced by the
metric d.

Definition 2.1.4. [12] Two metrics d1 and d2 defined on the set X are called equivalent
if they induce the same topology on X.

Remark 2.1.5. [12]

(1) Two metrics d1 and d2 are metrically equivalent if there exist two constants m > 0
and M > 0 such that

md1(x, y) ≤ d2(x, y) ≤ Md1(x, y), for all x, y ∈ X.

(2) In Example 2.1.2, the metrics d, δ and ρ from (2) are equivalent; the metrics d
from (3) and ρ from (4) are equivalent as well.

Definition 2.1.6. [56] A sequence {xn} in a metric space X = (X, d) is said to be
convergent if there exists x ∈ X such that limn→∞ d(xn, x) = 0.

Definition 2.1.7. [56] A sequence {xn} in a metric space X = (X, d) is said to be Cauchy
if for every ε > 0 there exists N(ε) ∈ N such that d(xm, xn) < ε for every m,n ≥ N(ε).

Definition 2.1.8. [56] A metric space (X, d) is said to be complete if every Cauchy
sequence in X converges.

Theorem 2.1.9. [56] Every convergent sequence in a metric space is a Cauchy sequence.

Theorem 2.1.10. [65] Let {xn} be a sequence in R. If every subsequence {xnk
} of {xn}

has a convergent subsequence, then {xn} is convergent.

Definition 2.1.11. [65] Let (X, d) be a metric space. A subset F of X is closed if
{xn} ⊂ F and xn → x imply x ∈ F .

Theorem 2.1.12. [103] (The fundamental properties of closed sets) Let (X, d) be a
metric space. Then the following conclusions hold:

(1) X and Ø are closed sets;

(2) any intersection of closed sets in X is closed, that is,

Fµ (µ ∈ M) are closed ⇒
⋂

µ∈M

Fµ is closed;

(3) any finite union of closed sets in X is closed, that is,

Fi (i = 1, 2, · · · , m) are closed ⇒
m⋃

i=1

Fi is closed.

Definition 2.1.13. [103] Let X and Y be metric spaces and let f be a mapping of X
into Y . Then f is said to be continuous at x0 in X if

xn → x0 ⇒ f(xn) → f(x0).

A mapping f of X into Y is continuous if it is continuous at each x in X.
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2.2 Banach Spaces and Hilbert spaces

In this section, we give definition and geometric properties in Banach spaces
and Hilbert spaces.

Definition 2.2.1. [65] Let X be a linear space (or vector space). A norm on X is a
real-valued function ‖ · ‖ on X such that the following conditions are satisfied by all
members x and y of X and each scalar α:

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;

(2) ‖αx‖ = |α|‖x‖;

(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

The ordered pair (X, ‖ · ‖) is called a normed space .

Definition 2.2.2. [65] Let X be a normed space. The metric induced by the norm of X
is the metric d on X defined by d(x, y) = ‖x− y‖ for all x, y ∈ X. The norm topology
of X is the topology obtained from this metric.

Definition 2.2.3. [56] Let x be an element and {xn} a sequence in a normed space X.
Then {xn} converges strongly to x written by xn → x, if limn→∞ ‖xn − x‖ = 0.

Definition 2.2.4. [65] A Banach norm or complete norm is a norm that induces a com-
plete metric. A normed space is a Banach space or B-space or complete normed space
if its norm is a Banach norm.

Definition 2.2.5. Let X be a normed space and B(X, R) the set of all continuous linear
functionals of X into R. Then X∗ = B(X, R) is called the dual space of X.

Definition 2.2.6. [65] Let x be an element and {xn} a sequence in a normed space X.
Then {xn} converges weakly to x written by xn ⇀ x, if f(xn) → f(x) for all f ∈ X∗.

Define the mapping ϕ : X → X∗∗ by ϕ(x) = fx, x ∈ X. Then ϕ is called the
natural embedding mapping from X into X∗∗ and has the following properties:

(1) ϕ is linear: ϕ(αx + βy) = αϕ(x) + βϕ(y) for all x, y ∈ X and for all α, β ∈ F;

(2) ϕ(x) is isometry: ‖ϕ(x)‖ = ‖x‖ for all x ∈ X.

Definition 2.2.7. [2] A normed space X is said to be reflexive if the natural embedding
mapping ϕ : X → X∗∗ is onto. In this case, we write X ∼= X∗∗ or X = X∗∗.

Lemma 2.2.8. [65] Let X be a normed space. Then (a) ⇒ (b) ⇒ (c) in the following
collection of statements.

(a) The space X is reflexive.

(b) Every bounded sequence in X has a weakly convergent subsequence.

(c) Whenever (Cn) is a sequence of nonempty closed bounded convex sets in X such
that Cn+1 ⊂ Cn for each n, it follows that

⋂∞
n=1 Cn 6= ∅.

Remark 2.2.9. [2]
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(1) Every finite-dimensional Banach space is reflexive.

(2) `p and Lp for 1 < p < ∞ are reflexive Banach spaces.

(3) Every Hilbert space is reflexive.

(4) `1, `∞, L1 and L∞ are not reflexive.

(5) c and c0 are not reflexive.

Definition 2.2.10. [2, 102] A Banach space X is said to be strictly convex if

‖x‖ = ‖y‖ = 1 and x 6= y imply
∥∥∥x + y

2

∥∥∥ < 1.

Lemma 2.2.11. [2, 102] A Banach space X is strictly convex if x, y ∈ X with ‖x‖ =
‖y‖ = 1 and ‖(1− λ)x + λy‖ = 1 for all λ ∈ (0, 1) holds if and only if x = y.

Theorem 2.2.12. [2] Let C be a nonempty, closed and convex subset of a reflexive and
strictly convex Banach space X. Then for x ∈ X, there exists a unique point zx ∈ C
such that ‖x− zx‖ = D(x, C) = inf{‖x− y‖ : y ∈ C}.

Example 2.2.13. [2] Let X = Rn, n ≥ 2 with norm ‖·‖2 defined by ‖x‖2 =
(∑n

i=1 x2
i

)1/2

,

x = (x1, x2, · · · , xn) ∈ Rn. Then X is strictly convex.

Example 2.2.14. [2] Let X = Rn, n ≥ 2 with norm ‖ · ‖1 defined by ‖x‖1 =
∑n

i=1 |xi|,
x = (x1, x2, · · · , xn) ∈ Rn. Then X is not strictly convex.

Example 2.2.15. [2] Let X = Rn, n ≥ 2 with norm ‖ · ‖∞ defined by ‖x‖∞ =
max1≤i≤n |xi|, x = (x1, x2, · · · , xn) ∈ Rn. Then X is not strictly convex.

Definition 2.2.16. [2, 102] A Banach space X is called uniformly convex if for any
ε ∈ (0, 2], there exists a δ = δ(ε) > 0 such that if x, y ∈ X with ‖x‖ = ‖y‖ = 1 and
‖x− y‖ ≥ ε, then ‖x+y

2
‖ ≤ 1− δ.

Let X be a Banach space. The modulus of convexity of X is the function
δX : (0, 2] → [0, 1] defined by

δX(ε) = inf
{
1−

∥∥∥x + y

2

∥∥∥ : ‖x‖ = ‖y‖ = 1; ‖x− y‖ ≥ ε
}
.

Lemma 2.2.17. [2] A Banach space X is uniformly convex if and only if δX(ε) > 0 for
all ε ∈ (0, 2].

Remark 2.2.18. [2]

(1) δX(ε)/ε is a nondecreasing function on (0, 2].

(2) δX is a convex and continuous function.

Example 2.2.19. [2]

(1) δH(ε) = 1−
√

1− (ε/2)2.

(2) δ`p(ε) = 1−
(
1− (ε/2)p

)p/2
(2 ≤ p < ∞).
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(3) If X is uniformly convex, then δX(ε) ≤ 1−
√

1− (ε/2)2.

Remark 2.2.20. [2]

(1) Every Hilbert space is uniformly convex.

(2) The Banach spaces `p and Lp with (1 < p < ∞) are uniformly convex.

(3) The Banach spaces `1, `∞, c, c0, L1 and L∞ are not uniformly convex.

Theorem 2.2.21. [102] Let X be a Banach space. Then the following conditions are
equivalent:

(1) X is uniformly convex;

(2) if for any two sequences {xn}, {yn} in X,

lim
n→∞

‖xn‖ = lim
n→∞

‖yn‖ = 1 and lim
n→∞

‖xn + yn‖ = 2,

then limn→∞ ‖xn − yn‖ = 0;

(3) for any ε with 0 < ε ≤ 2, there exists δ > 0 depending only on ε > 0 such that∥∥∥x + y

2

∥∥∥ ≤ 1− δ

for any x, y ∈ X with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε.

Theorem 2.2.22. [2, 102] Every uniformly convex Banach space is strictly convex and
reflexive.

Example 2.2.23. [2] Let X = c0 and let β > 0 with the norm ‖ · ‖β defined by

‖x‖β = ‖x‖c0 + β

( n∑
i=1

(xi

i

)2
)

, x = {xi} ∈ c0.

The space (c0, ‖ · ‖β) for β > 0 are strictly convex, but not uniformly convex.

Example 2.2.24. [2] Let X = Rn, n ≥ 2 with the norm ‖·‖1 defined by ‖x‖1 =
∑n

i=1 |xi|.
Then X is reflexive, but not uniformly convex.

Definition 2.2.25. [102] Let X be a Banach space. The multi-valued mapping J : X →
2X∗

is called the duality mapping if

J(x) =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
for all x ∈ X, where 〈·, ·〉 denotes the pairing between X and X∗.

Definition 2.2.26. [102] Let X be a Banach space and let S(X) = {x ∈ X : ‖x‖ = 1}.
Then X is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.2.1)

exists for each x, y ∈ S(X). In this case the norm of X is said to be Gâteaux differen-
tiable. The space X is said to have a uniformly Gâteaux differentiable norm if for each
y ∈ S(X), the limit (2.2.1) is attained uniformly for x ∈ S(X). The norm of X is said
to be Fréchet differentiable if for each x ∈ X, the limit (2.2.1) is attained uniformly for
y ∈ S(X). The norm of X is said to be uniformly Fréchet differentiable (and X is said
to be uniformly smooth) if the limit (2.2.1) is attained uniformly for x, y ∈ S(X).
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Let X be a Banach space. The modulus of smoothness of X is the function
ρX : [0,∞) → [0,∞) defined by

ρX(t) = sup
{1

2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ = 1, ‖y‖ ≤ t

}
.

Example 2.2.27. [2] Let X = H a Hilbert space. Then ρH(t) =
√

1 + t2−1 for all t ≥ 0.

Lemma 2.2.28. [2] A Banach space X is uniformly smooth if and only if limt→0
ρX(t)

t
= 0.

Definition 2.2.29. Let p, q > 1. A Banach space X is said to be p-uniformly convex
(resp. q-uniformly smooth) if there exists a constant c > 0 such that δX(ε) ≥ cεp (resp.
ρX(t) ≤ ctq).

Remark 2.2.30. Every p-uniformly convex Banach space (resp. q-uniformly smooth
Banach space) is uniformly convex (resp. uniformly smooth).

Theorem 2.2.31. [2] Every uniformly smooth Banach space is reflexive.

We next give examples of the duality mapping J in the uniformly smooth and
uniformly convex Banach spaces `p, Lp and W p

m, 1 < p < +∞.

Example 2.2.32. [3]

(1) For `p, J(x) = ‖x‖2−p
`p

y ∈ `q, where x = {x1, x2, ...} and y = {x1|x1|p−2, x2|x2|p−2, ...}
with 1

p
+ 1

q
= 1.

(2) For Lp, J(x) = ‖x‖2−p
Lp
|x|p−2x ∈ Lq, where 1

p
+ 1

q
= 1.

(3) For W p
m, J(x) = ‖x‖2−p

W p
m

∑
(−1)|t|Dt

(
|Dtx|p−2Dtx

)
∈ W q

−m, where 1
p

+ 1
q

= 1.

Proposition 2.2.33. [102] Let X be a Banach space and let J : X → 2X∗
be the duality

mapping. Then

(1) for each x ∈ X, J(x) is nonempty, bounded, closed and convex;

(2) J(0) = {0};

(3) for each x ∈ X and a real α, J(αx) = αJ(x);

(4) for x, y ∈ X, x∗ ∈ J(x) and y∗ ∈ J(y), 〈x− y, x∗ − y∗〉 ≥ 0;

(5) for x, y ∈ X, y∗ ∈ J(y), ‖x‖2 − ‖y‖2 ≥ 2〈x− y, y∗〉.

Proposition 2.2.34. [102] Let X be a Banach space. Then

(1) if X is smooth, then J is single-valued;

(2) if X is strictly convex, then J is one-to-one, that is, x 6= y implies J(x)∩J(y) = ∅;

(3) if X is reflexive, then J is onto, that is, for each x∗ ∈ X∗, there exists x ∈ X
such that x∗ ∈ Jx;

(4) if X has a Fréchet differentiable norm, then J is norm-to-norm continuous;
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(5) if X is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subsets of X.

Theorem 2.2.35. [102] Let X be a Banach space. Then we have the following:

(1) if X∗ is strictly convex, then X is smooth;

(2) if X∗ is smooth, then X is strictly convex.

Remark 2.2.36. [102] The above statements are equivalent if X is a reflexive Banach
space.

Theorem 2.2.37. [102] Let X be a Banach space. Then X is uniformly smooth if and
only if X∗ is uniformly convex.

Definition 2.2.38. [2] Let C be a subset of a Banach space X. Then C is said to be
convex if (1− λ)x + (1− λ)y ∈ C for all x, y ∈ C and for all λ ∈ (0, 1).

Definition 2.2.39. [2] Let X be a Banach space and let f : X → (−∞,∞) be a function.
Then D(f) =

{
x ∈ X : f(x) < +∞

}
is called the effective domain of f . The function

f is called proper if D(f) 6= ∅.

Definition 2.2.40. [2] Let X be a Banach space. A function f : X → (−∞,∞) is convex
if for any x, y ∈ X and t ∈ (0, 1), then f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

Definition 2.2.41. [102] Let X be a Banach space. Then f : X → (−∞,∞) is said to
be lower semi-continuous at x0 ∈ X, if {xn} is a sequence in X such that xn → x0 and
f(xn) → y, then f(x0) ≤ y.

Lemma 2.2.42. [102] Let X be a Banach space, let {xn} be a bounded sequence of X
such that xn ⇀ x. Then following inequality holds:

‖x‖ ≤ lim inf
n→∞

‖xn‖.

Definition 2.2.43. [74] A Banach space X is said to satisfy Opial’s condition if xn ⇀ x
as n →∞ and x 6= y imply that lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖.

It is well known [74] that all Hilbert spaces and `p spaces where 1 ≤ p < ∞,
have this property, while all Lp spaces do not unless p = 2.

Definition 2.2.44. A Banach space X is said to have the Kadec-Klee property if for
every sequence {xn} in X, xn ⇀ x and ‖xn‖ → ‖x‖ imply xn → x.

Theorem 2.2.45. [65] Every uniformly convex Banach space has the Kadec-Klee prop-
erty.

Definition 2.2.46. [56, 103] An inner product space is a vector space X with an inner
product defined on X. A Hilbert space is a complete inner product space. Here, an
inner product on X is a mapping of X × X into the scalar field F = R or C; that is,
with every pair of vector x and y there is associated a scalar which is written and is
called the inner product of x and y, such that for all vectors x, y, z and scalar α ∈ F we
have:

(1) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0;
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(2) 〈αx, y〉 = α〈x, y〉;

(3) 〈x, y〉 = 〈y, x〉;

(4) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.

An inner product on X defines a norm on X given by ‖x‖ =
√
〈x, x〉.

Theorem 2.2.47. [103](The Schwarz inequality) If x and y are any two vectors in an
inner product space X, then |〈x, y〉| ≤ ‖x‖‖y‖.

Theorem 2.2.48. [103] (The parallelogram law) If x and y are any two vectors in an
inner product space X, then

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Theorem 2.2.49. [103] Let x and y be elements in an inner product space X and let
λ ∈ (0, 1). Then the followings hold:

(1) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉;

(2) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉;

(3) ‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Lemma 2.2.50. [103] Let X be an inner product space, let {xn} be a sequence of X and
let x be an element of X. Then xn ⇀ x, if for any y ∈ X, 〈xn, y〉 → 〈x, y〉.

Let C be a nonempty, closed and convex subset of a real Hilbert space H. For
every point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive
mapping of H onto C.

Lemma 2.2.51. [42, 103] Let C be a nonempty, closed and convex subset of a real Hilbert
space H and let x ∈ H. Then, for each y ∈ C, the following are equivalent:

(1) 〈x− PCx, y − PCx〉 ≤ 0;

(2) ‖x− PCx‖2 + ‖PCx− y‖2 ≤ ‖x− y‖2.

2.3 Inequalities in Banach Spaces

In this section, we collect some useful inequalities in Banach spaces.

Lemma 2.3.1. [2] Let X be a Banach space and J : X → 2X∗
the duality mapping. Then

we have the following:

(1) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, j(x)〉 for all x, y ∈ X, where j(x) ∈ J(x);

(2) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉 for all x, y ∈ X, where j(x + y) ∈ J(x + y).
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Remark 2.3.2. In a real Hilbert space H, we have the following inequality:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Lemma 2.3.3. [114] Let X be a real q-uniformly smooth Banach space. Then the fol-
lowing inequality holds:

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ Cq‖y‖q,

for all x, y ∈ X and for some Cq > 0.

Lemma 2.3.4. [31, 88, 89] Let X be a uniformly smooth Banach space. Then there
exists a nondecreasing continuous function β : [0,∞) → [0,∞) with limt→0+ β(t) = 0
and β(ct) ≤ cβ(t) for c ≥ 1 such that for all x, y ∈ X, the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+ max{‖x‖, 1}‖y‖β(‖y‖).

Lemma 2.3.5. [114] Let X be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0, 2r] → R such
that g(0) = 0 and

‖tx + (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖),

where x, y ∈ Br = {z ∈ X : ‖z‖ ≤ r} and t ∈ [0, 1].

Lemma 2.3.6. [31, 114] Let q > 1 and r > 0 be two fixed real numbers and X be a
uniformly smooth Banach space. Then there exists a continuous, strictly increasing and
convex function Φ : R+ → R+, Φ(0) = 0 such that for every x, y ∈ Br = {z ∈ X :
‖z‖ ≤ r} we get

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ Φ(‖y‖). (2.3.1)

Lemma 2.3.7. [20] Let C be a bounded, closed and convex subset of a uniformly convex
Banach space X. Then there exists a strictly increasing, convex and continuous function
γ : [0,∞) → [0,∞) such that γ(0) = 0 and

γ

(∥∥∥∥T( n∑
i=1

λixi

)
−

n∑
i=1

λiTxi

∥∥∥∥) ≤ max
1≤j≤k≤n

(
‖xj − xk‖ − ‖Txj − Txk‖

)
for all n ∈ N, {x1, x2, ..., xn} ⊂ C, {λ1, λ2, ..., λn} ⊂ [0, 1] with

∑n
i=1 λi = 1 and a

nonexpansive mapping T of C into X.

2.4 Some Useful Lemmas, Propositions and Theorems

In this section, we give some useful lemmas, propositions and theorems in order
to prove the main results.

Definition 2.4.1. Let B be a subset of topological vector space X. A mapping G :
B → 2X is called a KKM mapping if co{x1, x2, · · · , xm} ⊂

⋃m
i=1 G(xi) for xi ∈ B and

i = 1, 2, · · · , m, where coA denotes the convex hull of the set A.
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Lemma 2.4.2. [37] Let B be a nonempty subset of a Hausdorff topological vector space
X and let G : B → 2X be a KKM mapping. If G(x) is closed for all x ∈ B and is
compact for at least one x ∈ B, then

⋂
x∈B G(x) 6= ∅.

Lemma 2.4.3. [18, 42] Demi-closedness principle. Assume that T is a nonexpansive
self-mapping of a nonempty, closed and convex subset C of a real Banach space X. If
T has a fixed point, then I − T is demi-closed, that is, whenever xn ⇀ x ∈ C, and the
sequence (I − T )xn → y for some y ∈ C, it follows that (I − T )x = y. Here I is the
identity operator of X.

Lemma 2.4.4. [123] Let X be a uniformly convex Banach space, C a nonempty, closed
and convex subset of X, and T : C → C be a continuous pseudocontraction. Then I−T
is demi-closed at zero.

Lemma 2.4.5. [123] Let X be a reflexive Banach space which satisfies Opial’s condi-
tion, C a nonempty, closed and convex subset of X, and T : C → C be a continuous
pseudocontraction. Then I − T is demi-closed at zero.

Lemma 2.4.6. [116] Let X be a uniformly convex Banach space, let {αn} be a sequence
of real numbers such that 0 < b ≤ αn ≤ c < 1 for all n ≥ 1, and let {xn} and
{yn} be sequences in X such that lim supn→∞ ‖xn‖ ≤ d, lim supn→∞ ‖yn‖ ≤ d and
limn→∞ ‖αnxn + (1− αn)yn‖ = d. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.4.7. [98] Let {xn} and {yn} be bounded sequences in a Banach space X and
let {bn} be the sequence in [0, 1] with 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1. Suppose
xn+1 = (1− bn)yn + bnxn for all integers n ≥ 1 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 −
xn‖) ≤ 0. Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.4.8. [113] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn, n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = +∞;

(2) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| < +∞.

Then limn→∞ an = 0.

Lemma 2.4.9. [101] Let {an}, {bn} and {δn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 0.

If
∑∞

n=0 δn < +∞ and
∑∞

n=0 bn < +∞, then limn→∞ an exists. If, in addition, {an} has
a subsequence converging to 0, then limn→∞ an = 0.

Let C be a nonempty, closed and convex subset of a Hilbert space H. Let
A : H → H be a single-valued nonlinear mapping and let M : H → 2H be a set-valued
mapping. The variational inclusion is to find x̂ ∈ H such that

θ ∈ A(x̂) + M(x̂), (2.4.1)
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where θ is the zero vector in H. The solutions set of problem (2.4.1) is denoted by
I(A, M). Recall that a mapping A : H → H is called α-inverse strongly monotone if
there exists a constant α > 0 such that

〈Ax− Ay, x− y〉 ≥ α‖Ax− Ay‖2, ∀x, y ∈ H.

A set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, f ∈
M(x), and g ∈ M(y) imply 〈x − y, f − g〉 ≥ 0. A monotone mapping M is maximal
if its graph G(M) := {(f, x) ∈ H ×H : f ∈ M(x)} of M is not properly contained in
the graph of any other monotone mapping. It is known that a monotone mapping M is
maximal if and only if for (x, f) ∈ H×H, 〈x− y, f − g〉 ≥ 0 for all (y, g) ∈ G(M) imply
f ∈ M(x). We define the resolvent operator JM,λ associated with M and λ as follows:

JM,λ(x) = (I + λM)−1(x), x ∈ H, λ > 0. (2.4.2)

Lemma 2.4.10. [17] Let M : H → 2H be a maximal monotone mapping and A : H → H
be a Lipschitz continuous mapping. Then the mapping S = M + A : H → 2H is a
maximal monotone mapping.

Let X be a Banach space, D a nonempty, closed and convex subset of X, and
C a nonempty subset of D. Let Q : D → C. Then Q is said to be

(1) sunny if for each x ∈ D and t ∈ [0, 1], we have

Q
(
tx + (1− t)Qx

)
= Qx;

(2) a retraction of D onto C if Qx = x for all x ∈ C;

(3) a sunny nonexpansive retraction if Q is sunny, nonexpansive and retract onto C.

See Bruck [21], Goebel-Reich [41] and Reich [90].

Lemma 2.4.11. [91] Let X be a uniformly smooth Banach space and C a nonempty,
closed and convex subset of X. Let T : C → C be a nonexpansive mapping with a fixed
point and let z ∈ C. For each t ∈ (0, 1), let zt be the unique solution of the equation
x = tz + (1− t)Tx. Then {zt} converges to a fixed point of T as t → 0 and

Qz = s− lim
t→0

zt

defines the unique sunny nonexpansive retraction from C onto F (T ).

Lemma 2.4.12. [123] Let C be a closed and convex subset of a uniformly smooth Banach
space X, and T : C → C a nonexpansive mapping with a nonempty fixed point set F (T ).
Then there exists a unique sunny nonexpansive retraction QF (T ) : C → F (T ) such that

lim sup
n→∞

〈u−QF (T )u, J(xn −QF (T )u)〉 ≤ 0,

for any given u ∈ C and for any bounded approximate fixed point sequence {xn} ⊂ C
of T .
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Lemma 2.4.13. [100] Let X be a uniformly convex Banach space with a Fréchet dif-
ferentiable norm. Let C be a closed and convex subset of X, and {Sn}∞n=1 be a fam-
ily of Ln-Lipschitzian self-mappings on C such that

∑∞
n=1(Ln − 1) < ∞ and F =⋂∞

n=1 F (Sn) 6= ∅. For arbitrary x1 ∈ C, define xn+1 = Snxn for all n ≥ 1. Then for
every p, q ∈ F , limn→∞〈xn, j(p − q)〉 exists, in particular, for all u, v ∈ ωω(xn), and
p, q ∈ F , 〈u− v, j(p− q)〉 = 0.

Lemma 2.4.14. Let X be a Banach space with the Fréchet differentiable norm. For
x ∈ X, let β∗(t) be defined for 0 < t < ∞ by

β∗(t) = sup
y∈S(X)

∣∣∣∣‖x + ty‖2 − ‖x‖2

t
− 2〈y, j(x)〉

∣∣∣∣.
Then limt→0+ β∗(t) = 0, and

‖x + h‖2 ≤ ‖x‖2 + 2〈h, j(x)〉+ ‖h‖β∗(‖h‖) (2.4.3)

for all h ∈ X \ {0}.

Proof. Let x ∈ X. Since X has the Fréchet differentiable norm, it follows that

lim
t→0

sup
y∈S(X)

∣∣∣∣ 1
2
‖x + ty‖2 − 1

2
‖x‖2

t
− 〈y, j(x)〉

∣∣∣∣ = 0.

Then limt→0+ β∗(t) = 0 and hence∣∣∣∣‖x + ty‖2 − ‖x‖2

t
− 2〈y, j(x)〉

∣∣∣∣ ≤ β∗(t) ∀y ∈ S(X)

which implies

‖x + ty‖2 ≤ ‖x‖2 + 2t〈y, j(x)〉+ tβ∗(t) ∀y ∈ S(X). (2.4.4)

Suppose h 6= 0. Put y = h
‖h‖ and t = ‖h‖. By (2.4.4), we have

‖x + h‖2 ≤ ‖x‖2 + 2〈h, j(x)〉+ ‖h‖β∗(‖h‖).

This completes the proof.

To deal with a family of mappings, the following conditions are introduced: Let
C be a subset of a real Banach space X and let {Tn}∞n=1 be a family of mappings of C
such that

⋂∞
n=1 F (Tn) 6= ∅. Then {Tn} is said to satisfy the AKTT-condition [6] if for

each bounded subset B of C,

∞∑
n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞.

Lemma 2.4.15. [6] Let C be a nonempty and closed subset of a Banach space X and
let {Tn} be a family of mappings of C into itself which satisfies the AKTT-condition.
Then, for each x ∈ C, {Tnx} converges strongly to a point in C. Moreover, let the
mapping T be defined by

Tx = lim
n→∞

Tnx ∀x ∈ C.

Then for each bounded subset B of C,

lim
n→∞

sup{‖Tz − Tnz‖ : z ∈ B} = 0.



24

In the sequel, we will write ({Tn}, T ) satisfies the AKTT-condition if {Tn} sat-
isfies the AKTT-condition and T is defined by Lemma 2.4.15 with F (T ) =

⋂∞
n=1 F (Tn).

We next give examples which satisfy the AKTT-condition for a family of non-
expansive mappings.

Example 2.4.16. Let T1, T2, · · · , be an infinite family of nonexpansive mappings of C
into itself and γ1, γ2, · · · be real numbers such that 0 < γi < 1 for all i ∈ N. Moreover,
let Wn and W be the W -mappings [94] generated by T1, T2, · · · , Tn and γ1, γ2, · · · , γn,
and T1, T2, · · · and γ1, γ2, · · · . Then

(
{Wn}, W

)
satisfies the AKTT-condition [81, 94].

Example 2.4.17. Let T1, T2, · · · be an infinite family of nonexpansive mappings of C
into itself. For each n ∈ N, define the mapping Vn : C → C by

Vnx =
n∑

i=1

λi
nTix, ∀x ∈ C,

where {λi
n} is a family of nonnegative numbers satisfying the following conditions:

(1)
∑n

i=1 λi
n = 1 for each n ∈ N;

(2) λi := limn→∞ λi
n > 0 for each i ∈ N;

(3)
∑∞

n=1

∑n
i=1 |λi

n+1 − λi
n| < +∞.

Let V : C → C be the mapping defined by

V x =
∞∑
i=1

λiTix, ∀x ∈ C.

Then
(
{Vn}, V

)
satisfies the AKTT-condition [6].

The following results can be found in [14, 15].

Lemma 2.4.18. [14, 15] Let C be a closed and convex subset of a smooth Banach space X.
Suppose that {Tn}∞n=1 is a family of λ-strictly pseudocontractive mappings from C into
X with

⋂∞
n=1 F (Tn) 6= ∅ and {µn}∞n=1 is a real sequence in (0, 1) such that

∑∞
n=1 µn = 1.

Then the following conclusions hold:

(1) G :=
∑∞

n=1 µnTn : C → X is a λ-strictly pseudocontractive mapping;

(2) F (G) =
⋂∞

n=1 F (Tn).

Lemma 2.4.19. [15] Let C be a closed and convex subset of a smooth Banach space X.
Suppose that {Sk}∞k=1 is a countable family of λ-strictly pseudocontractive mappings of
C into itself with

⋂∞
k=1 F (Sk) 6= ∅. For each n ∈ N, define Tn : C → C by

Tnx =
n∑

k=1

µk
nSkx, x ∈ C,

where {µk
n} is a family of nonnegative numbers satisfying
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(1)
∑n

k=1 µk
n = 1 for all n ∈ N;

(2) µk := limn→∞ µk
n > 0 for all k ∈ N;

(3)
∑∞

n=1

∑n
k=1 |µk

n+1 − µk
n| < +∞.

Then

(1) Each Tn is a λ-strictly pseudocontractive mapping.

(2) {Tn} satisfies AKTT-condition.

(3) If T : C → C is defined by

Tx =
∞∑

k=1

µkSkx, x ∈ C.

Then Tx = limn→∞ Tnx and F (T ) =
⋂∞

n=1 F (Tn) =
⋂∞

k=1 F (Sk).

Using Lemma 2.3.6, we can prove the following lemma.

Lemma 2.4.20. Let X be a uniformly smooth Banach space and C a nonempty, bounded
and convex subset of X. Let T : C → X be a λ-strict pseudocontractions for some
0 < λ < 1. Assume that Φ(t) ≤ 2t2, t ∈ [0,∞) where Φ is a function appearing in
(2.3.1). For α ∈ (0, 1), we define Tα = (1 − α)I + αT . Then, as α ∈ (0, λ], Tα is
nonexpansive such that F (Tα) = F (T ).

Proof. For x, y ∈ C, by Lemma 2.3.6, we have

‖Tαx− Tαy‖2 = ‖(x− y) + α(Tx− Ty − (x− y))‖2

≤ ‖x− y‖2 + 2α〈Tx− Ty − (x− y), j(x− y)〉

+ Φ
(∥∥α(Tx− Ty − (x− y))

∥∥)
≤ ‖x− y‖2 − 2αλ‖Tx− Ty − (x− y)‖2

+ 2α2‖Tx− Ty − (x− y)‖2

= ‖x− y‖2 − 2α(λ− α)‖Tx− Ty − (x− y)‖2

≤ ‖x− y‖2,

which implies that Tα is nonexpansive.

Motivated by [8], we next study the class of Lipschitz and quasi-nonexpansive
mappings. Let C be a nonempty subset of a Banach space X and let T : C → X be a
mapping. Then T is called

(1) quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx − p‖ ≤ ‖x − p‖ for all x ∈ C and
p ∈ F (T );

(2) Lipschitz if there exists L > 0 such that ‖Tx− Ty‖ ≤ L‖x− y‖ for all x, y ∈ C.

It is remarked that the class of Lipschitz and quasi-nonexpansive mappings
includes that of nonexpansive mappings as special cases.

The following example is a Lipschitz and quasi-nonexpansive mapping but not
nonexpansive.
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Example 2.4.21. Let X = R and C = [0, 1.5]. Define T : C → R by

Tx =

{
0, x ∈ [0, 1),
2x− 2, x ∈ [1, 1.5].

It is clear that F (T ) = {0} and T is a quasi-nonexpansive and Lipschitz map-
ping. Indeed, |Tx − 0| = |Tx| ≤ |x| = |x − 0| for all x ∈ C and |Tx − Ty| ≤ 2|x − y|
for all x, y ∈ C. However, T is not nonexpansive. In fact, if x = 1 and y = 1.5, then
|Tx− Ty| = 1 > 0.5 = |x− y|.

Lemma 2.4.22. [45] Let C be a closed and convex subset of a strictly convex Banach
space X, T a quasi-nonexpansive mapping of C into C. Then F (T ) is a nonempty,
closed and convex set on which T is continuous.

We first prove some useful lemmas concerning the W -mapping of Lipschitz and
quasi-nonexpansive mappings in a strictly convex Banach space.

Lemma 2.4.23. Let C be a nonempty, closed and convex subset of a strictly convex
Banach space X. Let {Ti}N

i=1 be a finite family of quasi-nonexpansive and Li-Lipschitz
mappings of C into itself such that F :=

⋂N
i=1 F (Ti) 6= ∅ and let β1, β2, · · · , βN be real

numbers such that 0 < βi < 1 for all i = 1, 2, · · · , N − 1, 0 < βN ≤ 1 and
∑N

i=1 βi = 1.
Let W be the W -mapping generated by T1, T2, · · · , TN and β1, β2, · · · , βN . Then the
followings hold:

(1) F (W ) =
⋂N

i=1 F (Ti);

(2) W is quasi-nonexpansive and Lipschitz.

Proof. (1) Since F ⊂ F (W ) is trivial, it suffices to show that F (W ) ⊂ F . To this end,
let p ∈ F (W ) and x∗ ∈ F . Then we have

‖p− x∗‖ = ‖Wp− x∗‖ = ‖βN(TNUN−1p− x∗) + (1− βN)(p− x∗)‖
≤ βN‖UN−1p− x∗‖+ (1− βN)‖p− x∗‖
= βN‖βN−1(TN−1UN−2p− x∗) + (1− βN−1)(p− x∗)‖

+ (1− βN)‖p− x∗‖
≤ βNβN−1‖UN−2p− x∗‖+ (1− βNβN−1)‖p− x∗‖
= βNβN−1‖βN−2(TN−2UN−3p− x∗) + (1− βN−2)(p− x∗)‖

+ (1− βNβN−1)‖p− x∗‖
≤ βNβN−1βN−2‖UN−3p− x∗‖+ (1− βNβN−1βN−2)‖p− x∗‖
...

= βNβN−1 · · · β3‖β2(T2U1p− x∗) + (1− β2)(p− x∗)‖
+ (1− βNβN−1 · · · β3)‖p− x∗‖

≤ βNβN−1 · · · β2‖T2U1p− x∗‖+ (1− βNβN−1 · · · β2)‖p− x∗‖
≤ βNβN−1 · · · β2‖U1p− x∗‖+ (1− βNβN−1 · · · β2)‖p− x∗‖
= βNβN−1 · · · β2‖β1(T1p− x∗) + (1− β1)(p− x∗)‖

+ (1− βNβN−1 · · · β2)‖p− x∗‖
≤ βNβN−1 · · · β2β1‖T1p− x∗‖+ (1− βNβN−1 · · · β2β1)‖p− x∗‖
≤ βNβN−1 · · · β2β1‖p− x∗‖+ (1− βNβN−1 · · · β2β1)‖p− x∗‖
= ‖p− x∗‖. (2.4.5)
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This shows that

‖p−x∗‖ = βNβN−1 · · · β2‖β1(T1p−x∗)+(1−β1)(p−x∗)‖+(1−βNβN−1 · · · β2)‖p−x∗‖,

hence

‖p− x∗‖ = ‖β1(T1p− x∗) + (1− β1)(p− x∗)‖.

Again by (2.4.5), we see that ‖p− x∗‖ = ‖T1p− x∗‖. Hence

‖p− x∗‖ = ‖T1p− x∗‖ = ‖β1(T1p− x∗) + (1− β1)(p− x∗)‖. (2.4.6)

Applying Lemma 2.2.11 to (2.4.6), we get that T1p = p and hence U1p = p.
Again by (2.4.5), we have

‖p−x∗‖ = βNβN−1 · · · β3‖β2(T2U1p−x∗)+(1−β2)(p−x∗)‖+(1−βNβN−1 · · · β3)‖p−x∗‖,

hence

‖p− x∗‖ = ‖β2(T2U1p− x∗) + (1− β2)(p− x∗)‖.

From (2.4.5), we know that ‖U1p− x∗‖ = ‖T2U1p− x∗‖. Since U1p = p, we have

‖p− x∗‖ = ‖T2p− x∗‖ = ‖β2(T2p− x∗) + (1− β2)(p− x∗)‖. (2.4.7)

Applying Lemma 2.2.11 to (2.4.7), we get that T2p = p and hence U2p = p.
By proving in the same manner, we can conclude that Tip = p and Uip = p for

all i = 1, 2, · · · , N − 1. Finally, we also have

‖p− TNp‖ ≤ ‖p−Wp‖+ ‖Wp− TNp‖
= ‖p−Wp‖+ (1− βN)‖p− TNp‖,

which yields that p = TNp since p ∈ F (W ). Hence p ∈ F :=
⋂N

i=1 F (Ti).

(2) For each x ∈ C and z ∈ F , we observe that

‖T1x− z‖ ≤ ‖x− z‖.

Let k ∈ {2, 3, · · · , N}. Then

‖Ukx− z‖ = ‖βkTkUk−1x + (1− βk)x− z‖
≤ βk‖Uk−1x− z‖+ (1− βk)‖x− z‖.

So we have

‖Wx− z‖ = ‖UNx− z‖
≤ βN‖UN−1x− z‖+ (1− βN)‖x− z‖

≤ βN

(
βN−1‖UN−2x− z‖+ (1− βN−1)‖x− z‖

)
+ (1− βN)‖x− z‖

≤ βN

(
βN−1

(
βN−2‖UN−3x− z‖+ (1− βN−2)‖x− z‖

)
+ (1− βN−1)‖x− z‖

)
+ (1− βN)‖x− z‖

...
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≤ βN

(
βN−1

(
βN−2 · · ·

(
β2

(
β1‖T1x− z‖+ (1− β1)‖x− z‖

)
+ (1− β2)‖x− z‖

)
+ · · ·+ (1− βN−2)‖x− z‖

)
+ (1− βN−1)‖x− z‖

)
+ (1− βN)‖x− z‖

≤ βN

(
βN−1

(
βN−2 · · ·

(
β2

(
β1‖x− z‖+ (1− β1)‖x− z‖

)
+ (1− β2)‖x− z‖

)
+ · · ·+ (1− βN−2)‖x− z‖

)
+ (1− βN−1)‖x− z‖

)
+ (1− βN)‖x− z‖

= βN

(
βN−1

(
βN−2 · · ·

(
β3

(
β2‖x− z‖+ (1− β2)‖x− z‖

)
+ (1− β3)‖x− z‖

)
+ · · ·+ (1− βN−2)‖x− z‖

)
+ (1− βN−1)‖x− z‖

)
+ (1− βN)‖x− z‖

= ‖x− z‖.

This shows that W is a quasi-nonexpansive mapping.

Next, we show that W is a Lipschitz mapping. Note that Ti is Li-Lipschitz for
all i = 1, 2, · · · , N . For each x, y ∈ C, we observe

‖U1x− U1y‖ = ‖β1T1x + (1− β1)x− β1T1y − (1− β1)y‖
≤ β1‖T1x− T1y‖+ (1− β1)‖x− y‖
≤

(
β1L1 + (1− β1)

)
‖x− y‖.

Let k ∈ {2, 3, · · · , N}, then

‖Ukx− Uky‖ = ‖βkTkUk−1x + (1− βk)x− βkTkUk−1y − (1− βk)y‖
≤ βkLk‖Uk−1x− Uk−1y‖+ (1− βk)‖x− y‖.

So we have

‖Wx−Wy‖ ≤ βNLN‖UN−1x− UN−1y‖+ (1− βN)‖x− y‖
≤ βNLNβN−1LN−1‖UN−2x− UN−2y‖

+
(
βNLN(1− βN−1) + (1− βN)

)
‖x− y‖

...
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≤ βNLNβN−1LN−1 · · · β2L2‖U1x− U1y‖

+
(
βNLNβN−1LN−1 · · · β3L3(1− β2)

+ βNLNβN−1LN−1 · · · β4L4(1− β3)

+ · · ·+ βNLN(1− βN−1) + (1− βN)
)
‖x− y‖

≤ βNLNβN−1LN−1 · · · β2L2

(
β1L1 + (1− β1)‖x− y‖

)
+
(
βNLNβN−1LN−1 · · · β3L3(1− β2)

+ βNLNβN−1LN−1 · · · β4L4(1− β3)

+ · · ·+ βNLN(1− βN−1) + (1− βN)
)
‖x− y‖

=
(
βNLNβN−1LN−1 · · · β1L1

+ βNLNβN−1LN−1 · · · β2L2(1− β1)

+ βNLNβN−1LN−1 · · · β3L3(1− β2)

+ βNLNβN−1LN−1 · · · β4L4(1− β3)

+ · · ·+ βNLN(1− βN−1) + (1− βN)
)
‖x− y‖.

≤
(
LNLN−1 · · ·L1 + LNLN−1 · · ·L2 + LNLN−1 · · ·L3

+ LNLN−1 · · ·L4 + · · ·+ LNLN−1 + LN + 1
)
‖x− y‖.

Since Li > 0 for all i = 1, 2, · · · , N , W is a Lipschitz mapping.

Lemma 2.4.24. Let C be a nonempty, closed and convex subset of a Banach space X.
Let {Ti}N

i=1 be a finite family of quasi-nonexpansive and Li-Lipschitz mappings of C
into itself and {βn,i}N

i=1 sequences in [0, 1] such that βn,i → βi as n → ∞. Moreover,
for every n ∈ N, let W and Wn be the W -mappings generated by T1, T2, · · · , TN and
β1, β2, · · · , βN , and T1, T2, · · · , TN and βn,1, βn,2, · · · , βn,N , respectively. Then

lim
n→∞

‖Wnx−Wx‖ = 0, ∀x ∈ C.

Proof. Let x ∈ C and Uk and Un,k be generated by T1, T2, · · · , Tk and β1, β2, · · · , βk,
and T1, T2, · · · , Tk and βn,1, βn,2, · · · , βn,k, respectively. Then

‖Un,1x− U1x‖ = ‖(βn,1 − β1)(T1x− x)‖ ≤ |βn,1 − β1|‖T1x− x‖.

Let k ∈ {2, 3, · · · , N} and M = max{‖TkUk−1x‖+ ‖x‖ : k = 2, 3, · · · , N}. Then

‖Un,kx− Ukx‖ = ‖βn,kTkUn,k−1x + (1− βn,k)x− βkTkUk−1 − (1− βk)x‖
= ‖βn,kTkUn,k−1x− βn,kx− βkTkUk−1 + βkx‖
≤ βn,k‖TkUn,k−1x− TkUk−1x‖+ |βn,k − βk|‖TkUk−1x‖

+ |βn,k − βk|‖x‖
≤ Lk‖Un,k−1x− Uk−1x‖+ |βn,k − βk|M.
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It follows that

‖Wnx−Wx‖ = ‖Un,Nx− UNx‖
≤ LN‖Un,N−1x− UN−1x‖+ |βn,N − βN |M

≤ LN

(
LN−1‖Un,N−2x− UN−2x‖+ |βn,N−1 − βN−1|M

)
+ |βn,N − βN |M

= LNLN−1‖Un,N−2x− UN−2x‖+ LN |βn,N−1 − βN−1|M
+ |βn,N − βN |M

...

≤ LNLN−1 · · ·L3

(
L2‖Un,1x− U1x‖+ |βn,2 − β2|M

)
+ LNLN−1 · · ·L4|βn,3 − β3|M + · · ·+ LN |βn,N−1 − βN−1|M
+ |βn,N − βN |M

≤ LNLN−1 · · ·L2|βn,1 − β1|‖T1x− x‖+ LNLN−1 · · ·L3|βn,2 − β2|M
+ LNLN−1 · · ·L4|βn,3 − β3|M + · · ·+ LN |βn,N−1 − βN−1|M
+ |βn,N − βN |M.

Since βn,i → βi as n →∞ (i = 1, 2, · · · , N), we obtain the desired result.

We next recall some useful lemmas concerning the generalized metric projection
in strictly convex, reflexive and smooth Banach spaces.

Let X be a smooth Banach space. The function φ : X ×X → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all x, y ∈ X.

Remark 2.4.25. We know the following: for each x, y, z ∈ X,

(1)
(
‖x‖ − ‖y‖

)2 ≤ φ(x, y) ≤
(
‖x‖+ ‖y‖

)2
;

(2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉;

(3) φ(x, y) = ‖x− y‖2 in a Hilbert space.

Lemma 2.4.26. [48] Let X be a uniformly convex and smooth Banach space and let {xn}
and {yn} be sequences of X such that {xn} or {yn} is bounded and limn→∞ φ(xn, yn) = 0.
Then limn→∞ ‖xn − yn‖ = 0.

Let X be a reflexive, strictly convex and smooth Banach space and let C be a
nonempty, closed and convex subset of X. The generalized projection mapping, intro-
duced by Alber [3], is a mapping ΠC : X → C, that assigns to an arbitrary point x ∈ X
the minimum point of the functional φ(y, x), that is, ΠCx = x̄, where x̄ is the solution
to the minimization problem

φ(x̄, x) = min{φ(y, x) : y ∈ C}.

In fact, we have the following result:
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Lemma 2.4.27. [3] Let C be a nonempty, closed and convex subset of a reflexive, strictly
convex, and smooth Banach space X and let x ∈ X. Then, there exists a unique element
x0 ∈ C such that φ(x0, x) = min{φ(z, x) : z ∈ C}.

Lemma 2.4.28. [3, 48] Let C be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space X, x ∈ X, and z ∈ C. Then z = ΠC x if and
only if

〈
Jx− Jz, y − z

〉
≤ 0 for all y ∈ C.

Lemma 2.4.29. [3, 48] Let C be a nonempty, closed and convex subset of a reflexive,
strictly convex and smooth Banach space X and let x ∈ X. Then

φ(y,ΠC x ) + φ(ΠC x , x ) ≤ φ(y , x ) ∀y ∈ C .

Lemma 2.4.30. [83] Let X be a uniformly convex and uniformly smooth Banach space
and let C be a closed and convex subset of X. Then, for points w, x, y, z ∈ X and a
real number a ∈ R, the set K := {v ∈ C : φ(v, y) ≤ φ(v, x)+ 〈v, Jz−Jw〉+a} is closed
and convex.

Lemma 2.4.31. [64] Let X be a smooth and strictly convex Banach space and let C be a
nonempty, closed and convex subset of X. Let T be a mapping from C into itself such
that F (T ) is nonempty and φ(u, Tx) ≤ φ(u, x) for all (u, x) ∈ F (T ) × C. Then F (T )
is closed and convex.

Lemma 2.4.32. [48] Let X be a uniformly convex and uniformly smooth Banach space
and C a nonempty, closed and convex subset of X. Then ΠC is uniformly norm-to-norm
continuous on every bounded set.

Let {Cn} be a sequence of nonempty, closed and convex subset of a reflexive
Banach space X. We define two subsets s− LinCn and w − LsnCn as follows: x ∈
s− LinCn if and only if there exists {xn} ⊂ X such that {xn} converges strongly to x
and that xn ∈ Cn for all n ∈ N. Similarly, y ∈ w − LsnCn if and only if there exists a
subsequence {Cni

} of {Cn} and a sequence {yi} ⊂ E such that {yi} converges weakly
to y and that yi ∈ Cni

for all i ∈ N. We define the Mosco convergence [66] of {Cn} as
follows: If C0 satisfies that C0 = s− LinCn = w − LsnCn, it is said that {Cn} converges
to C0 in the sense of Mosco and we write C0 = M− limn→∞ Cn (see [11]).

Lemma 2.4.33. [44] Let X be a smooth, reflexive and strictly convex Banach space having
the Kadec-Klee property. Let {Rn} be a sequence of nonempty, closed and convex subset
of X. If R0 = M− limn→∞ Rn exists and is nonempty, then {ΠRnx} converges strongly
to ΠR0 x for each x ∈ C.

We also make use of the following mapping V studied in Alber [3]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2

for all x ∈ X and x∗ ∈ X∗, that is, V (x, x∗) = φ
(
x, J−1(x∗)

)
.

Lemma 2.4.34. [54] Let X be a reflexive, strictly convex and smooth Banach space.
Then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗)

for all x ∈ X and x∗, y∗ ∈ X∗.
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Lemma 2.4.35. [105] Let C be a closed and convex subset of a uniformly smooth, strictly
convex, and reflexive Banach space X, and let f be a bifunction from C×C to R which
satisfies conditions (A1)-(A4). For all r > 0 and x ∈ X, define the mapping Tr : X → C
as follows:

Tr(x) = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

Then, the following statements hold:

(1) Tr is single-valued;

(2) Tr is of firmly nonexpansive-type [55], i.e., for all x, y ∈ X,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;

(3) F (Tr) = EP (f);

(4) EP (f) is closed and convex.

Lemma 2.4.36. [105] Let C be a closed and convex subset of a smooth, strictly and
reflexive Banach space X, let f be a bifunction from C×C to R which satisfies conditions
(A1)− (A4), let r > 0. Then, for all x ∈ X and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Lemma 2.4.37. [54] Let X be a reflexive, strictly convex and smooth Banach space, let
z ∈ X and let {ti}m

i=1 ⊂ (0, 1) with
∑m

i=1 ti = 1. If {xi}m
i=1 is a finite sequence in X

such that

φ
(
z, J−1(

m∑
i=1

tiJxi)
)

=
m∑

i=1

tiφ(z, xi),

then x1 = x2 = · · · = xm.

Let X be a smooth, strictly convex and reflexive Banach space and C a non-
empty, closed and convex subset of X. Let {Ti}N

i=1 be a finite family of relatively
quasi-nonexpansive self-mappings of C such that

⋂N
i=1 F (Ti) 6= ∅. For each n ∈ N, we

consider the mappings Vn, Wn and Kn defined as follows:

Vn = ΠCJ−1(β0,nJ + β1,nJT1 + · · ·+ βN,nJTN), (2.4.8)

where ΠC is the generalized projection of X onto C, J is the duality mapping of X and
β0,n, β1,n, · · · , βN,n are real sequences in (0, 1) with β0,n + · · ·+ βN,n = 1.

U1,n = ΠCJ−1
(
β1,nJT1 + (1− β1,n)J

)
,

U2,n = ΠCJ−1
(
β2,nJT2U1,n + (1− β2,n)J

)
,

...

UN−1,n = ΠCJ−1
(
βN−1,nJTN−1UN−2,n + (1− βN−1,n)J

)
,

Wn = UN,n = ΠCJ−1
(
βN,nJTNUN−1,n + (1− βN,n)J

)
, (2.4.9)
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where β1,n, β2,n, · · · , βN,n are real sequences in (0, 1). See [3, 5] for a class of relatively
nonexpansive mappings.

U1,n = ΠCJ−1
(
β1,nJT1 + (1− β1,n)J

)
,

U2,n = ΠCJ−1
(
β2,nJT2U1,n + (1− β2,n)JU1,n

)
,

...

UN−1,n = ΠCJ−1
(
βN−1,nJTN−1UN−2,n + (1− βN−1,n)JUN−2,n

)
,

Kn = UN,n = ΠCJ−1
(
βN,nJTNUN−1,n + (1− βN,n)JUN−1,n

)
, (2.4.10)

where β1,n, β2,n, · · · , βN,n are real sequences in (0, 1).

To study a countable family of relatively quasi-nonexpansive mappings, we
make use of the following condition: let C be a closed subset of a Banach space X. A
family of mappings {Tn}∞n=1 of C into itself with

⋂∞
n=1 F (Tn) 6= ∅ is said to satisfy the

(∗)-condition [16] if for each sequence {zn} in C,

lim
n→∞

‖zn − Tnzn‖ = 0 and zn → z imply z ∈
∞⋂

n=1

F (Tn).

We next prove the crucial lemmas concerning the mappings defined as above.

Lemma 2.4.38. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex and reflexive Banach space X. For each n ∈ N, let Vn be defined as in (2.4.8).
Then the followings hold:

(1) F (Vn) =
⋂N

i=1 F (Ti).

(2) Vn is a relatively quasi-nonexpansive mapping.

Proof. (1) Since
⋂N

i=1 F (Ti) ⊂ F (Vn) is obvious, it suffices to show that F (Vn) ⊂⋂N
i=1 F (Ti). To this end, let q ∈ F (Vn) and p ∈

⋂N
i=1 F (Ti). So we have by the

definition of φ that

φ(p, q) = φ(p, Vnq) ≤ φ(p, J−1(β0,nJq + β1,nJT1q + · · ·+ βN,nJTNq))

≤ β0,nφ(p, q) + β1,nφ(p, T1q) + · · ·+ βN,nφ(p, TNq)

≤ φ(p, q).

By Lemma 2.4.37, we get that q = T1q = · · · = TNq. Thus q ∈
⋂N

i=1 F (Ti).

(2) The proof is directly obtained from (1).

Lemma 2.4.39. Let C be a nonempty, closed and convex subset of a uniformly smooth
Banach space X. For each n ∈ N, let Vn : C → C be defined as in (2.4.8) and let
0 < a ≤ β0,n ≤ b < 1 and 0 < a ≤ βi,n ≤ b < 1 for all i = 1, 2, · · · , N . If either Ti

is closed for all i = 1, 2, · · · , N or F̂ (Ti) = F (Ti) for all i = 1, 2, · · · , N , then {Vn}
satisfies the (∗)-condition.

Proof. Let p ∈
⋂N

i=1 F (Ti) and let {zn} be a sequence in C such that zn → z and
limn→∞ ‖zn − Vnzn‖ = 0. From Lemma 2.3.5 and X∗ is uniformly convex, then there
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exists a strictly increasing, continuous and convex function g∗ with g∗(0) = 0 such that

φ(p, Vnzn) ≤ φ(p, J−1(β0,nJzn + β1,nJT1zn + · · ·+ βN,nJTNzn))

= ‖p‖2 − 2〈p, β0,nJzn + β1,nJT1zn + · · ·+ βN,nJTNzn〉
+ ‖β0,nJzn + β1,nJT1zn + · · ·+ βN,nJTNzn‖2

≤ β0,nφ(p, zn) + β1,nφ(p, T1zn) + · · ·+ βN,nφ(p, TNzn)

− β0,nβ1,ng∗(‖Jzn − JT1zn‖)
≤ φ(p, zn)− β0,nβ1,ng

∗(‖Jzn − JT1zn‖),

which implies

β0,nβ1,ng∗(‖Jzn − JT1zn‖) ≤ φ(p, zn)− φ(p, Vnzn)

= ‖zn‖2 − ‖Vnzn‖2 − 2〈p, JVnzn − Jzn〉
≤ ‖zn − Vnzn‖(‖zn‖+ ‖Vnzn‖)

+ 2‖p‖‖Jzn − JVnzn‖.

Since β0,nβ1,n ≥ a2 > 0, {zn} is bounded and limn→∞ ‖zn − Vnzn‖ = 0, it follows from
the properties of g∗ that

lim
n→∞

‖Jzn − JT1zn‖ = 0.

Hence, by the uniform continuity of J , we also have

lim
n→∞

‖zn − T1zn‖ = 0.

By changing the role of vectors and proving in the same way, we can conclude that

lim
n→∞

‖zn − T2zn‖ = · · · = lim
n→∞

‖zn − TNzn‖ = 0.

Hence limn→∞ ‖zn − Tizn‖ = 0 for all i = 1, 2, · · · , N . If Ti is closed for all i =

1, 2, · · · , N , then z ∈
⋂N

i=1 F (Ti). On the other hand, we see that z ∈ F̂ (Ti) for all

i = 1, 2, · · · , N . So if F̂ (Ti) = F (Ti) for all i = 1, 2, · · · , N , then z ∈
⋂N

i=1 F (Ti). By
Lemma 2.4.38 (1), we get that z ∈ F (Vn). Thus, the proof is complete.

Lemma 2.4.40. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex and reflexive Banach space X. For each n ∈ N, let Wn be defined as in (2.4.9).
Then F (Wn) =

⋂N
i=1 F (Ti).

Proof.
⋂N

i=1 F (Ti) ⊂ F (Wn) is obvious. Let q ∈ F (Wn) and p ∈
⋂N

i=1 F (Ti). Then

φ(p, q) = φ(p, Wnq)

≤ φ
(
p, J−1

(
βN,nJTNUN−1,nq + (1− βN,n)Jq

))
≤ βN,nφ(p, TNUN−1,nq) + (1− βN,n)φ(p, q)

≤ βN,nφ(p, UN−1,nq) + (1− βN,n)φ(p, q)
...

≤ βN,n

(
βN−1,n

(
· · ·
(
β3,nφ

(
p, J−1(β2,nJT2U1,nq + (1− β2,n)Jq)

)
+ (1− β3,n)φ(p, q)

)
+ · · ·

)
+ (1− βN−1,n)φ(p, q)

)
+ (1− βN,n)φ(p, q)
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≤ βN,n

(
βN−1,n

(
· · · β3,n

(
β2,nφ(p, T2U1,nq) + (1− β2,n)φ(p, q)

)
+ (1− β3,n)φ(p, q)

)
+ · · ·

)
+ (1− βN−1,n)φ(p, q)

)
+ (1− βN,n)φ(p, q)

≤ βN,n

(
βN−1,n

(
· · · β3,n

(
β2,nφ(p, U1,nq) + (1− β2,n)φ(p, q)

)
+ (1− β3,n)φ(p, q)

)
+ · · ·

)
+ (1− βN−1,n)φ(p, q)

)
+ (1− βN,n)φ(p, q)

≤ βN,n

(
βN−1,n

(
· · ·
(
β2,nφ

(
p, J−1(β1,nJT1q + (1− β1,n)Jq)

)
+ (1− β2,n)φ(p, q)

)
+ · · ·

)
+ (1− βN−1,n)φ(p, q)

)
+ (1− βN,n)φ(p, q)

≤ βN,n

(
βN−1,n

(
· · ·
(
β2,n

(
β1,nφ(p, T1q) + (1− β1,n)φ(p, q)

)
+ (1− β2,n)φ(p, q)

)
+ · · ·

)
+ (1− βN−1,n)φ(p, q)

)
+ (1− βN,n)φ(p, q)

≤ βN,n

(
βN−1,n

(
· · ·
(
β2,n

(
β1,nφ(p, q) + (1− β1,n)φ(p, q)

)
+ (1− β2,n)φ(p, q)

)
+ · · ·

)
+ (1− βN−1,n)φ(p, q)

)
+ (1− βN,n)φ(p, q)

= φ(p, q). (2.4.11)

This shows that

β1,nφ(p, T1q) + (1− β1,n)φ(p, q) = φ
(
p, J−1

(
β1,nJT1q + (1− β1,n)Jq

))
.

From Lemma 2.4.37, we have q = T1q and hence q ∈ F (T1). Again, from (2.4.11) we
see that

β2,nφ(p, T2U1,nq) + (1− β2,n)φ(p, U1,nq) = φ(p, J−1(β2,nJT2U1,nq + (1− β2,n)Jq).

We note, by (2.4.9), that U1,nq = q for all n ∈ N. So Lemma 2.4.37 implies that q = T2q;
consequently q ∈ F (T2). Similarly, we can show that q ∈ F (Ti) for all i = 3, 4, · · · , N .
Hence q ∈

⋂N
i=1 F (Ti). This completes the proof.

Lemma 2.4.41. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex and reflexive Banach space X. For each n ∈ N, let Wn be defined as in (2.4.9).
Then Wn is a relatively quasi-nonexpansive mapping.

Proof. Lemma 2.4.40 asserts that F (Wn) =
⋂N

i=1 F (Ti) 6= ∅. Let x ∈ C and p ∈⋂N
i=1 F (Ti). Since Ti is relatively quasi-nonexpansive for all i = 1, 2, · · · , N , it is easy to

see that φ(p, Wnx) ≤ φ(p, x). Thus Wn is a relatively quasi-nonexpansive mapping.
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Lemma 2.4.42. Let C be a nonempty, closed and convex subset of a uniformly smooth
Banach space X. For each n ∈ N, let Wn be defined as in (2.4.9) and let 0 < a ≤
βi,n ≤ b < 1 for all i = 1, 2, · · · , N . If either Ti is closed for all i = 1, 2, · · · , N or

F̂ (Ti) = F (Ti) for all i = 1, 2, · · · , N , then {Wn} satisfies the (∗)-condition.

Proof. Let p ∈
⋂N

i=1 F (Ti) and let {zn} ⊂ C be such that zn → z and limn→∞ ‖zn −
Wnzn‖ = 0. From Lemma 2.3.5 and X∗ is uniformly convex, then there exists a strictly
increasing, continuous and convex function g∗ with g∗(0) = 0 such that

φ(p, Wnzn) ≤ φ
(
p, J−1

(
βN,nJTNUN−1,nzn + (1− βN,n)Jzn

))
= ‖p‖2 − 2

〈
p, βN,nJTNUN−1,nzn + (1− βN,n)Jzn

〉
+ ‖βN,nJTNUN−1,nzn + (1− βN,n)Jzn‖2

≤ ‖p‖2 − 2
〈
p, βN,nJTNUN−1,nzn + (1− βN,n)Jzn

〉
+ βN,n‖TNUN−1,nzn‖2 + (1− βN,n)‖zn‖2

− βN,n(1− βN,n)g∗(‖Jzn − JTNUN−1,nzn‖)
= βN,nφ(p, TNUN−1,nzn) + (1− βN,n)φ(p, zn)

− βN,n(1− βN,n)g∗(Jzn − JTNUN−1,nzn‖)
≤ βN,nφ(p, UN−1,nzn) + (1− βN,n)φ(p, zn)

− βN,n(1− βN,n)g∗(‖Jzn − JTNUN−1,nzn‖)

≤ βN,n

(
βN−1,nφ(p, UN−2,nzn) + (1− βN−1,n)φ(p, zn)

)
+ (1− βN,n)φ(p, zn)

− βN,nβN−1,n(1− βN−1,n)g∗(‖Jzn − JTN−1UN−2,nzn‖)
−βN,n(1− βN,n)g∗(‖Jzn − JTNUN−1,nzn‖)

...

≤ φ(p, zn)−
N∏

i=1

βi,n(1− β1,n)g∗(‖Jzn − JT1zn‖)

−
N∏

i=2

βi,n(1− β2,n)g∗(‖Jzn − JT2U1,nzn‖)

− · · · − βN,nβN−1,n(1− βN−1,n)g∗(‖Jzn − JTN−1UN−2,nzn‖)
−βN,n(1− βN,n)g∗(‖Jzn − JTNUN−1,nzn‖), (2.4.12)

which implies

N∏
i=1

βi,n(1− β1,n)g∗(‖Jzn − JT1zn‖) ≤ φ(p, zn)− φ(p, Wnzn).

Since
∏N

i=1 βi,n(1− β1,n) ≥ aN(1− b) > 0 and limn→∞ ‖zn −Wnzn‖ = 0, it follows from
the properties of g∗ and the uniform continuity of J that

lim
n→∞

‖zn − T1zn‖ = 0.

If Ti is closed for all i = 1, 2, · · · , N , we get that z ∈ F (T1). Also, by (2.4.12), we obtain

lim
n→∞

‖zn − T2U1,nzn‖ = · · · = lim
n→∞

‖zn − TNUN−1,nzn‖ = 0. (2.4.13)
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We observe

φ(zn, U1,nzn) ≤ φ
(
zn, J

−1
(
β1,nJT1zn + (1− β1,n)Jzn

))
≤ β1,nφ(zn, T1zn) + (1− β1,n)φ(zn, zn).

So, by Lemma 2.4.26, we get

lim
n→∞

‖zn − U1,nzn‖ = 0. (2.4.14)

Therefore U1,nzn → z as n →∞. From (4.2.11) and (2.4.14) we see that

‖T2U1,nzn − U1,nzn‖ ≤ ‖T2U1,nzn − zn‖+ ‖zn − U1,nzn‖ → 0, (2.4.15)

as n → ∞. Since T2 is closed, z ∈ F (T2). Similarly, we can show that z ∈ F (Ti) for
all i = 3, 4, · · · , N . Thus z ∈

⋂N
i=1 F (Ti). From Lemma 2.4.40, we can conclude that

z ∈ F (Wn). If F̂ (Ti) = F (Ti) for all i = 1, 2, · · · , N , by using the same proof as in the
first case, we can show that z ∈ F (Wn). This completes the proof.

Lemma 2.4.43. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex and reflexive Banach space X. For each n ∈ N, let Kn be defined as in (2.4.10).
Then F (Kn) =

⋂N
i=1 F (Ti).

Proof. Let q ∈ F (Kn) and let p ∈
⋂N

i=1 F (Ti). So we have

φ(p, q) = φ(p, Knq)

≤ φ
(
p, J−1

(
βN,nJTNUN−1,nq + (1− βN,n)JUN−1,nq

))
≤ βN,nφ(p, TNUN−1,nq) + (1− βN,n)φ(p, UN−1,nq)

≤ φ(p, UN−1,nq)
...

≤ φ
(
p, J−1

(
β2,nJT2U1,nq + (1− β2,n)JU1,nq

))
≤ β2,nφ(p, T2U1,nq) + (1− β2,n)φ(p, U1,nq)

≤ φ(p, U1,nq)

≤ φ
(
p, J−1

(
β1,nJT1q + (1− β1,n)Jq

))
≤ β1,nφ(p, T1q) + (1− β1,n)φ(p, q)

≤ φ(p, q), (2.4.16)

which implies β1,nφ(p, T1q) + (1 − β1,n)φ(p, q) = φ
(
p, J−1

(
β1,nJT1q + (1 − β1,n)Jq

))
.

By Lemma 2.4.37, we obtain that q = T1q and hence q ∈ F (T1). From (5.1.18) we see
that β2,nφ(p, T2U1,nq)+(1−β2,n)φ(p, U1,nq) = φ(p, J−1(β2,nJT2U1,nq+(1−β2,n)JU1,nq).
Also, Lemma 2.4.37 implies that U1,nq = T2U1,nq. Since q = U1,nq by (2.4.10), we have
q ∈ F (T2). Similarly, we can verify that q ∈ F (Ti) for all i = 3, 4, · · · , N and hence
q ∈

⋂N
i=1 F (Ti). This completes the proof.

Lemma 2.4.44. Let C be a nonempty, closed and convex subset of a smooth, strictly
convex and reflexive Banach space X. For each n ∈ N, let Kn be defined as in (2.4.10).
Then Kn is a relatively quasi-nonexpansive mapping.

Proof. From Lemma 2.4.43 and by the relative quasi-nonexpansiviness of Ti for all
i = 1, 2, · · · , N , we immediately obtain the desired result.
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Lemma 2.4.45. Let C be a nonempty, closed and convex subset of a uniformly smooth
Banach space X. For each n ∈ N, let Kn be defined as in (2.4.10) and let 0 < a ≤
βi,n ≤ b < 1 for all i = 1, 2, · · · , N . If either Ti is closed for all i = 1, 2, · · · , N or

F̂ (Ti) = F (Ti) for all i = 1, 2, · · · , N , then {Kn} satisfies the (∗)-condition.

Proof. Let p ∈
⋂N

i=1 F (Ti) and let {zn} be a sequence in C such that zn → z and
limn→∞ ‖zn − Knzn‖ = 0. For each n ∈ N, let U0,n be the identity mapping. From
Lemma 2.3.5 and X∗ is uniformly convex, then there exists a strictly increasing, con-
tinuous and convex function g∗ with g∗(0) = 0 such that

φ(p, Knzn) ≤ φ
(
p, J−1

(
βN,nJTNUN−1,nzn + (1− βN,n)JUN−1,nzn

))
= ‖p‖2 − 2

〈
p, βN,nJTNUN−1,nzn + (1− βN,n)JUN−1,nzn

〉
+ ‖βN,nJTNUN−1,nzn + (1− βN,n)JUN−1,nzn‖2

≤ ‖p‖2 − 2
〈
p, βN,nJTNUN−1,nzn + (1− βN,n)JUN−1,nzn

〉
+ βN,n‖TNUN−1,nzn‖2 + (1− βN,n)‖UN−1,nzn‖2

− βN,n(1− βN,n)g∗(‖UN−1,nzn − TNUN−1,nzn‖)
= βN,nφ(p, TNUN−1,nzn) + (1− βN,n)φ(p, UN−1,nzn)

− βN,n(1− βN,n)g∗(‖JUN−1,nzn − JTNUN−1,nzn‖)
≤ φ(p, UN−1,nzn)− βN,n(1− βN,n)g∗(‖JUN−1,nzn − JTNUN−1,nzn‖)
...

≤ φ(p, zn)−
N∑

i=1

βi,n(1− βi,n)g∗(‖JTiUi−1,nzn − JUi−1,nzn‖),

which yields

N∑
i=1

βi,n(1− βi,n)g∗(‖JTiUi−1,nzn − JUi−1,nzn‖) ≤ φ(p, zn)− φ(p, Knzn).

Since βi,n(1− βi,n) ≥ a(1− b) > 0 for all i = 1, 2, · · · , N and limn→∞ ‖zn −Knzn‖ = 0,
it follows from the properties of g∗ and the uniform continuity of J that

lim
n→∞

‖TiUi−1,nzn − Ui−1,nzn‖ = 0, (2.4.17)

for all i = 1, 2, · · · , N . In particular, we have

lim
n→∞

‖T1zn − zn‖ = 0. (2.4.18)

We observe that

φ(zn, U1,nzn) ≤ φ
(
zn, J

−1
(
β1,nJT1zn + (1− β1,n)Jzn

))
≤ β1,nφ(zn, T1zn) + (1− β1,n)φ(zn, zn),

which implies from Lemma 2.4.26 and (2.4.18) that

lim
n→∞

‖zn − U1,nzn‖ = 0. (2.4.19)

From (4.2.16) and (2.4.17), we have

‖T2U1,nzn − zn‖ ≤ ‖T2U1,nzn − U1,nzn‖+ ‖U1,nzn − zn‖ → 0, (2.4.20)
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as n →∞. Hence

φ(zn, U2,nzn) ≤ φ
(
zn, J

−1
(
β2,nJT2U1,nzn + (1− β2,n)JU1,nzn

))
≤ β2,nφ(zn, T2U1,nzn) + (1− β2,n)φ(zn, U1,nzn),

which implies from (4.2.16) and (2.4.20) that

lim
n→∞

‖zn − U2,nzn‖ = 0.

By proving in the same manner, we can conclude that

lim
n→∞

‖zn − Ui,nzn‖ = 0.

for all i = 1, 2, · · · , N . Since zn → z, Ui,nzn → z. If Ti is closed for all i = 1, 2, · · · , N ,

it follows from (2.4.17) that z ∈
⋂N

i=1 F (Ti). If F̂ (Ti) = F (Ti) for all i = 1, 2, · · · , N ,

by (2.4.17), z ∈
⋂N

i=1 F̂ (Ti) =
⋂N

i=1 F (Ti). From Lemma 2.4.43, we can conclude that
z ∈ F (Kn). This completes the proof.


