
Chapter 4
Equilibrium Problems and Fixed Points of Some

Generalized Nonexpansive Mappings

In this chapter, we study strong convergence of the sequences generated by the
proposed algorithms for solving fixed point problems of nonexpansive mappings, quasi-
nonexpansive mappings and strict pseudocontractions, and equilibrium problems. The
obtained results improve and extend those announced by many authors.

4.1 A New Hybrid Algorithm for Variational Inclusions,

Mixed Equilibrium Problems and a Finite Family of

Quasi-nonexpansive Mappings

Let C be a nonempty, closed and convex subset of a Hilbert space H. Let
f : C × C → R be a bifunction, and let ϕ : C → R ∪ {+∞} be real-valued function.
For solving the equilibrium problem, let us give the following assumptions for f, ϕ and
the set C:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each y ∈ C, x 7→ f(x, y) is weakly upper semi-continuous;
(A4) for each x ∈ C, y 7→ f(x, y) is convex;
(A5) for each x ∈ C, y 7→ f(x, y) is lower semi-continuous;
(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊆ C and

yx ∈ C ∩ domϕ such that for any z ∈ C \Dx,

f(z, yx) + ϕ(yx) +
1

r
〈yx − z, z − x〉 < ϕ(z);

(B2) C is a bounded set.

Proposition 4.1.1. [25] Let C be a nonempty, closed and convex subset of a Hilbert H.
Let f be a bifunction from C×C to R satisfying (A1)-(A5) and let ϕ : H → R∪{+∞}
be a proper, lower semi-continuous and convex function such that C ∩ domϕ 6= ∅. For
r > 0 and x ∈ H, define a mapping Sr : H → C as follows:

Sr(x) =
{

z ∈ C : f(z, y) + ϕ(y) +
1

r
〈y − z, z − x〉 ≥ ϕ(z), ∀y ∈ C

}
.

Assume that either (B1) or (B2) holds. Then, the following conclusions hold:

(1) for each x ∈ H, Sr(x) 6= ∅;
(2) Sr is single-valued;
(3) Sr is firmly nonexpansive, that is, for any x, y ∈ H,

‖Sr(x)− Sr(y)‖2 ≤ 〈Sr(x)− Sr(y), x− y〉;
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(4) F (Sr) = MEP (f, ϕ);
(5) MEP (f, ϕ) is closed and convex.

Theorem 4.1.2. Let C be a nonempty, closed and convex subset of a Hilbert space H,
f : C×C → R a bifunction satisfying (A1)− (A5), ϕ : C → R∪{+∞} a proper, lower
semi-continuous and convex function, A : H → H an α-inverse strongly monotone
mapping, M : H → 2H a maximal monotone mapping, and {Ti}N

i=1 a finite family of
quasi-nonexpansive and Li-Lipschitz mappings on C. Assume that Ω :=

⋂N
i=1 F (Ti) ∩

MEP (f, ϕ) ∩ I(A, M) 6= ∅ and either (B1) or (B2) holds. Let Wn be the W -mapping
generated by T1, T2, · · · , TN and βn,1, βn,2, · · · , βn,N . For x0 ∈ H with C1 = C and
x1 = PC1x0, let {xn}, {yn}, {zn} and {un} be defined by

f(un, y) + ϕ(y)− ϕ(un) + 1
rn

〈
y − un, un − xn

〉
≥ 0, ∀y ∈ C,

yn = αnxn + (1− αn)Wnun,
zn = JM,λn(yn − λnAyn),
Cn+1 =

{
z ∈ Cn : ‖zn − z‖ ≤ ‖yn − z‖ ≤ ‖xn − z‖

}
,

xn+1 = PCn+1x0, ∀n ∈ N,

where {αn} ⊂ [0, a] for some a ∈ [0, 1), {rn} ⊂ [b,∞) for some b ∈ (0,∞) and
{λn} ⊂ [c, d] for some c, d ∈ (0, 2α).

Then {xn}, {yn}, {zn} and {un} converge strongly to z0 = PΩx0.

Proof. Since 0 < c ≤ λn ≤ d < 2α for all n ∈ N, JM,λn(I − λnA) is nonexpan-
sive for all n ∈ N. Hence

⋂∞
n=1 F

(
JM,λn(I − λnA)

)
= I(A, M) is closed and convex.

From Proposition 4.1.1 (5), we know that MEP (f, ϕ) is closed and convex. From
Lemma 2.4.22, we also know that F :=

⋂N
i=1 F (Ti) is closed and convex. Hence

Ω :=
⋂N

i=1 F (Ti) ∩MEP (f, ϕ) ∩ I(A, M) is a nonempty, closed and convex set.

Next, we divide the proof into seven steps.

Step 1. Show that Ω ⊂ Cn for all n ∈ N.
First observe that Cn is closed and convex for all n ∈ N. Let p ∈ Ω. Since un = Srnxn

and p = JM,λn(p− λnAp) for all n ∈ N,

‖zn − p‖ = ‖JM,λn(yn − λnAyn)− JM,λn(p− λnAp)‖
≤ ‖yn − p‖
≤ αn‖xn − p‖+ (1− αn)‖Wnun − p‖
≤ αn‖xn − p‖+ (1− αn)‖un − p‖
= αn‖xn − p‖+ (1− αn)‖Srnxn − Srnp‖
≤ ‖xn − p‖.

It follows that p ∈ Cn+1 and hence Ω ⊂ Cn for all n ∈ N.

Step 2. Show that limn→∞ ‖xn − x0‖ exists.
Since Ω is a nonempty, closed and convex subset of C, there exists a unique element

z0 = PΩx0 ∈ Ω ⊂ Cn. Since xn = PCnx0,

‖xn − x0‖ ≤ ‖z0 − x0‖. (4.1.1)

Hence {‖xn − x0‖} is bounded. So are {yn}, {zn} and {un}.
Noting xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖. (4.1.2)
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Combining (4.1.1) and (4.1.2), limn→∞ ‖xn − x0‖ exists.

Step 3. Show that {xn} is a Cauchy sequence.
By construction of the set Cn, we know that xm = PCmx0 ∈ Cm ⊂ Cn for m > n.

From Lemma 2.2.51, it follows that

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2 → 0, (4.1.3)

as m, n → ∞. Hence {xn} is a Cauchy sequence. By the completeness of H and the
closedness of C, we can assume that xn → q ∈ C.

Step 4. Show that q ∈ F .
From (4.1.3), we get

‖xn+1 − xn‖ → 0,

as n →∞. Since xn+1 ∈ Cn+1 ⊂ Cn,

‖zn − xn‖ ≤ ‖zn − xn+1‖+ ‖xn+1 − xn‖ ≤ 2‖xn+1 − xn‖ → 0, (4.1.4)

as n →∞. Hence zn → q as n →∞. By the nonexpansiveness of JM,λn and the inverse
strongly monotonicity of A, we obtain

‖zn − p‖2 ≤ ‖yn − λnAyn − (p− λnAp)‖2

≤ ‖yn − p‖2 + λn(λn − 2α)‖Ayn − Ap‖2

≤ ‖xn − p‖2 + c(d− 2α)‖Ayn − Ap‖2.

This implies

c(2α− d)‖Ayn − Ap‖2 ≤ ‖xn − p‖2 − ‖zn − p‖2

≤ ‖xn − zn‖
(
‖xn − p‖+ ‖zn − p‖

)
.

It follows from (4.1.4) that

lim
n→∞

‖Ayn − Ap‖ = 0. (4.1.5)

Noting JM,λn is 1-inverse strongly monotone, we obtain

‖zn − p‖2 = ‖JM,λn(yn − λnAyn)− JM,λn(p− λnAp)‖2

≤
〈
(yn − λnAyn)− (p− λnAp), zn − p

〉
=

1

2

(
‖(yn − λnAyn)− (p− λnAp)‖2 + ‖zn − p‖2

− ‖(yn − λnAyn)− (p− λnAp)− (zn − p)‖2
)

≤ 1

2

(
‖yn − p‖2 + ‖zn − p‖2 − ‖(yn − zn)− λn(Ayn − Ap)‖2

)
≤ 1

2

(
‖xn − p‖2 + ‖zn − p‖2 − ‖yn − zn‖2

+ 2λn〈yn − zn, Ayn − Ap〉
)

≤ 1

2

(
‖xn − p‖2 + ‖zn − p‖2 − ‖yn − zn‖2

+ 2λn‖yn − zn‖‖Ayn − Ap‖
)
.
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This implies

‖zn − p‖2 ≤ ‖xn − p‖2 − ‖yn − zn‖2 + 2λn‖yn − zn‖‖Ayn − Ap‖.

It follows that

‖yn − zn‖2 ≤ ‖xn − zn‖
(
‖xn − p‖+ ‖zn − p‖

)
+ 2d‖yn − zn‖‖Ayn − Ap‖.

From (4.1.4) and (4.1.5) we get

lim
n→∞

‖yn − zn‖ = 0. (4.1.6)

It follows from (4.1.4) and (4.1.6) that

‖Wnun − xn‖ =
1

1− αn

‖yn − xn‖ → 0, (4.1.7)

as n →∞. Since Srn is firmly nonexpansive and un = Srnxn, we have

‖un − p‖2 = ‖Srnxn − Srnp‖2

≤ 〈Srnxn − Srnp, xn − p〉
= 〈un − p, xn − p〉

=
1

2

(
‖un − p‖2 + ‖xn − p‖2 − ‖xn − un‖2

)
,

which implies

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2. (4.1.8)

It follows from (4.1.8) that

‖yn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖Wnun − p‖2

≤ αn‖xn − p‖2 + (1− αn)‖un − p‖2

≤ αn‖xn − p‖2 + (1− αn)
(
‖xn − p‖2 − ‖xn − un‖2

)
= ‖xn − p‖2 − (1− αn)‖xn − un‖2,

which yields

(1− a)‖xn − un‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2.

Hence from (4.1.4) and (4.1.6), we also have

lim
n→∞

‖xn − un‖ = 0. (4.1.9)

From (4.1.7) and (4.1.9) we get

lim
n→∞

‖un −Wnun‖ = 0.

From Lemma 2.4.24 we obtain limn→∞ ‖un −Wun‖ = 0. From Lemma 2.4.23 (2), we
know that W is Lipschitz. Since un → q as n →∞, q ∈ F (W ). Moreover, from Lemma
2.4.23 (1), we can conclude that q ∈ F :=

⋂N
i=1 F (Ti).

Step 5. Show that q ∈ MEP (f, ϕ).
Noting un = Srnxn, we have

f(un, y) + ϕ(y) +
1

rn

〈y − un, un − xn〉 ≥ ϕ(un), ∀y ∈ C.
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From (A2), we obtain

ϕ(y) +
1

rn

〈y − un, un − xn〉 ≥ f(y, un) + ϕ(un), ∀y ∈ C.

It follows from (A5) and the weakly lower semi-continuity of ϕ, ‖xn− un‖/rn → 0, and
un → q that

f(y, q) + ϕ(q) ≤ ϕ(y), ∀y ∈ C.

Put yt = ty + (1− t)q for each t ∈ (0, 1] and y ∈ C ∩ domϕ. Since y ∈ C ∩ domϕ and
q ∈ C ∩ domϕ, we obtain yt ∈ C ∩ domϕ. Hence f(yt, q) + ϕ(q) ≤ ϕ(yt). By (A1), (A4)
and the convexity of ϕ, we have

0 = f(yt, yt) + ϕ(yt)− ϕ(yt)

≤ tf(yt, y) + (1− t)f(yt, q) + tϕ(y) + (1− t)ϕ(q)− ϕ(yt)

≤ t[f(yt, y) + ϕ(y)− ϕ(yt)].

Hence

f(yt, y) + ϕ(y)− ϕ(yt) ≥ 0.

By letting t → 0, it follows from (A3) and the weakly semi-continuity of ϕ that

f(q, y) + ϕ(y) ≥ ϕ(q)

for all y ∈ C ∩ domϕ. Observe that if y ∈ C \ domϕ, then f(q, y) + ϕ(y) ≥ ϕ(q) holds.
Hence q ∈ MEP (f, ϕ).

Step 6. Show that q ∈ I(A, M).
First observe that A is an (1/α)-Lipschitz monotone mapping and D(A) = H. From

Lemma 2.4.10, we know that M +A is maximal monotone. Let (v, g) ∈ G(M +A), that
is, g−Av ∈ M(v). Since zn = JM,λn(yn−λnAyn), we get yn−λnAyn ∈ (I + λnM)(zn),
that is,

1

λn

(yn − zn − λnAyn) ∈ M(zn).

By the maximal monotonicity of M + A, we have〈
v − zn, g − Av − 1

λn

(yn − zn − λnAyn)
〉
≥ 0,

and hence

〈v − zn, g〉 ≥
〈
v − zn, Av +

1

λn

(yn − zn − λnAyn)
〉

=
〈
v − zn, Av − Azn + Azn − Ayn +

1

λn

(yn − zn)
〉

≥ 0 +
〈
v − zn, Azn − Ayn

〉
+
〈
v − zn,

1

λn

(yn − zn)
〉
.

It follows from ‖yn − zn‖ → 0, ‖Ayn − Azn‖ → 0 and zn → q that

lim
n→∞

〈v − zn, g〉 = 〈v − q, g〉 ≥ 0.
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By the maximal monotonicity of M + A, we have θ ∈ (M + A)(q); consequently,
q ∈ I(A, M).

Step 7. Show that q = z0 = PΩx0.
Since xn = PCnx0 and Ω ⊂ Cn, we obtain〈

x0 − xn, xn − p
〉
≥ 0 ∀p ∈ Ω. (4.1.10)

By taking the limit in (4.1.10), we obtain〈
x0 − q, q − p

〉
≥ 0 ∀p ∈ Ω.

This shows that q = PΩx0 = z0.
From Step 1 to Step 7, we can conclude that {xn}, {yn}, {zn} and {un} converge

strongly to z0 = PΩx0. This completes the proof.

As a direct consequence of Theorem 4.1.2, we obtain new results in a Hilbert
space as follows:

Corollary 4.1.3. Let C be a nonempty, closed and convex subset of a Hilbert space
H, f : C × C → R a bifunction satisfying (A1)− (A5), ϕ : C → R ∪ {+∞} a
proper, lower semi-continuous and convex function, A : C → H an α-inverse strongly
monotone mapping, and {Ti}N

i=1 a finite family of quasi-nonexpansive and Li-Lipschitz
mappings on C. Assume that Ω :=

⋂N
i=1 F (Ti) ∩ MEP (f, ϕ) ∩ V I(A, C) 6= ∅ and

either (B1) or (B2) holds. Let Wn be the W -mapping generated by T1, T2, · · · , TN and
βn,1, βn,2, · · · , βn,N . For an initial point x0 ∈ H with C1 = C and x1 = PC1x0, let
{xn}, {yn}, {zn} and {un} be defined by

f(un, y) + ϕ(y)− ϕ(un) + 1
rn

〈
y − un, un − xn

〉
≥ 0, ∀y ∈ C,

yn = αnxn + (1− αn)Wnun,
zn = PC(yn − λnAyn),
Cn+1 =

{
z ∈ Cn : ‖zn − z‖ ≤ ‖yn − z‖ ≤ ‖xn − z‖

}
,

xn+1 = PCn+1x0, ∀n ∈ N,

where {αn} ⊂ [0, a] for some a ∈ [0, 1), {rn} ⊂ [b,∞) for some b ∈ (0,∞) and
{λn} ⊂ [c, d] for some c, d ∈ (0, 2α).

Then {xn}, {yn}, {zn} and {un} converge strongly to z0 = PΩx0.

Proof. In Theorem 4.1.2, take M = ∂δC : H → 2H , where δC : H → [0,∞] is the
indicator function of C. It is well-known that the subdifferential ∂δC is a maximal
monotone operator. Then the resolvent operator JM,λn = PC for all n ∈ N.

Corollary 4.1.4. Let C be a nonempty, closed and convex subset of a Hilbert space
H, f : C × C → R a bifunction satisfying (A1)− (A5), A : H → H an α-inverse
strongly monotone mapping, M : H → 2H a maximal monotone mapping and {Ti}N

i=1

a finite family of quasi-nonexpansive and Li-Lipschitz mappings on C. Assume that
Ω :=

⋂N
i=1 F (Ti) ∩ EP (f) ∩ I(A, M) 6= ∅ and either (B1) or (B3) holds. Let Wn be

the W -mapping generated by T1, T2, · · · , TN and βn,1, βn,2, · · · , βn,N . For x0 ∈ H with
C1 = C and x1 = PC1x0, let {xn}, {yn}, {zn} and {un} be defined by

F (un, y) + 1
rn

〈
y − un, un − xn

〉
≥ 0, ∀y ∈ C,

yn = αnxn + (1− αn)Wnun,
zn = JM,λn(yn − λnAyn),
Cn+1 =

{
z ∈ Cn : ‖zn − z‖ ≤ ‖yn − z‖ ≤ ‖xn − z‖

}
,

xn+1 = PCn+1x0, ∀n ∈ N,
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where {αn} ⊂ [0, a] for some a ∈ [0, 1), {rn} ⊂ [b,∞) for some b ∈ (0,∞) and
{λn} ⊂ [c, d] for some c, d ∈ (0, 2α).

Then {xn}, {yn}, {zn} and {un} converge strongly to z0 = PΩx0.

Remark 4.1.5. Theorem 4.1.2 mainly improves and extends the main results obtained
in [71, 99, 104].

4.2 Convergence Analysis for a System of Generalized Equi-

librium Problems and a Countable Family of Strict

Pseudocontractions

In this section, we study strong convergence of a system of generalized equilib-
rium problems and a countable family of strict pseudocontractions in Hilbert spaces.

Let C be a nonempty, closed and convex subset of a Hilbert space H. Let
S : C → C be a nonexpansive mapping. Let {fk}M

k=1 : C × C → R be a family
of bifunctions, let {Ak}M

k=1 : C → H be a family of αk-inverse-strongly monotone
mappings and let rk ∈ (0, 2αk). For each k ∈ {1, 2, · · · , M}, we denote the mapping
T fk,Ak

rk
: C → C by

T fk,Ak
rk

:= T fk
rk

(I − rkAk) (4.2.1)

where T fk
rk

is the mapping defined as in Lemma 2.4.35. For each t ∈ (0, 1), we define
the mapping St : C → C as follows:

Stx = ST fM ,AM
rM

T fM−1,AM−1
rM−1

· · ·T f1,A1
r1

PC [(1− t)x], ∀x ∈ C.

We see that T fk
rk

and I − rkAk are nonexpansive for each k ∈ {1, 2, · · · , M}. So the
mapping T fk,Ak

rk
is also nonexpansive for each k ∈ {1, 2, · · · , M}. This implies that St is

a contraction. Then the Banach contraction principle ensures that there exists a unique
fixed point xt of St in C, that is,

xt = ST fM ,AM
rM

T fM−1,AM−1
rM−1

· · ·T f1,A1
r1

PC [(1− t)xt], t ∈ (0, 1). (4.2.2)

Proposition 4.2.1. Let C be a nonempty, closed and convex subset of a Hilbert space H.
Let S : C → C be a nonexpansive mapping. Let {fk}M

k=1 : C × C → R be a family of
bifunctions, let {Ak}M

k=1 : C → H be a family of αk-inverse strongly monotone mappings
and let rk ∈ (0, 2αk). For each k ∈ {1, 2, · · · , M}, let the mapping T fk,Ak

rk
be defined by

(4.2.1). Assume that F :=
(⋂M

k=1 GEP (fk, Ak)
)
∩ F (S) 6= ∅. For each t ∈ (0, 1), let

the net {xt} be generated by (4.2.2). Then, as t → 0, the net {xt} converges strongly to
an element in F .

Proof. First, we show that {xt} is bounded. For each t ∈ (0, 1), let yt = PC [(1 − t)xt]

and ut = T fM ,AM
rM

T
fM−1,AM−1
rM−1 · · ·T f1,A1

r1
yt. From (4.2.2) we have for each p ∈ F that

‖xt − p‖ = ‖Sut − Sp‖ ≤ ‖ut − p‖ ≤ ‖yt − p‖ ≤ (1− t)‖xt − p‖+ t‖p‖.

It follows that

‖xt − p‖ ≤ ‖p‖.
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Hence {xt} is bounded and so are {yt} and {ut}. Observe that

‖yt − xt‖ ≤ t‖xt‖ → 0, (4.2.3)

as t → 0 since {xt} is bounded.

Next, we show that ‖ut−xt‖ → 0 as t → 0. Denote Θk = T fk,Ak
rk

T
fk−1,Ak−1
rk−1 · · ·T f1,A1

r1

for any k ∈ {1, 2, · · · , M} and Θ0 = I. We note that ut = ΘMyt for each t ∈ (0, 1). For
each k ∈ {1, 2, · · · , M} and p ∈ F , we see that

‖Θkyt − p‖2 = ‖T fk,Ak
rk

Θk−1yt − T fk,Ak
rk

Θk−1p‖2

= ‖T fk
rk

(Θk−1yt − rkAkΘ
k−1yt)− T fk

rk
(Θk−1p− rkAkΘ

k−1p)‖2

≤ ‖(Θk−1yt − rkAkΘ
k−1yt)− (Θk−1p− rkAkΘ

k−1p)‖2

≤ ‖Θk−1yt − p‖2 + rk(rk − 2αk)‖AkΘ
k−1yt − Akp‖2.

It follows that

‖ut − p‖2 = ‖ΘMyt − p‖2

≤ ‖yt − p‖2 +
M∑
i=1

ri(ri − 2αi)‖AiΘ
i−1yt − Aip‖2

= ‖PC [(1− t)xt]− p‖2 +
M∑
i=1

ri(ri − 2αi)‖AiΘ
i−1yt − Aip‖2

≤
(
‖xt − p‖+ t‖xt‖

)2
+

M∑
i=1

ri(ri − 2αi)‖AiΘ
i−1yt − Aip‖2

≤ ‖xt − p‖2 + tM1 +
M∑
i=1

ri(ri − 2αi)‖AiΘ
i−1yt − Aip‖2 (4.2.4)

where M1 = sup0<t<1{2‖xt − p‖‖xt‖+ t‖xt‖2}. So we have

‖xt − p‖2 ≤ ‖ut − p‖2

≤ ‖xt − p‖2 + tM1 +
M∑
i=1

ri(ri − 2αi)‖AiΘ
i−1yt − Aip‖2,

which implies

lim
t→0

‖AkΘ
k−1yt − Akp‖ = 0 (4.2.5)

for each k ∈ {1, 2, · · · , M}. Since T fk
rk

is firmly nonexpansive for each k ∈ {1, 2, · · · , M},
we have for each p ∈ F and k ∈ {1, 2, · · · , M} that

‖Θkyt − p‖2 = ‖T fk,Ak
rk

Θk−1yt − T fk,Ak
rk

Θk−1p‖2

= ‖T fk
rk

(Θk−1yt − rkAkΘ
k−1yt)− T fk

rk
(Θk−1p− rkAkΘ

k−1p)‖2

≤
〈
Θk−1yt − rkAkΘ

k−1yt − (p− rkAkp), Θkyt − p
〉

=
1

2

(
‖Θk−1yt − rkAkΘ

k−1yt − (p− rkAkp)‖2 + ‖Θkyt − p‖2

− ‖Θk−1yt − rkAkΘ
k−1yt − (p− rkAkp)− (Θkyt − p)‖2

)
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≤ 1

2

(
‖Θk−1yt − p‖2 + ‖Θkyt − p‖2

− ‖Θk−1yt −Θkyt − rk(AkΘ
k−1yt − Akp)‖2

)
≤ 1

2

(
‖Θk−1yt − p‖2 + ‖Θkyt − p‖2 − ‖Θk−1yt −Θkyt‖2

+ 2rk‖Θk−1yt −Θkyt‖‖AkΘ
k−1yt − Akp‖

)
.

This implies

‖Θkyt − p‖2 ≤ ‖Θk−1yt − p‖2 − ‖Θk−1yt −Θkyt‖2

+ 2rk‖Θk−1yt −Θkyt‖‖AkΘ
k−1yt − Akp‖

≤ ‖Θk−1yt − p‖2 − ‖Θk−1yt −Θkyt‖2 + M2‖AkΘ
k−1yt − Akp‖,

where M2 = max1≤k≤M sup0<t<1

{
2rk‖Θk−1yt −Θkyt‖

}
. This shows that

‖ut − p‖2 = ‖ΘMyt − p‖2

≤ ‖yt − p‖2 −
M∑
i=1

‖Θi−1yt −Θiyt‖2 + M2

M∑
i=1

‖AiΘ
i−1yt − Aip‖

≤ ‖xt − p‖2 + tM1 −
M∑
i=1

‖Θi−1yt −Θiyt‖2 + M2

M∑
i=1

‖AiΘ
i−1yt − Aip‖.

Hence

‖xt − p‖2 ≤ ‖ut − p‖2

≤ ‖xt − p‖2 + tM1 −
M∑
i=1

‖Θi−1yt −Θiyt‖2 + M2

M∑
i=1

‖AiΘ
i−1yt − Aip‖.

From (4.2.5) we obtain

M∑
i=1

‖Θi−1yt −Θiyt‖ → 0,

as t → 0. So we can conclude that

lim
t→0

‖Θk−1yt −Θkyt‖ = 0 (4.2.6)

for each k ∈ {1, 2, · · · , M}. Observing

‖un − yt‖ = ‖ΘMyt − yt‖
≤ ‖ΘMyt −ΘM−1yt‖+ ‖ΘM−1yt −ΘM−2yt‖+ · · ·+ ‖Θ1yt − yt‖,

it follows by (4.2.6) that

lim
t→0

‖ut − yt‖ = 0. (4.2.7)

From (4.2.3) and (4.2.7) we have

lim
t→0

‖ut − xt‖ = 0. (4.2.8)
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Hence

‖xt − Sxt‖ = ‖Sut − Sxt‖ ≤ ‖ut − xt‖ → 0, (4.2.9)

as t → 0.
We next show that {xt} is relatively norm compact as t → 0. Let {tn} ⊂ (0, 1)

be a sequence such that tn → 0 as n →∞. Put xn := xtn . From (4.2.9) we obtain

lim
n→∞

‖xn − Sxn‖ = 0. (4.2.10)

Since {xn} is bounded, without loss of generality, we may assume that {xn} converges
weakly to x∗ ∈ C. Applying Lemma 2.4.3 to (4.2.10), we can conclude that x∗ ∈ F (S).

Next, we show that x∗ ∈
⋂M

k=1 GEP (fk, Ak). Note that Θkyn = T fk,Ak
rk

Θk−1yn =
T fk

rk
(Θk−1yn − rkAkΘ

k−1yn) for each k ∈ {1, 2, · · · , M}. Hence, for each y ∈ C and
k ∈ {1, 2, · · · , M}, we obtain

fk(Θ
kyn, y) +

1

rk

〈
y −Θkyn, Θ

kyn − (Θk−1yn − rkAkΘ
k−1yn)

〉
≥ 0.

From (A2) we have

1

rk

〈
y −Θkyn, Θ

kyn − (Θk−1yn − rkAkΘ
k−1yn)

〉
≥ fk(y, Θkyn), ∀y ∈ C.

Therefore〈
y −Θkynj

,
Θkynj

−Θk−1ynj

rk

+ AkΘ
k−1ynj

〉
≥ fk(y, Θkynj

), ∀y ∈ C. (4.2.11)

For each t ∈ (0, 1) and y ∈ C, put zt = ty + (1 − t)x∗. Then we have zt ∈ C. From
(4.2.11) we get〈

zt −Θkynj
, Akzt

〉
≥

〈
zt −Θkynj

, Akzt

〉
−
〈
zt −Θkynj

,
Θkynj

−Θk−1ynj

rk

+ AkΘ
k−1ynj

〉
+ fk(zt, Θ

kynj
)

=
〈
zt −Θkynj

, Akzt − AkΘ
kynj

〉
(4.2.12)

+
〈
zt −Θkynj

, AkΘ
kynj

− AkΘ
k−1ynj

〉
−
〈
zt −Θkynj

,
Θkynj

−Θk−1ynj

rk

〉
+ fk(zt, Θ

kynj
).

We note that ‖AkΘ
kynj

− AkΘ
k−1ynj

‖ ≤ 1
αk
‖Θkynj

− Θk−1ynj
‖ → 0, Θkynj

⇀ x∗ as

j →∞, and {Ak}M
k=1 is a family of monotone mappings. It follows from (4.2.12) that

〈zt − x∗, Akzt〉 ≥ fk(zt, x
∗). (4.2.13)

So by (A1), (A4) and (4.2.13), we have for each y ∈ C and k ∈ {1, 2, · · · , M} that

0 = fk(zt, zt) ≤ tfk(zt, y) + (1− t)fk(zt, x
∗)

≤ tfk(zt, y) + (1− t)〈zt − x∗, Akzt〉
= tfk(zt, y) + t(1− t)〈y − x∗, Akzt〉.
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This implies that

fk(zt, y) + (1− t)〈y − x∗, Akzt〉 ≥ 0, ∀y ∈ C. (4.2.14)

Letting t → 0 in (4.2.14), it follows from (A3) that

fk(x
∗, y) + 〈y − x∗, Akx

∗〉 ≥ 0, ∀y ∈ C.

Hence x∗ ∈
⋂M

k=1 GEP (fk, Ak); consequently, x∗ ∈ F . Further, we see that

‖xt − x∗‖2 = ‖Sut − x∗‖2

≤ ‖ut − x∗‖2

≤ ‖yt − x∗‖2

≤ ‖xt − x∗ − txt‖2

= ‖xt − x∗‖2 − 2t〈xt, xt − x∗〉+ t2‖xt‖2

= ‖xt − x∗‖2 − 2t〈xt − x∗, xt − x∗〉 − 2t〈x∗, xt − x∗〉+ t2‖xt‖2.

So we have

‖xt − x∗‖2 ≤ 〈x∗, x∗ − xt〉+
t

2
‖xt‖2.

In particular,

‖xn − x∗‖2 ≤ 〈x∗, x∗ − xn〉+
tn
2
‖xn‖2.

Since xn ⇀ x∗, xn → x∗ as n → ∞. By using the same argument as in the proof of
Theorem 3.1 in [115], we can show that xt → x∗ ∈ F as t → 0. This completes the
proof.

Now we prove our main theorem.

Theorem 4.2.2. Let C be a nonempty, closed and convex subset of a Hilbert space H.
Let {fk}M

k=1 : C×C → R be a family of bifunctions, let {Ak}M
k=1 : C → H be a family of

αk-inverse strongly monotone mappings and let {Tn}∞n=1 : C → C be a countable family
of κ-strict pseudocontractions for some 0 < κ < 1 such that F :=

(⋂M
k=1 GEP (fk, Ak)

)
∩(⋂∞

n=1 F (Tn)
)
6= ∅. Assume that {αn}∞n=1 ⊂ (0, 1), {βn}∞n=1 ⊂ (0, 1), γ ∈ (κ, 1) and

rk ∈ (0, 2αk) for each k ∈ {1, 2, · · · , M} satisfy the following conditions:

(1) limn→∞ αn = 0 and
∑∞

n=1 αn = +∞;

(2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Suppose that
(
{Tn}, T

)
satisfies the AKTT-condition. Let {xn} be generated by x1 ∈ C,

yn = PC

[
(1− αn)xn

]
,

un = T fM ,AM
rM

T fM−1,AM−1
rM−1

· · ·T f2,A2
r2

T f1,A1
r1

yn,

xn+1 = βnxn + (1− βn)
[
γun + (1− γ)Tnun

]
, n ≥ 1.

Then {xn} converges strongly to an element in F .



63

Proof. For each n ∈ N, define Sn : C → C by Snx = γx + (1 − γ)Tnx, x ∈ C.
Then F (Sn) = F (Tn) = F (T ) since γ ∈ (0, 1). Moreover, we know that {Sn} satisfies
the AKTT-condition since {Tn} satisfies the AKTT-condition. From Lemma 2.4.15,
we can define the mapping S : C → C by Sx = limn→∞ Snx for x ∈ C. Hence
Sx = γx + (1− γ)Tx, x ∈ C since Tnx → Tx for x ∈ C. Further, we know that Sn is
nonexpansive for each n ∈ N. Indeed, for each x, y ∈ C and n ∈ N, we have

‖Snx− Sny‖2 = ‖γx + (1− γ)Tnx− γy − (1− γ)Tny‖2

= ‖γ(x− y) + (1− γ)(Tnx− Tny)‖2

= γ‖x− y‖2 + (1− γ)‖Tnx− Tny‖2

− γ(1− γ)‖(I − Tn)x− (I − Tn)y‖2

≤ γ‖x− y‖2 + (1− γ)‖x− y‖2 + (1− γ)κ‖(I − Tn)x− (I − Tn)y‖2

− γ(1− γ)‖(I − Tn)x− (I − Tn)y‖2

= ‖x− y‖2 + (1− γ)(κ− γ)‖(I − Tn)x− (I − Tn)y‖2

≤ ‖x− y‖2.

Hence Sn is nonexpansive for each n ∈ N and so is S.
Next, we show that {xn} is bounded. Denote Θk = T fk,Ak

rk
T

fk−1,Ak−1
rk−1 · · ·T f1,A1

r1

for any k ∈ {1, 2, · · · , M} and Θ0 = I. We note that un = ΘMyn. Then for each p ∈ F ,

‖xn+1 − p‖ = ‖βnxn + (1− βn)Snun‖
≤ βn‖xn − p‖+ (1− βn)‖Snun − p‖
≤ βn‖xn − p‖+ (1− βn)‖un − p‖
= βn‖xn − p‖+ (1− βn)‖ΘMyn − p‖
≤ βn‖xn − p‖+ (1− βn)‖yn − p‖
≤ βn‖xn − p‖+ (1− βn)

[
(1− αn)‖xn − p‖+ αn‖p‖

]
=

(
1− αn(1− βn)

)
‖xn − p‖+ αn(1− βn)‖p‖

≤ max{‖xn − p‖, ‖p‖}.

Hence, by induction, {xn} is bounded and so are {yn} and {un}.
Next, we show that

lim
n→∞

‖xn+1 − xn‖ = 0.

Since un = ΘMyn and un+1 = ΘMyn+1,

‖un+1 − un‖ = ‖ΘMyn+1 −ΘMyn‖
≤ ‖yn+1 − yn‖. (4.2.15)

Set zn = Snun, n ∈ N. From (4.2.15) we have

‖zn+1 − zn‖ = ‖Sn+1un+1 − Snun‖
≤ ‖Sn+1un+1 − Sn+1un‖+ ‖Sn+1un − Snun‖
≤ ‖un+1 − un‖+ ‖Sn+1un − Snun‖
≤ ‖yn+1 − yn‖+ ‖Sn+1un − Snun‖
≤ ‖(1− αn+1)xn+1 − (1− αn)xn‖+ sup

z∈{un}
‖Sn+1z − Snz‖

≤ ‖xn+1 − xn‖+ αn+1‖xn+1‖+ αn‖xn‖+ sup
z∈{un}

‖Sn+1z − Snz‖.
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Since {Sn} satisfies the AKTT-condition and limn→∞ αn = 0, it follows that

lim sup
n→∞

(
‖zn+1 − zn‖ − ‖xn+1 − xn‖

)
≤ 0.

So from Lemma 2.4.7 we obtain

lim
n→∞

‖zn − xn‖ = 0. (4.2.16)

Hence

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0. (4.2.17)

Observe that

‖yn − xn‖ = ‖PC [(1− αn)xn]− PCxn‖ ≤ αn‖xn‖ → 0, (4.2.18)

as n →∞. Similar to the proof of Proposition 4.2.1, for each p ∈ F , we have

‖un − p‖2 ≤ ‖xn − p‖2 + αnM
′
1 +

M∑
i=1

ri(ri − 2αi)‖AiΘ
i−1yn − Aip‖2 (4.2.19)

and

‖un − p‖2 ≤ ‖xn − p‖2 + αnM
′
1 −

M∑
i=1

‖Θi−1yn −Θiyn‖2

+ M ′
2

M∑
i=1

‖AiΘ
i−1yn − Aip‖ (4.2.20)

for some M ′
1 > 0 and M ′

2 > 0. Then from (4.2.19) we have

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn)‖Snun − p‖2

≤ βn‖xn − p‖2 + (1− βn)‖un − p‖2

≤ βn‖xn − p‖2 + (1− βn)
(
‖xn − p‖2 + αnM

′
1

+
M∑
i=1

ri(ri − 2αi)‖AiΘ
i−1yn − Aip‖2

)
≤ ‖xn − p‖2 + αnM

′
1 + (1− βn)

M∑
i=1

ri(ri − 2αi)‖AiΘ
i−1yn − Aip‖2,

which implies that

(1− βn)
M∑
i=1

ri(2αi − ri)‖AiΘ
i−1yn − Aip‖2 ≤ ‖xn+1 − p‖2 − ‖xn − p‖2 + αnM

′
1.

So from (4.2.17), (1), (2) and 0 < rk < 2αk for each k = 1, 2, · · · , M we have

lim
n→∞

‖AkΘ
k−1yn − Akp‖ = 0 (4.2.21)
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for each k ∈ {1, 2, · · · , M}. Similarly, from (4.2.20), we have

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn)‖Snun − p‖2

≤ βn‖xn − p‖2 + (1− βn)‖un − p‖2

≤ βn‖xn − p‖2 + (1− βn)
(
‖xn − p‖2 + αnM

′
1

−
M∑
i=1

‖Θi−1yn −Θiyn‖2 + M ′
2

M∑
i=1

‖AiΘ
i−1yn − Aip‖

)
≤ ‖xn − p‖2 + αnM

′
1 − (1− βn)

M∑
i=1

‖Θi−1yn −Θiyn‖2

+ M ′
2

M∑
i=1

‖AiΘ
i−1yn − Aip‖.

This implies that

(1− βn)
M∑
i=1

‖Θi−1yn −Θiyn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnM
′
1

+ M ′
2

M∑
i=1

‖AiΘ
i−1yn − Aip‖.

From (1), (2), (4.2.17) and (4.2.21), it follows that

lim
n→∞

‖Θk−1yn −Θkyn‖ = 0 (4.2.22)

for each k ∈ {1, 2, · · · , M}.
Next, we show that

lim
n→∞

‖xn − Sxn‖ = 0.

Observing

‖un − yn‖ = ‖ΘMyn − yn‖
≤ ‖ΘMyn −ΘM−1yn‖+ ‖ΘM−1yn −ΘM−2yn‖+ · · ·+ ‖Θ1yn − yn‖,

it follows, by (4.2.22), that

lim
n→∞

‖un − yn‖ = 0. (4.2.23)

From (4.2.18) and (4.2.23), we have

lim
n→∞

‖un − xn‖ = 0. (4.2.24)

We see that

‖xn − Sxn‖ ≤ ‖xn − Snun‖+ ‖Snun − Snxn‖+ ‖Snxn − Sxn‖
≤ ‖xn − Snun‖+ ‖un − xn‖+ sup

z∈{xn}
‖Snz − Sz‖.

So, by (4.2.16), (4.2.24) and Lemma 2.4.15, we have

lim
n→∞

‖xn − Sxn‖ = 0. (4.2.25)
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Let the net {xt} be defined by (4.2.2). From Proposition 4.2.1, we have xt → x∗ ∈ F
as t → 0. Moreover, by proving in the same manner as in Theorem 3.2 of [115], we can
show that

lim sup
n→∞

〈x∗, x∗ − xn〉 ≤ 0. (4.2.26)

Finally, we show that xn → x∗ ∈ F as n →∞. We see that

‖xn+1 − x∗‖2 ≤ βn‖xn − x∗‖2 + (1− βn)‖Snun − x∗‖2

≤ βn‖xn − x∗‖2 + (1− βn)‖un − x∗‖2

≤ βn‖xn − x∗‖2 + (1− βn)‖yn − x∗‖2

≤ βn‖xn − x∗‖2 + (1− βn)‖(1− αn)(xn − x∗)− αnx
∗‖2

≤ βn‖xn − x∗‖2 + (1− βn)
(
(1− αn)‖xn − x∗‖2

− 2αn(1− αn)〈x∗, xn − x∗〉+ α2
n‖x∗‖2

)
=

(
1− αn(1− βn)

)
‖xn − x∗‖2

+ αn(1− βn)
(
2(1− αn)〈x∗, x∗ − xn〉+ αn‖x∗‖2

)
.

By (1) and (4.2.26), it follows that xn → x∗ ∈ F . This completes the proof.

Corollary 4.2.3. Let C be a nonempty, closed and convex subset of a Hilbert space
H. Let {fk}M

k=1 : C × C → R be a family of bifunctions, let {Ak}M
k=1 : C → H

be a family of αk-inverse strongly monotone mappings and let {Si}∞i=1 be a sequence
of κi-strict pseudocontractions of C into itself such that F :=

(⋂M
k=1 GEP (fk, Ak)

)
∩(⋂∞

i=1 F (Si)
)
6= ∅ and sup{κi : i ∈ N} = κ > 0. Assume that γ ∈ (κ, 1) and rk ∈

(0, 2αk) for each k ∈ {1, 2, · · · , M}. Define the sequence {xn} by x1 ∈ C,

yn = PC

[
(1− αn)xn

]
,

un = T fM ,AM
rM

T fM−1,AM−1
rM−1

· · ·T f2,A2
r2

T f1,A1
r1

yn,

xn+1 = βnxn + (1− βn)
[
γun + (1− γ)

n∑
i=1

µi
nSiun

]
, n ≥ 1,

where {αn}∞n=1 and {βn}∞n=1 are real sequences in (0, 1) which satisfy (1)-(2) of Theorem
4.2.2, and {µi

n} is a real sequence which satisfies (1)-(3) of Lemma 2.4.19. Then {xn}
converges strongly to an element in F .

Remark 4.2.4. Proposition 4.2.1 and Theorem 4.2.2 extend the main results in [115]
from a nonexpansive mapping to an infinite family of strict pseudocontractions and a
system of generalized equilibrium problems.

Remark 4.2.5. If we take Ak ≡ 0 and fk ≡ 0 for each k = 1, 2, · · · , M , then Proposition
4.2.1, Theorem 4.2.2 and Corollary 4.2.3 can be applied to a system of equilibrium
problems and to a system of variational inequality problems, respectively.

Remark 4.2.6. Let S1, S2, · · · , be an infinite family of nonexpansive mappings of C into
itself and let ξ1, ξ2, · · · be real numbers such that 0 < ξi < 1 for all i ∈ N. Moreover,
let Wn and W be the W -mappings [94] generated by S1, S2, · · · , Sn and ξ1, ξ2, · · · , ξn,
and S1, S2, · · · and ξ1, ξ2, · · · . Then, we know from [79, 94] that

(
{Wn}, W

)
satisfies the

AKTT-condition. Therefore, in Theorem 4.2.2, the mapping Tn can be also replaced
by Wn.



67

4.3 Existence and Iteration for a Mixed Equilibrium Prob-

lem and a Countable Family of Nonexpansive Map-

pings in Banach Spaces

In this section, we first prove the existence and the convergence theorems con-
cerning the mixed equilibrium problem and the fixed points of nonexpansive mappings
in Banach spaces. For solving the mixed equilibrium problem, let us assume the follow-
ing conditions for a bifunction f :

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all y ∈ C, f(·, y) is weakly upper semi-continuous;
(A4) for all x ∈ C, f(x, ·) is convex.

Proposition 4.3.1. Let X be a smooth, strictly convex and reflexive Banach space. Let
C be a nonempty, bounded, closed and convex subset of X, let f be a bifunction from
C × C to R satisfying (A1)-(A4) and let ϕ be a lower semi-continuous and convex
function from C to R. For all r > 0 and x ∈ X, define the mapping Sr : X → 2C as
follows:

Sr(x) =
{
z ∈ C : f(z, y) + ϕ(y) +

1

r

〈
y − z, J(z − x)

〉
≥ ϕ(z), ∀y ∈ C

}
.

Then the following statements hold:

(1) for each x ∈ X, Sr(x) 6= ∅;

(2) Sr is single-valued;

(3)
〈
Srx− Sry, J(Srx− x)

〉
≤
〈
Srx− Sry, J(Sry − y)

〉
for all x, y ∈ X;

(4) F
(
Sr) = MEP (f, ϕ);

(5) MEP (f, ϕ) is nonempty, closed and convex.

Proof. (1) Let x0 be any given point in X. For each y ∈ C, we define

G(y) =
{
z ∈ C : f(z, y) + ϕ(y) +

1

r

〈
y − z, J(z − x0)

〉
≥ ϕ(z)

}
.

Since y ∈ G(y), we have G(y) 6= ∅. First, we will show that G is a KKM mapping.
Suppose that there exists a finite subset {y1, y2, · · · , ym} of C and βi ≥ 0 with

∑m
i=1 βi =

1 such that x̂ =
∑m

i=1 βiyi /∈ G(yi) for all i = 1, 2, · · · , m. It follows that

f(x̂, yi) + ϕ(yi)− ϕ(x̂) +
1

r

〈
yi − x̂, J(x̂− x0)

〉
< 0, i = 1, 2, · · · , m.

By (A1), (A4) and the convexity of ϕ, we have

0 = f(x̂, x̂) + ϕ(x̂)− ϕ(x̂) +
1

r

〈
x̂− x̂, J(x̂− x0)

〉
≤

m∑
i=1

βi

(
f(x̂, yi) + ϕ(yi)− ϕ(x̂) +

1

r

〈
yi − x̂, J(x̂− x0)

〉)
< 0,
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which is a contradiction. Thus G is a KKM mapping on C.
Next, we show that G(y) is closed for all y ∈ C. Let {zn} be a sequence in G(y)

such that zn → z as n →∞. Hence zn − x0 → z − x0 as n →∞. Since zn ∈ G(y),

f(zn, y) + ϕ(y) +
1

r

〈
y − zn, J(zn − x0)

〉
≥ ϕ(zn). (4.3.1)

By (A3), the norm to weak∗ continuity of J , and the lower semi-continuity of ϕ and
‖ · ‖2, it follows from (4.3.1) that

ϕ(z) ≤ lim inf
n→∞

ϕ(zn)

≤ lim sup
n→∞

(
f(zn, y) + ϕ(y) +

1

r

〈
y − zn, J(zn − x0)

〉)
= lim sup

n→∞

(
f(zn, y) + ϕ(y) +

1

r

〈
y − x0, J(zn − x0)

〉
+

1

r

〈
x0 − zn, J(zn − x0)

〉)
= lim sup

n→∞

(
f(zn, y) + ϕ(y) +

1

r

〈
y − x0, J(zn − x0)

〉
− 1

r
‖zn − x0‖2

)
≤ lim sup

n→∞
f(zn, y) + ϕ(y) +

1

r
lim sup

n→∞

〈
y − x0, J(zn − x0)

〉
− 1

r
lim inf
n→∞

‖zn − x0‖2

≤ f(z, y) + ϕ(y) +
1

r

〈
y − x0, J(z − x0)

〉
− 1

r
‖z − x0‖2

= f(z, y) + ϕ(y) +
1

r

〈
y − x0, J(z − x0)

〉
− 1

r

〈
z − x0, J(z − x0)

〉
= f(z, y) + ϕ(y) +

1

r

〈
y − z, J(z − x0)

〉
.

This shows that z ∈ G(y) and hence G(y) is closed for all y ∈ C.
We now equip X with the weak topology. Then C, as a closed bounded convex

subset in a reflexive space, is weakly compact. Hence G(y) is also weakly compact.
Then by Lemma 2.4.2, we have Sr(x0) =

⋂
y∈C G(y) 6= ∅. From the arbitrariness of x0,

we can conclude that Sr(x) 6= ∅ for all x ∈ X.

(2) For x ∈ C and r > 0, let z1, z2 ∈ Sr(x). Then,

f(z1, z2) + ϕ(z2)− ϕ(z1) +
1

r

〈
z2 − z1, J(z1 − x)

〉
≥ 0

and

f(z2, z1) + ϕ(z1)− ϕ(z2) +
1

r
〈z1 − z2, J(z2 − x)〉 ≥ 0.

Adding the two inequalities, we have

f(z2, z1) + f(z1, z2) +
1

r

〈
z2 − z1, J(z1 − x)− J(z2 − x)

〉
≥ 0.

It follows from (A2) that〈
z2 − z1, J(z1 − x)− J(z2 − x)

〉
≥ 0.

Hence

0 ≤
〈
z2 − z1, J(z1 − x)− J(z2 − x)

〉
=
〈
(z2 − x)− (z1 − x), J(z1 − x)− J(z2 − x)

〉
.
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Since J is monotone and X is strictly convex, we obtain that z1−x = z2−x and hence
z1 = z2. Therefore Sr is single-valued.

(3) For x, y ∈ C, we have

f(Srx, Sry) + ϕ(Sry)− ϕ(Srx) +
1

r

〈
Sry − Srx, J(Srx− x)

〉
≥ 0

and

f(Sry, Srx) + ϕ(Srx)− ϕ(Sry) +
1

r

〈
Srx− Sry, J(Sry − y)

〉
≥ 0.

Again, adding the two inequalities, we also have〈
Sry − Srx, J(Srx− x)− J(Sry − y)

〉
≥ 0.

Hence〈
Srx− Sry, J(Srx− x)

〉
≤
〈
Srx− Sry, J(Sry − y)

〉
.

(4) It is easy to see that

z ∈ F (Sr) ⇔ z = Srz

⇔ f(z, y) + ϕ(y)− ϕ(z) +
1

r

〈
y − z, J(z − z)

〉
≥ 0, ∀y ∈ C

⇔ f(z, y) + ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C

⇔ z ∈ MEP (f, ϕ).

This implies that F (Sr) = MEP (f, ϕ).

(5) Finally, we claim that MEP (f, ϕ) is nonempty, closed and convex. For each
y ∈ C, we define

H(y) =
{
x ∈ C : f(x, y) + ϕ(y) ≥ ϕ(x)

}
.

Since y ∈ H(y), we have H(y) 6= ∅. Suppose that there exists a finite subset {z1, z2, ..., zm}
of C and αi ≥ 0 with

∑m
i=1 αi = 1 such that ẑ =

∑m
i=1 αizi /∈ H(zi) for all i = 1, 2, ...,m.

Then

f(ẑ, zi) + ϕ(zi)− ϕ(ẑ) < 0, i = 1, 2, · · · , m.

From (A1), (A4) and the convexity of ϕ, we have

0 = f(ẑ, ẑ) + ϕ(ẑ)− ϕ(ẑ) ≤
m∑

i=1

αi

(
f(ẑ, zi) + ϕ(zi)− ϕ(ẑ)

)
< 0,

which is a contradiction. Thus H is a KKM mapping on C.
Let un ∈ H(y) such that un → u. Then, for each y ∈ C, we have

f(un, y) + ϕ(y) ≥ ϕ(un).

By (A3) and the lower semi-continuity of ϕ, we see that

f(u, y) + ϕ(y) ≥ lim sup
n→∞

f(un, y) + ϕ(y) ≥ lim inf
n→∞

ϕ(un) ≥ ϕ(u).
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This shows that u ∈ H(y) and H(y) is closed for each y ∈ C. Thus
⋂

y∈C H(y) =
MEP (f, ϕ) is also closed. Since C is bounded, closed and convex, we also have H(y)
is weakly compact in the weak topology. By Lemma 2.4.2, we get that

⋂
y∈C H(y) =

MEP (f, ϕ) 6= ∅.
Let u, v ∈ F (Sr) and zt = tu + (1− t)v for t ∈ (0, 1). From (3), we know that〈

Sru− Srzt, J(Srzt − zt)− J(Sru− u)
〉
≥ 0.

This yields that〈
u− Srzt, J(Srzt − zt)

〉
≥ 0. (4.3.2)

Similarly, we also have〈
v − Srzt, J(Srzt − zt)

〉
≥ 0. (4.3.3)

It follows from (4.3.2) and (4.3.3) that

‖zt − Srzt‖2 =
〈
zt − Srzt, J(zt − Srzt)

〉
= t

〈
u− Srzt, J(zt − Srzt)

〉
+ (1− t)

〈
v − Srzt, J(zt − Srzt)

〉
≤ 0.

Hence zt ∈ F (Sr) = MEP (f, ϕ) and MEP (f, ϕ) is convex. This completes the proof.

Before proving the main result, we consider the following condition introduced
in [69, 70]: let C be a nonempty, closed and convex subset of a Banach space X and let
{Tn} be sequence of mappings of C into itself such that

⋂∞
n=1 F (Tn) 6= ∅. Then {Tn} is

said to satisfy the NST-condition if for each bounded sequence {zn} ⊂ C,

lim
n→∞

‖zn − Tnzn‖ = 0

implies ωw(zn) ⊂
⋂∞

n=1 F (Tn), where ωw(zn) is the set of all weak cluster points of {zn}.

Remark 4.3.2. It is remarked that if ({Tn}, T ) satisies the AKTT-condition, then {Tn}
satisfies the NST-condition (see [72]) and also satisfies the (∗)-condition.

Theorem 4.3.3. Let X be a uniformly convex and smooth Banach space and let C
be a nonempty, bounded, closed and convex subset of X. Let f be a bifunction from
C ×C to R satisfying (A1)-(A4), let ϕ be a lower semi-continuous and convex function
from C to R and let {Tn}∞n=0 be a sequence of nonexpansive mappings of C into itself
such that F :=

⋂∞
n=0 F (Tn) ∩ MEP (f, ϕ) 6= ∅ and suppose that {Tn}∞n=0 satisfy the

NST-condition. Let {xn} be the sequence in C generated by
x0 ∈ C, D0 = C,
Cn = co

{
z ∈ C : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖

}
, n ≥ 0,

Dn =
{
z ∈ Dn−1 :

〈
Srnxn − z, J(xn − Srnxn)

〉
≥ 0
}
, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,

where {tn} and {rn} are real sequences which satisfy the conditions:

(C1) {tn} ⊂ (0, 1) and limn→∞ tn = 0;
(C2) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0.

Then {xn} converges strongly to PF x0, where PF is the metric projection from C
onto F .
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Proof. We first show that {xn} is well-defined. We see that Cn ∩ Dn is closed and
convex and F ⊂ Cn for all n ≥ 0. Since D0 = C, we have F ⊂ C0 ∩D0. Suppose that
F ⊂ Ck−1 ∩Dk−1 for k ≥ 2. From Proposition 4.3.1 (3) we have〈

Srk
xk − Srk

u, J(Srk
u− u)− J(Srk

xk − xk)
〉
≥ 0,

for all u ∈ F . This implies that〈
Srk

xk − u, J(xk − Srk
xk)
〉
≥ 0,

for all u ∈ F . Hence F ⊂ Dk. By induction, we get F ⊂ Cn ∩Dn for each n ≥ 0 and
hence {xn} is well-defined. Put w = PF x0. Since F ⊂ Cn ∩Dn and xn+1 = PCn∩Dnx0,
we have

‖xn+1 − x0‖ ≤ ‖w − x0‖, n ≥ 0. (4.3.4)

Since {xn} is bounded, there exists a subsequence {xni
} of {xn} such that xni

⇀ v ∈ C.
Since xn+2 ∈ Dn+1 ⊂ Dn and xn+1 = PCn∩Dnx0, we have

‖xn+1 − x0‖ ≤ ‖xn+2 − x0‖. (4.3.5)

Combining (4.3.4) and (4.3.5), we have limn→∞ ‖xn − x0‖ = d. Moreover, by the
convexity of Dn, we also have 1

2
(xn+1 + xn+2) ∈ Dn and hence

‖x0 − xn+1‖ ≤
∥∥∥x0 −

xn+1 + xn+2

2

∥∥∥ ≤ 1

2

(
‖x0 − xn+1‖+ ‖x0 − xn+2‖

)
.

This implies that

lim
n→∞

∥∥∥x0 −
xn+1 + xn+2

2

∥∥∥ = d.

From Lemma 2.4.6 we have limn→∞ ‖xn − xn+1‖ = 0.
Next, we show that v ∈

⋂∞
n=0 F (Tn). Since xn+1 ∈ Cn and tn > 0, there exists

m ∈ N, {λ0, λ1, · · · , λm} ⊂ [0, 1] and {y0, y1, · · · , ym} ⊂ C such that

m∑
i=0

λi = 1,
∥∥∥xn+1 −

m∑
i=0

λiyi

∥∥∥ < tn, and ‖yi − Tnyi‖ ≤ tn‖xn − Tnxn‖

for each i = 0, 1, · · · , m. Since C is bounded, by Lemma 2.3.7, we have

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖+
∥∥∥xn+1 −

m∑
i=0

λiyi

∥∥∥+
∥∥∥ m∑

i=0

λiyi −
m∑

i=0

λiTnyi

∥∥∥
+
∥∥∥ m∑

i=0

λiTnyi − Tn

( m∑
i=0

λiyi

)∥∥∥+
∥∥∥Tn

( m∑
i=0

λiyi

)
− Tnxn

∥∥∥
≤ 2‖xn − xn+1‖+ (2 + 2M)tn

+ γ−1
(

max
0≤i≤j≤m

(
‖yi − yj‖ − ‖Tnyi − Tnyj‖

))
≤ 2‖xn − xn+1‖+ (2 + 2M)tn

+ γ−1
(

max
0≤i≤j≤m

(
‖yi − Tnyi‖+ ‖yj − Tnyj‖

))
≤ 2‖xn − xn+1‖+ (2 + 2M)tn + γ−1(4Mtn),

where M = supn≥0 ‖xn − w‖. It follows from (C1) that

lim
n→∞

‖xn − Tnxn‖ = 0.
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Since {Tn} satisfies the NST-condition, we have v ∈
⋂∞

n=0 F (Tn).
Next, we show that v ∈ MEP (f, ϕ). By construction of the set Dn, we see that

Srnxn = PDnxn. Since xn+1 ∈ Dn, we obtain

‖xn − Srnxn‖ ≤ ‖xn − xn+1‖ → 0,

as n →∞. From (C2), we also have

1

rn

∥∥J(xn − Srnxn)
∥∥ =

1

rn

∥∥xn − Srnxn

∥∥→ 0, (4.3.6)

as n → ∞. Since xni
⇀ v, we also have Srni

xni
⇀ v. By definition of Srni

, for each
y ∈ C, we obtain

f(Srni
xni

, y) + ϕ(y) +
1

rni

〈
y − Srni

xni
, J(Srni

xni
− xni

)
〉
≥ ϕ(Srni

xni
).

By (A3), (4.3.6) and the weak lower semi-continuity of ϕ, we have

f(v, y) + ϕ(y) ≥ ϕ(v), ∀y ∈ C.

This shows that v ∈ MEP (f, ϕ) and hence v ∈ F :=
⋂∞

n=0 F (Tn) ∩MEP (f, ϕ).
Note that w = PF x0. Finally, we show that xn → w as n → ∞. By the weak

lower semi-continuity of the norm, it follows from (4.3.4) that

‖x0 − w‖ ≤ ‖x0 − v‖ ≤ lim inf
i→∞

‖x0 − xni
‖ ≤ lim sup

i→∞
‖x0 − xni

‖ ≤ ‖x0 − w‖.

This shows that

lim
i→∞

‖x0 − xni
‖ = ‖x0 − w‖ = ‖x0 − v‖

and v = w. Since X is uniformly convex, x0−xni
→ x0−w by the Kadec-Klee property.

It follows that xni
→ w. So we have xn → w as n →∞. This completes the proof.

Corollary 4.3.4. Let X be a uniformly convex and smooth Banach space and C a non-
empty, bounded, closed and convex subset of X. Let {Tn}∞n=0 be a sequence of nonexpan-
sive mappings of C into itself such that F :=

⋂∞
n=0 F (Tn) 6= ∅ and suppose that {Tn}∞n=0

satisfy the NST-condition. Let {xn} be the sequence in C generated by
x0 ∈ C,
Cn = co

{
z ∈ C : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖

}
,

xn+1 = PCnx0, n ≥ 0.

If {tn} ⊂ (0, 1) and limn→∞ tn = 0, then {xn} converges strongly to PF x0, where PF is
the metric projection from C onto F .

Remark 4.3.5. From [52], if we define Tn = αnI + (1− αn)
∑n

k=0 βk
nSk for all n ≥ 0 in

Theorem 4.3.3 and Corollary 4.3.4, then the results also hold. Moreover, the mapping
Tn can be replaced by the W -mapping Wn studied in [52].

If we take Tn = I for all n ≥ 0 in Theorem 4.3.3, then we obtain the following
result.
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Corollary 4.3.6. Let X be a uniformly convex and smooth Banach space and C a non-
empty, bounded, closed and convex subset of X. Let f be a bifunction from C ×C to R
satisfying (A1)-(A4) and let ϕ be a lower semi-continuous and convex function from C
to R. Let {xn} be the sequence in C generated by

x0 ∈ C, D0 = C,
Dn =

{
z ∈ Dn−1 :

〈
Srnxn − z, J(xn − Srnxn)

〉
≥ 0
}
, n ≥ 1,

xn+1 = PDnx0, n ≥ 0.

If {rn} ⊂ (0,∞) and lim infn→∞ rn > 0, then {xn} converges strongly to PMEP (f,ϕ)x0,
where PMEP (f,ϕ) is the metric projection from C onto MEP (f, ϕ).

If we take ϕ ≡ 0 in Corollary 4.3.6, then we obtain the following result con-
cerning an equilibrium problem in a Banach space setting.

Corollary 4.3.7. Let X be a uniformly convex and smooth Banach space and C a non-
empty, bounded, closed and convex subset of X. Let f be a bifunction from C ×C to R
satisfying (A1)-(A4). Let {xn} be the sequence in C generated by

x0 ∈ C, D0 = C,
yn ∈ C such that f(yn, y) + 1

rn

〈
y − yn, J(yn − xn)

〉
≥ 0 ∀y ∈ C, n ≥ 1,

Dn =
{
z ∈ Dn−1 :

〈
yn − z, J(xn − yn)

〉
≥ 0
}
, n ≥ 1,

xn+1 = PDnx0, n ≥ 0.

If {rn} ⊂ (0,∞) and lim infn→∞ rn > 0, then {xn} converges strongly to PEP (f)x0,
where PEP (f) is the metric projection from C onto EP (f).

If we take f ≡ 0 in Corollary 4.3.6, then we obtain the following result concern-
ing a convex minimization problem in a Banach space setting.

Corollary 4.3.8. Let X be a uniformly convex and smooth Banach space and C a non-
empty, bounded, closed and convex subset of X. Let ϕ be a lower semi-continuous and
convex function from C to R. Let {xn} be the sequence in C generated by

x0 ∈ C, D0 = C,
yn ∈ C such that ϕ(y) + 1

rn

〈
y − yn, J(yn − xn)

〉
≥ ϕ(yn), ∀y ∈ C, n ≥ 1,

Dn =
{
z ∈ Dn−1 :

〈
yn − z, J(xn − yn)

〉
≥ 0
}
, n ≥ 1,

xn+1 = PDnx0, n ≥ 0.

If {rn} ⊂ (0,∞) and lim infn→∞ rn > 0, then {xn} converges strongly to PCMP (ϕ)x0,
where PCMP (ϕ) is the metric projection from C onto CMP (ϕ).

Remark 4.3.9. The main result obtained in this section generalizes that of Matsushita-
Takahashi [63] from a nonexpansive mapping to a countable family of nonexpansive
mappings and a mixed equilibrium problem in Banach spaces.


