
Chapter 3
Approximation Methods for Common Fixed

Points of Strict Pseudocontractions in
Banach Spaces

In this chapter, we study Mann-type and Halpern-type iterations for a countable
family of strict pseudocontractions in the framework of Banach spaces. We prove that
the sequences generated by the proposed algorithms converge weakly and strongly to
common fixed points of mappings.

3.1 Weak Convergence Theorems for a Countable Family

of Strict Pseudocontractions in Banach Spaces

Let X be a Banach space and let C be a nonempty, closed and convex subset of
X. Let {Tn}∞n=1 : C → C be a countable family of mappings. We consider the following
Mann-type iteration: x1 ∈ C and

xn+1 = (1− αn)xn + αnTnxn, n ≥ 1, (3.1.1)

where {αn} is a real sequence in (0, 1).

Further, we also consider the following Halpern-type iteration: x1 ∈ C and{
yn = (1− αn)xn + αnTnxn,
xn+1 = βnu + γnxn + δnyn, n ≥ 1,

(3.1.2)

where {αn}, {βn}, {γn} and {δn} are real sequences in (0, 1).

Proposition 3.1.1. Let X be a Banach space and let C be a nonempty, closed and
convex subset of X. Let {Tn}∞n=1 : C → C be a family of λ-strict pseudocontractions
for some 0 < λ < 1 such that F :=

⋂∞
n=1 F (Tn) 6= ∅. Assume that the control sequence

{αn} ⊂ (0, 1) satisfies the following conditions:

(a)
∑∞

n=1 αn = +∞;

(b)
∑∞

n=1 α2
n < +∞.

Let {xn} be generated by (3.1.1). If {Tn} satisfies the AKTT-condition, then

(1) limn→∞ ‖xn − p‖ exists for all p ∈ F ;

(2) lim infn→∞ ‖xn − Tnxn‖ = 0.

Proof. Let p ∈ F and put L = λ+1
λ

. First, we observe that

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖Tnxn − p‖ ≤ (1 + L)‖xn − p‖
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and

‖xn+1 − xn‖ = αn‖Tnxn − xn‖ ≤ αn(1 + L)‖xn − p‖.

Since Tn is a λ-strict pseudocontraction, there exists j(xn+1 − p) ∈ J(xn+1 − p) such
that

〈(I − Tn)xn+1 − (I − Tn)p, j(xn+1 − p)〉 ≥ λ‖(I − Tn)xn+1 − (I − Tn)p‖2,

which implies

〈xn+1 − Tnxn+1, j(xn+1 − p)〉 ≥ λ‖xn+1 − Tnxn+1‖2.

From Lemma 2.3.1 (2), it follows that

‖xn+1 − p‖2 = ‖(xn − p) + αn(Tnxn − xn)‖2

≤ ‖xn − p‖2 + 2αn〈Tnxn − xn, j(xn+1 − p)〉
= ‖xn − p‖2 + 2αn〈Tnxn − Tnxn+1, j(xn+1 − p)〉

+ 2αn〈Tnxn+1 − xn+1, j(xn+1 − p)〉+ 2αn〈xn+1 − xn, j(xn+1 − p)〉
≤ ‖xn − p‖2 + 2αnL‖xn − xn+1‖‖xn+1 − p‖

− 2αnλ‖Tnxn+1 − xn+1‖2 + 2αn‖xn − xn+1‖‖xn+1 − p‖
≤ ‖xn − p‖2 + 2α2

nL(1 + L)2‖xn − p‖2

− 2αnλ‖Tnxn+1 − xn+1‖2 + 2α2
n(1 + L)2‖xn − p‖2 (3.1.3)

= ‖xn − p‖2 + 2α2
n(1 + L)3‖xn − p‖2 − 2αnλ‖Tnxn+1 − xn+1‖2.

This implies that

‖xn+1 − p‖2 ≤ (1 + 2α2
n(1 + L)3)‖xn − p‖2.

Hence, by condition (b), we have from Lemma 2.4.9 that limn→∞ ‖xn − p‖ exists; con-
sequently, {xn} is bounded. Moreover, by (3.1.3), we also have

∞∑
n=1

αnλ‖Tnxn+1−xn+1‖2 ≤
∞∑

n=1

(
‖xn−p‖2−‖xn+1−p‖2

)
+2(1+L)3M2

1

∞∑
n=1

α2
n < +∞,

where M1 = supn≥1{‖xn − p‖}. It follows, by condition (a), that lim infn→∞ ‖Tnxn+1 −
xn+1‖ = 0. Further, since {xn} is bounded,

‖xn+1 − Tn+1xn+1‖ ≤ ‖xn+1 − Tnxn+1‖+ ‖Tnxn+1 − Tn+1xn+1‖
≤ ‖xn+1 − Tnxn+1‖+ sup

z∈{xn}
‖Tnz − Tn+1z‖.

Since {Tn} satisfies the AKTT-condition, it follows that lim infn→∞ ‖xn − Tnxn‖ = 0.
This completes the proof of (1) and (2).

In our more general setting, in this section we will assume that:

β∗(t) ≤ 2t, (3.1.4)

where β∗ is a function appearing in Lemma 2.4.14.
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Proposition 3.1.2. Let X be a Banach space with the Fréchet differentiable norm and
let C be a nonempty, closed and convex subset of X. Let {Tn}∞n=1 : C → C be a family
of λ-strict pseudocontractions for some 0 < λ < 1 such that F :=

⋂∞
n=1 F (Tn) 6= ∅.

Assume that the control sequence {αn} ⊂ (0, 1) satisfies the following conditions:

(a)
∑∞

n=1 αn = +∞;

(b)
∑∞

n=1 α2
n < +∞.

Let {xn} be generated by (3.1.1). If
(
{Tn}, T

)
satisfies the AKTT-condition, then

lim
n→∞

‖xn − Tnxn‖ = lim
n→∞

‖xn − Txn‖ = 0.

Proof. Let p ∈ F and put M2 = supn≥1

{
‖xn−Tnxn‖

}
> 0. Then by (2.4.3) and (3.1.4)

we have

‖xn+1 − p‖2 = ‖(xn − p) + αn(Tnxn − xn)‖2

≤ ‖xn − p‖2 + 2αn〈Tnxn − xn, j(xn − p)〉
+ αn‖Tnxn − xn‖β∗(αn‖Tnxn − xn‖)

≤ ‖xn − p‖2 − 2αnλ‖xn − Tnxn‖2 + 2α2
n‖xn − Tnxn‖2

≤ ‖xn − p‖2 − 2αnλ‖xn − Tnxn‖2 + 2α2
nM

2
2 .

It follows that

∞∑
n=1

αn‖xn − Tnxn‖2 < +∞.

Observe that

‖xn − Tn+1xn+1‖2 = ‖(xn − Tnxn) + (Tnxn − Tn+1xn+1)‖2

≤ ‖xn − Tnxn‖2 + 2〈Tnxn − Tn+1xn+1, j(xn − Tn+1xn+1)〉
= ‖xn − Tnxn‖2 + 2〈Tnxn − Tnxn+1, j(xn − Tn+1xn+1)〉

+ 2〈Tnxn+1 − Tn+1xn+1, j(xn − Tn+1xn+1)〉
≤ ‖xn − Tnxn‖2 + 2L‖xn − xn+1‖‖xn − Tn+1xn+1‖

+ 2‖Tnxn+1 − Tn+1xn+1‖‖xn − Tn+1xn+1‖
≤ ‖xn − Tnxn‖2 + 2L‖xn − xn+1‖‖xn − Tnxn‖

+ 2L‖xn − xn+1‖‖Tnxn − Tnxn+1‖
+ 2L‖xn − xn+1‖‖Tnxn+1 − Tn+1xn+1‖
+ 2‖Tnxn+1 − Tn+1xn+1‖‖xn − xn+1‖
+ 2‖Tnxn+1 − Tn+1xn+1‖‖xn+1 − Tn+1xn+1‖

≤ ‖xn − Tnxn‖2 + (2Lαn + 2L2α2
n)‖xn − Tnxn‖2

+ (2LM2αn + 2M2αn + 2M2)‖Tnxn+1 − Tn+1xn+1‖
≤ ‖xn − Tnxn‖2 + 2L(1 + L)αn‖xn − Tnxn‖2

+ 2M2(L + 2)‖Tnxn+1 − Tn+1xn+1‖. (3.1.5)
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From (3.1.5) we have

‖xn+1 − Tn+1xn+1‖2 ≤ (1− αn)‖xn − Tn+1xn+1‖2 + αn‖Tnxn − Tn+1xn+1‖2

≤ ‖xn − Tn+1xn+1‖2

+ αn

(
‖Tnxn − Tnxn+1‖+ ‖Tnxn+1 − Tn+1xn+1‖

)2
= ‖xn − Tn+1xn+1‖2 + αn‖Tnxn − Tnxn+1‖2

+ 2αn‖Tnxn − Tnxn+1‖‖Tnxn+1 − Tn+1xn+1‖
+ αn‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tn+1xn+1‖2 + α2
nL

2‖xn − Tnxn‖2

+ 2α2
nL‖xn − Tnxn‖‖Tnxn+1 − Tn+1xn+1‖

+ αn‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tn+1xn+1‖2 + α2
nL

2M2
2

+ 2LM2‖Tnxn+1 − Tn+1xn+1‖+ ‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tnxn‖2 + 2L(1 + L)αn‖xn − Tnxn‖2

+ 2M2(L + 2)‖Tnxn+1 − Tn+1xn+1‖+ α2
nL

2M2
2

+ 2LM2‖Tnxn+1 − Tn+1xn+1‖+ ‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tnxn‖2 + 2L(1 + L)αn‖xn − Tnxn‖2

+ α2
nL

2M2
2 + 2M2(2L + 2)‖Tnxn+1 − Tn+1xn+1‖

+ ‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tnxn‖2 + 2L(1 + L)αn‖xn − Tnxn‖2

+ α2
nL

2M2
2 + 2M2(2L + 2) sup

z∈{xn}
‖Tnz − Tn+1z‖

+ sup
z∈{xn}

‖Tnz − Tn+1z‖2.

Since
∑∞

n=1 αn‖xn − Tnxn‖2 < +∞,
∑∞

n=1 α2
n < +∞ and

∑∞
n=1 sup{‖Tn+1z − Tnz‖ :

z ∈ {xn}} < +∞, it follows that limn→∞ ‖xn − Tnxn‖ exists. From Proposition 3.1.1
(2), we can conclude that limn→∞ ‖xn − Tnxn‖ = 0. Since

‖xn − Txn‖ ≤ ‖xn − Tnxn‖+ ‖Tnxn − Txn‖
≤ ‖xn − Tnxn‖+ sup

z∈{xn}
‖Tnz − Tz‖,

it follows from Lemma 2.4.15 that limn→∞ ‖xn − Txn‖ = 0. This completes the proof.

Theorem 3.1.3. Let X be a uniformly convex Banach space with the Fréchet differen-
tiable norm and let C be a nonempty, closed and convex subset of X. Let {Tn}∞n=1 :
C → C be a family of λ-strict pseudocontractions for some 0 < λ < 1 such that
F :=

⋂∞
n=1 F (Tn) 6= ∅. Assume that the control sequence {αn} ⊂ (0, λ] satisfies the

following conditions:

(a)
∑∞

n=1 αn = +∞;

(b)
∑∞

n=1 α2
n < +∞.

If
(
{Tn}, T

)
satisfies the AKTT-condition, then {xn} generated by (3.1.1) converges

weakly to a common fixed point of {Tn}∞n=1.
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Proof. Let p ∈ F and define Sn : C → C by

Snx = (1− αn)x + αnTnx, x ∈ C.

Then
⋂∞

n=1 F (Sn) = F = F (T ). From (2.4.3), we have for bounded x, y ∈ C that

‖Snx− Sny‖2 = ‖x− y − αn[x− y − (Tnx− Tny)]‖2

≤ ‖x− y‖2 − 2αn〈(I − Tn)x− (I − Tn)y, j(x− y)〉
+αn‖x− y − (Tnx− Tny)‖β∗

(
αn‖x− y − (Tnx− Tny)‖

)
≤ ‖x− y‖2 − 2αnλ‖x− y − (Tnx− Tny)‖2

+ 2α2
n‖x− y − (Tnx− Tny)‖2

= ‖x− y‖2 − 2αn(λ− αn)‖x− y − (Tnx− Tny)‖2

≤ ‖x− y‖2.

This implies that Sn is nonexpansive. From Proposition 3.1.1 (1), {xn} is bounded.
From Proposition 3.1.2, we know that limn→∞ ‖xn−Txn‖ = 0. Applying Lemma 2.4.4,
we also have ωω(xn) ⊂ F (T ).

Finally, we will show that ωω(xn) is a singleton. Suppose that x∗, y∗ ∈ ωω(xn) ⊂
F (T ). Hence x∗, y∗ ∈

⋂∞
n=1 F (Sn). By Lemma 2.4.13, limn→∞〈xn, j(x

∗ − y∗)〉 exists.
Suppose that {xnk

} and {xmk
} are subsequences of {xn} such that xnk

⇀ x∗ and
xmk

⇀ y∗. Then

‖x∗ − y∗‖2 = 〈x∗ − y∗, j(x∗ − y∗)〉 = lim
k→∞

〈xnk
− xmk

, j(x∗ − y∗)〉 = 0.

Hence x∗ = y∗; consequently, xn ⇀ x∗ ∈
⋂∞

n=1 F (Sn) = F . This completes the proof.

Using Lemma 2.4.19 we obtain the following result:

Corollary 3.1.4. Let X be a uniformly convex Banach space with the Fréchet differen-
tiable norm and let C be a nonempty, closed and convex subset of X. Let {Sk}∞k=1 be a
sequence of λk-strict pseudocontractions of C into itself such that

⋂∞
k=1 F (Sk) 6= ∅ and

inf{λk : k ∈ N} = λ > 0. Define the sequence {xn} by x1 ∈ C,

xn+1 = (1− αn)xn + αn

n∑
k=1

µk
nSkxn, n ≥ 1,

where {αn} ⊂ (0, λ] satisfying
∑∞

n=1 αn = +∞ and
∑∞

n=1 α2
n < +∞, and {µk

n} satisfies
conditions (1)-(3) of Lemma 2.4.19. Then {xn} converges weakly to a common fixed
point of {Sk}∞k=1.

Remark 3.1.5. Theorem 3.1.3 and Corollary 3.1.4 extend and improve Theorem 3.3 and
Theorem 3.4 of Chidume-Shahzad [34] in the following senses:

(1) from real uniformly smooth and uniformly convex Banach spaces to real uniformly
convex Banach spaces with Fréchet differentiable norms;

(2) from finite strict pseudocontractions to infinite strict pseudocontractions.

Using Opial’s condition, we also obtain the results in a reflexive Banach space.
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Theorem 3.1.6. Let X be a Fréchet smooth and reflexive Banach space which satis-
fies Opial’s condition and let C be a nonempty, closed and convex subset of X. Let
{Tn}∞n=1 be a family of λ-strict pseudocontractions for some 0 < λ < 1 such that
F :=

⋂∞
n=1 F (Tn) 6= ∅. Assume that the control sequence {αn} ⊂ (0, λ] satisfies the

following conditions:

(a)
∑∞

n=1 αn = +∞;

(b)
∑∞

n=1 α2
n < +∞.

If
(
{Tn}, T

)
satisfies the AKTT-condition, then {xn} generated by (3.1.1) converges

weakly to a common fixed point of {Tn}∞n=1.

Proof. Let p ∈ F . From Proposition 3.1.1 (1), we know that limn→∞ ‖xn − p‖ ex-
ists. Since X has the Fréchet differentiable norm, by Proposition 3.1.2, we know that
limn→∞ ‖xn − Txn‖ = 0. It follows from Proposition 2.4.5 that ωω(xn) ⊂ F (T ) = F .
Finally, we show that ωω(xn) is a singleton. Let x∗, y∗ ∈ ωω(xn) and {xnk

} and {xmk
}

be subsequences of {xn} chosen such that xnk
⇀ x∗ and xmk

⇀ y∗. If x∗ 6= y∗, then
Opial’s condition of X implies that

lim
n→∞

‖xn − x∗‖ = lim
k→∞

‖xnk
− x∗‖ < lim

k→∞
‖xnk

− y∗‖ = lim
k→∞

‖xmk
− y∗‖

< lim
k→∞

‖xmk
− x∗‖ = lim

n→∞
‖xn − x∗‖.

This is a contradiction and thus the proof is complete.

Corollary 3.1.7. Let X be a Fréchet smooth and reflexive Banach space which satisfies
Opial’s condition and let C be a nonempty, closed and convex subset of X. Let {Sk}∞k=1

be a sequence of λk-strict pseudocontractions of C into itself such that
⋂∞

k=1 F (Sk) 6= ∅
and inf{λk : k ∈ N} = λ > 0. Define the sequence {xn} by x1 ∈ C,

xn+1 = (1− αn)xn + αn

n∑
k=1

µk
nSkxn, n ≥ 1,

where {αn} ⊂ [0, λ] satisfying
∑∞

n=1 αn = +∞ and
∑∞

n=1 α2
n < +∞, and {µk

n} satisfies
conditions (1)-(3) of Lemma 2.4.19. Then {xn} converges weakly to a common fixed
point of {Sk}∞k=1.

3.2 Weak and Strong Convergence Theorems for a Count-

able Family of Strict Pseudocontractions in Banach

Spaces

In this section, we study weak and strong convergence of Mann-type and
Halpern-type iterations for a countable family of strict pseudocontractions in uniformly
smooth Banach spaces. We give an affirmative answer raised by Zhou [122] in 2010.

Proposition 3.2.1. Let X be a uniformly smooth Banach space and C a nonempty, closed
and convex subset of X. Let {Tn}∞n=1 : C → C be a family of λ-strict pseudocontractions
for some 0 < λ < 1 such that F :=

⋂∞
n=1 F (Tn) 6= ∅. Assume that Φ(t) ≤ 2t2, t ∈ [0,∞)

where Φ is a function appearing in (2.3.1). Let {αn} be a real sequence in (0, λ] which
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satisfies the conditions (i)
∑∞

n=1 αn = +∞ and (ii)
∑∞

n=1 α2
n < +∞. Let {xn} be

generated by (3.1.1). If
(
{Tn}, T

)
satisfies the AKTT-condition, then

lim
n→∞

‖xn − Tnxn‖ = lim
n→∞

‖xn − Txn‖ = 0.

Proof. Since, by Proposition 3.1.1 (1), {xn} is bounded, there exists r > 0 such that
{xn} ⊂ G := Br(0) ∩ C. For given {αn} ⊂ (0, λ], we define

βn =
λ− αn

λ
,

then βn ∈ [0, 1) for all n ≥ 1, αn = λ(1− βn) and 1− αn = 1− λ(1− βn). Hence,

xn+1 = (1− αn)xn + αnTnxn

= [1− λ(1− βn)]xn + λ(1− βn)Tnxn

= βnxn + (1− βn)[(1− λ)xn + λTnxn]

= βnxn + (1− βn)Cnxn,

where Cn = (1−λ)I+λTn : G → C. By Lemma 2.4.20, we know that Cn is nonexpansive
for all n ≥ 1. Moreover, we see that {Cn} satisfies the AKTT-condition. Indeed,

sup
z∈B

‖Cn+1z − Cnz‖ = λ sup
z∈B

‖Tn+1z − Tnz‖,

which implies
∑∞

n=1 supz∈B ‖Cn+1z − Cnz‖ < +∞. On the other hand, we see that

‖xn+1 − Cn+1xn+1‖ ≤ βn‖xn − Cn+1xn+1‖+ (1− βn)‖Cnxn − Cn+1xn+1‖
≤ βn‖xn − Cnxn‖+ βn‖Cnxn − Cn+1xn‖

+ βn‖Cn+1xn − Cn+1xn+1‖+ (1− βn)‖Cnxn − Cn+1xn‖
+ (1− βn)‖Cn+1xn − Cn+1xn+1‖

≤ βn‖xn − Cnxn‖+ ‖Cnxn − Cn+1xn‖+ ‖xn+1 − xn‖
≤ ‖xn − Cnxn‖+ sup

z∈{xn}
‖Cnz − Cn+1z‖.

This implies that limn→∞ ‖xn − Cnxn‖ exists. Hence limn→∞ ‖xn − Tnxn‖ also exists.
From Proposition 3.1.1, we conclude that

lim
n→∞

‖xn − Tnxn‖ = 0.

Since

‖xn − Txn‖ ≤ ‖xn − Tnxn‖+ ‖Tnxn − Txn‖
≤ ‖xn − Tnxn‖+ sup

z∈{xn}
‖Tnz − Tz‖,

it follows from Lemma 2.4.15 that limn→∞ ‖xn − Txn‖ = 0. This completes the proof.

Theorem 3.2.2. Let C be a nonempty, closed and convex subset of a uniformly smooth
Banach space X that either is uniformly convex or satisfies Opial’s condition. Let
{Tn}∞n=1 : C → C be a family of λ-strict pseudocontractions for some 0 < λ < 1 such
that F :=

⋂∞
n=1 F (Tn) 6= ∅. Assume that Φ(t) ≤ 2t2, t ∈ [0,∞) where Φ is a function

appearing in (2.3.1). Let {αn} be a real sequence in (0, λ] which satisfies the conditions
(i)
∑∞

n=1 αn = +∞ and (ii)
∑∞

n=1 α2
n < +∞. Let {xn} be generated by (3.1.1). If(

{Tn}, T
)

satisfies the AKTT-condition, then {xn} converges weakly to a common fixed
point of {Tn}∞n=1.
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Proof. First, we assume that X is uniformly convex. Since X is uniformly smooth, X
has a Fréchet differentiable norm. Define the mapping Sn : C → C by

Snx = (1− αn)x + αnTnx, x ∈ C.

Then
⋂∞

n=1 F (Sn) = F = F (T ) and Sn is nonexpansive on G for all n ≥ 1. From
Proposition 3.1.1 (1), we know that {xn} is bounded. From Proposition 3.2.1, we also
know that limn→∞ ‖xn−Txn‖ = 0. The uniform convexity and the Opial’s condition of
E ensure that the sequence {xn} weakly converges to a common fixed point of {Tn}∞n=1.
This completes the proof.

As a direct consequence of Theorem 3.2.2, Lemma 2.4.18 and Lemma 2.4.19 we
also obtain the following result.

Corollary 3.2.3. Let C be a nonempty, closed and convex subset of a uniformly smooth
Banach space X that either is uniformly convex or satisfies Opial’s condition. Let
{Sk}∞k=1 be a sequence of λk-strict pseudocontractions of C into itself such that

⋂∞
k=1 F (Sk) 6=

∅ and inf{λk : k ∈ N} = λ > 0. Assume that Φ(t) ≤ 2t2, t ∈ [0,∞) where Φ is a func-
tion appearing in (2.3.1). Define the sequence {xn} by x1 ∈ C,

xn+1 = (1− αn)xn + αn

n∑
k=1

µk
nSkxn, n ≥ 1,

where {αn} ⊂ (0, λ] satisfying
∑∞

n=1 αn = +∞ and
∑∞

n=1 α2
n < +∞, and {µk

n} satisfies
conditions (1)-(3) in Lemma 2.4.19. Then {xn} converges weakly to a common fixed
point of {Sk}∞k=1.

Theorem 3.2.4. Let C be a nonempty, bounded, closed and convex subset of a uniformly
smooth Banach space X that either is uniformly convex or satisfies Opial’s condition.
Let {Tn}∞n=1 : C → C be a family of λ-strict pseudocontractions for some 0 < λ < 1 such
that F :=

⋂∞
n=1 F (Tn) 6= ∅. Assume that Φ(t) ≤ 2t2, t ∈ [0,∞) where Φ is a function

appearing in (2.3.1). Let {αn} be a real sequence in (0, λ] which satisfies
∑∞

n=1 αn(λ−
αn) = +∞. If

(
{Tn}, T

)
satisfies the AKTT-condition, then {xn} generated by (3.1.1)

converges weakly to a common fixed point of {Tn}∞n=1.

Proof. For each n ≥ 1, define Cnx = (1 − λ)x + λTnx. Since C is bounded, it follows
from Lemma 2.4.20 that Cn is nonexpansive and F (Cn) = F (Tn) for all n ≥ 1. For
given {αn} ⊂ (0, λ], we define

βn =
λ− αn

λ
.

Then (3.1.2) reduces to

xn+1 = βnxn + (1− βn)Cnxn, n ≥ 1. (3.2.1)

Let p ∈ F =
⋂∞

n=1 F (Tn). Then p ∈
⋂∞

n=1 Cn. Hence

‖xn+1 − p‖ ≤ βn‖xn − p‖+ (1− βn)‖Cnxn − p‖
≤ ‖xn − p‖,
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which implies that limn→∞ ‖xn − p‖ exists. On the other hand, we see that

‖xn+1 − p‖2 = ‖(xn − p) + αn(Tnxn − xn)‖2

≤ ‖xn − p‖2 + 2αn〈Tnxn − xn, j(xn − p)〉+ Φ(αn‖Tnxn − xn‖)
≤ ‖xn − p‖2 − 2λαn‖Tnxn − xn‖2 + 2α2

n‖Tnxn − xn‖2

= ‖xn − p‖2 − 2αn(λ− αn)‖Tnxn − xn‖2,

which yields

αn(λ− αn)‖Tnxn − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Since limn→∞ ‖xn − p‖ exists and
∑∞

n=1 αn(λ− αn) = +∞, it follows that

lim inf
n→∞

‖Tnxn − xn‖ = 0.

By using the same argument as in the proof of Proposition 3.1.2, we obtain that
limn→∞ ‖Tnxn − xn‖ exists and hence

lim
n→∞

‖Tnxn − xn‖ = 0.

Since {Tn} satisfies the AKTT-condition, we can verify that

lim
n→∞

‖Txn − xn‖ = 0.

Applying Lemma 2.4.5 and Lemma 2.4.13, we can prove that {xn} converges weakly to
a common fixed point of {Tn}∞n=1.

Remark 3.2.5. We give an affirmative answer raised by Zhou [122]. In fact, Theorems
3.2.2 and 3.2.4 mainly extend Theorem 2.1 of Zhou [122] (i) from q-uniformly smooth
Banach spaces to uniformly smooth Banach spaces, and (ii) from a strict pseudocon-
traction to a countable family of strict pseudocontractions.

We next prove a strong convergence theorem of Halpern-type iteration for a
countable family of strict pseudocontractions in the framework of uniformly smooth
Banach spaces.

Theorem 3.2.6. Let C be a nonempty, bounded, closed and convex subset of a uni-
formly smooth Banach space X. Let {Tn}∞n=1 : C → C be a family of λ-strict pseudo-
contractions for some 0 < λ < 1 such that F :=

⋂∞
n=1 F (Tn) 6= ∅. Assume that

Φ(t) ≤ 2t2, t ∈ [0,∞) where Φ is a function appearing in (2.3.1). Given u, x1 ∈ C
and sequences {αn}, {βn}, {γn} and {δn} in (0, 1), the following control conditions are
satisfied:

(a) a ≤ αn ≤ λ for some a > 0 and for all n ≥ 1;
(b) βn + γn + δn = 1 for all n ≥ 1;
(c) βn → 0 as n →∞,

∑∞
n=1 βn = +∞;

(d)
∑∞

n=1 |αn+1 − αn| < +∞;
(e) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Suppose that
(
{Tn}, T

)
satisfies the AKTT-condition. Then {xn} generated by

(3.1.2) converges strongly to a common fixed point z of {Tn}∞n=1, where z = QF u and
QF : C → F is the unique sunny nonexpansive retraction from C onto F .
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Proof. For each n ≥ 1, define Snx = (1 − αn)x + αnTnx, x ∈ C. From Lemma 2.4.20
and condition (a), we know that Sn is nonexpansive and F (Tn) = F (Sn) for all n ≥ 1.
Moreover, {Sn} satisfies the AKTT-condition. In fact, for any bounded subset B of C,

sup
z∈B

‖Sn+1z − Snz‖ = sup
z∈B

‖((1− αn+1)z + αn+1Tn+1z)− ((1− αn)z + αnTnz)‖

≤ |αn+1 − αn| sup
z∈B

‖z‖+ αn+1 sup
z∈B

‖Tn+1z − Tnz‖

+ |αn+1 − αn| sup
z∈B

‖Tnz‖

= |αn+1 − αn|
(
sup
z∈B

‖z‖+ sup
z∈B

‖Tnz‖
)

+ sup
z∈B

‖Tn+1z − Tnz‖.

From condition (d) and {Tn} satisfies the AKTT-condition, we get

∞∑
n=1

sup
z∈B

‖Sn+1z − Snz‖ < +∞. (3.2.2)

Next, we show that ‖xn+1 − xn‖ → 0 and ‖xn − Tnxn‖ → 0 as n → ∞. First, observe
that

‖yn+1 − yn‖ = ‖Sn+1xn+1 − Snxn‖
≤ ‖Sn+1xn+1 − Sn+1xn‖+ ‖Sn+1xn − Snxn‖
≤ ‖xn+1 − xn‖+ sup

z∈{xn}
‖Sn+1z − Snz‖. (3.2.3)

We now define ωn = xn+1−γnxn

1−γn
. From (3.1.2) we have

‖ωn+1 − ωn‖ =
∥∥∥βn+1u + δn+1yn+1

1− γn+1

− βnu + δnyn

1− γn

∥∥∥
≤

∣∣∣ βn+1

1− γn+1

− βn

1− γn

∣∣∣(‖u‖+ ‖yn‖) +
δn+1

1− γn+1

‖yn+1 − yn‖

≤ M
∣∣∣ βn+1

1− γn+1

− βn

1− γn

∣∣∣+ ‖yn+1 − yn‖, (3.2.4)

for some M > 0. Combining (3.2.3) and (3.2.4), we obtain

‖ωn+1 − ωn‖ ≤ M
∣∣∣ βn+1

1− γn+1

− βn

1− γn

∣∣∣+ ‖xn+1 − xn‖+ sup
z∈{xn}

‖Sn+1z − Snz‖.

It follows from conditions (c), (e) and (3.2.2) that

lim sup
n→∞

(
‖ωn+1 − ωn‖ − ‖xn+1 − xn‖

)
≤ 0.

From Lemma 2.4.7, we have ‖ωn−xn‖ → 0 and hence ‖xn+1−xn‖ = (1−γn)‖ωn−xn‖ →
0 as n → ∞. It follows from (3.1.2), (c) and (e) that ‖yn − xn‖ → 0. Note that
‖xn − Tnxn‖ = 1

αn
‖yn − xn‖. So from condition (a), we have

lim
n→∞

‖xn − Tnxn‖ = 0.

Since {Sn} satisfies the AKTT-condition, we can define S : C → C by Sx = limn→∞ Snx
for all x ∈ C. It is easy to see that S is nonexpansive and F (S) = F (T ) = F . We
observe that

‖xn − Snxn‖ = αn‖xn − Tnxn‖ → 0,
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as n →∞. It follows that

‖xn − Sxn‖ ≤ ‖xn − Snxn‖+ ‖Snxn − Sxn‖
≤ ‖xn − Snxn‖+ sup

z∈K
‖Snz − Sz‖ → 0,

as n →∞. For t ∈ (0, 1), we define a contraction as follows:

Stx = tu + (1− t)Sx.

Then there exists a unique path xt ∈ C such that

xt = tu + (1− t)Sxt.

From Lemma 2.4.11 we know that xt → z ∈ F (S) as t → 0. Further, if we define
QF (S)u = z, then QF (S) : C → F (S) is the unique sunny nonexpansive retraction
from C onto F (S). Since F (S) = F , we obtain that QF : C → F is the unique
sunny nonexpansive retraction from C onto F . Note that X is uniformly smooth, S is
nonexpansive and ‖xn − Sxn‖ → 0 as n →∞. So, by Lemma 2.4.12, we obtain

lim sup
n→∞

〈u−QF u, J(xn −QF u)〉 ≤ 0.

Finally, we show that xn → z = QF u as n →∞. From (3.1.2) we have

‖xn+1 − z‖2 = βn〈u− z, j(xn+1 − z)〉+ γn〈xn − z, j(xn+1 − z)〉
+ δn〈yn − z, j(xn+1 − z)〉

≤ βn〈u− z, j(xn+1 − z)〉+ γn‖xn − z‖‖xn+1 − z‖
+ δn‖yn − z‖‖xn+1 − z‖

≤ βn〈u− z, j(xn+1 − z)〉+ (1− βn)‖xn − z‖‖xn+1 − z‖

≤ βn〈u− z, j(xn+1 − z)〉+
1

2
(1− βn)‖xn − z‖2 +

1

2
‖xn+1 − z‖2.

This implies that

‖xn+1 − z‖2 ≤ (1− βn)‖xn − z‖2 + 2βn〈u− z, j(xn+1 − z)〉.

From Lemma 2.4.8, we conclude that xn → z as n →∞. This completes the proof.

As a direct consequence of Theorem 3.2.6, Lemma 2.4.18 and Lemma 2.4.19 we
obtain the following result.

Corollary 3.2.7. Let C be a nonempty, bounded, closed and convex subset of a uniformly
smooth Banach space X. Let {Sk}∞k=1 be a sequence of λk-strict pseudocontractions of
C into itself such that

⋂∞
k=1 F (Sk) 6= ∅ and inf{λk : k ∈ N} = λ > 0. Assume that

Φ(t) ≤ 2t2, t ∈ [0,∞) where Φ is a function appearing in (2.3.1). For a given u ∈ C.
Define the sequence {xn} by x1 ∈ C,{

yn = (1− αn)xn + αn

∑n
k=1 µk

nSkxn,
xn+1 = βnu + γnxn + δnyn, n ≥ 1,

where {αn}, {βn}, {γn} and {δn} are real sequences in (0, 1) which satisfy the conditions
(a)-(e) in Theorem 5.2.4 and {µk

n} are real sequences which satisfy the conditions (1)-(3)
in Lemma 2.4.19. Then {xn} converges strongly to a common fixed point of {Sk}∞k=1.
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Remark 3.2.8. We give an affirmative answer raised by Zhou [122]. In fact, Theorem
3.2.6 and Corollary 3.2.7 mainly extend Theorem 2.3 of Zhou [122] (i) from q-uniformly
smooth Banach spaces to uniformly smooth Banach spaces, and (ii) from a strict pseudo-
contraction to a countable family of strict pseudocontractions.

Remark 3.2.9. If λ = 1
2
, then for each n ≥ 1 we can choose αn = δn = 1

2
− 1

n+2
, βn = 1

n+2

and γn = 1
2
.


