Chapter 4
Equilibrium Problems and Fixed Points of Some
Generalized Nonexpansive Mappings

In this chapter, we study strong convergence of the sequences generated by the
proposed algorithms for solving fixed point problems of nonexpansive mappings, quasi-
nonexpansive mappings and strict pseudocontractions, and equilibrium problems. The
obtained results improve and extend those announced by many authors.

4.1 A New Hybrid Algorithm for Variational Inclusions,
Mixed Equilibrium Problems and a Finite Family of
Quasi-nonexpansive Mappings

Let C' be a nonempty, closed and convex subset of a Hilbert space H. Let
f:C x C — R be a bifunction, and let ¢ : C' — R U {+00} be real-valued function.
For solving the equilibrium problem, let us give the following assumptions for f, ¢ and
the set C"

Al) f(z,x) =0 for all x € C;

A2) f is monotone, i.e., f(z,y) + f(y,z) <0 for all z,y € C,

A3) for each y € C, x — f(x,y) is weakly upper semi-continuous;

A4) for each x € C, y — f(z,y) is convex;

Ab) for each x € C, y — f(x,y) is lower semi-continuous;

B1) for each z € H and r > 0, there exists a bounded subset D, C C' and
Y. € C'Ndomyp such that for any z € C'\ D,,

£l ) + () + -l = 22— ) < p(2);

(B2) C' is a bounded set.

Proposition 4.1.1. [25] Let C' be a nonempty, closed and convex subset of a Hilbert H.
Let f be a bifunction from C x C' to R satisfying (A1)-(A5) and let p : H — RU{+o00}
be a proper, lower semi-continuous and convex function such that C' N domy # 0. For
r >0 and x € H, define a mapping S, : H — C as follows:

Sa) = {2 € Ot o) +oly) + ~ly— 22 —a) 2 olz), WeC)

Assume that either (B1) or (B2) holds. Then, the following conclusions hold:

(1) for each x € H, S,(x) # 0;
(2) S, is single-valued;
(3) S, is firmly nonexpansive, that is, for any x,y € H,

1S: () = S (I < (Se(x) = S, (y), = — )
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(4) F(S;) = MEP(f,¢);
(5) MEP(f, ) is closed and conver.

Theorem 4.1.2. Let C' be a nonempty, closed and convex subset of a Hilbert space H,
f:CxC — R abifunction satisfying (A1) — (A5), ¢ : C — RU{+400} a proper, lower
semi-continuous and convexr function, A : H — H an a-inverse strongly monotone
mapping, M : H — 27 a mazimal monotone mapping, and {T;}Y | a finite family of
quasi-nonexpansive and L;-Lipschitz mappings on C. Assume that € := ﬂf\il F(T,)n
MEP(f, o) NI(A, M) # () and either (B1) or (B2) holds. Let W, be the W-mapping
generated by T1,Ts,--- , Ty and Bnq,Bn2,- -, Bon. For xy € H with C; = C and
x1 = Pe,xo, let {x,}, {yn}, {2z} and {u,} be defined by

Yn = QnTy + (1 - an)Wnunv
Zn = JM,An (yn — /\nAyn>7
Cos1 = {2 € Ot 2 — 2l < llyn — 2I| < llwn — 2|},
Tnt1 = P, 0, Vn €N,
where {a,} C [0,a] for some a € [0,1), {r,} C [b,00) for some b € (0,00) and
{A\n} C e, d] for some c,d € (0,2a).
Then {x,}, {yn},{zn} and {u,} converge strongly to zy = Poxy.
Proof. Since 0 < ¢ < A\, < d < 2a for all n € N, Jy,, (I — A\, A) is nonexpan-
sive for all n € N. Hence (2, F(Ju, (I — AyA)) = I(A, M) is closed and convex.

From Proposition 4.1.1 (5), we know that M EP(f, ) is closed and convex. From
Lemma 2.4.22, we also know that F := (), F(T;) is closed and convex. Hence

Q:=N",F(T,) N MEP(f, )N I(A, M) is a nonempty, closed and convex set.
Next, we divide the proof into seven steps.

Step 1. Show that 2 C C,, for all n € N.
First observe that C), is closed and convex for all n € N. Let p € Q. Since w,, = S,., z,,
and p = Jyra, (p — A\ Ap) for all n € N|
[ Tat 0 (Y — AnAyn) = Jar, (P — AnAD)|
1y — 1l
an|[xn — pll 4+ (1 = o) [[Woun — p|
anllzn = pll + (1 = o) |lun — pl|
apllzn —pll + (1 — ) ||Sr, 20 — S, 1|
[|@n — pl|-
It follows that p € C},41 and hence 2 C C, for all n € N.

Izn = pll

IA A IA

IA

Step 2. Show that lim,, .« ||z, — xo|| exists.
Since () is a nonempty, closed and convex subset of C, there exists a unique element
20 = Poxp € Q C C,,. Since z,, = Pg, xy,

|2 — 2oll < |lz0 — @ol|- (4.1.1)

Hence {||z,, — x¢||} is bounded. So are {y,},{z,} and {u,}.
Noting z,+1 = Pc, ., x9 € Cpyq C C,, we have

n+1

[ = ol < [[#n1 = ol| (4.1.2)
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Combining (4.1.1) and (4.1.2), lim,,_,« ||z, — z0|| exists.

Step 3. Show that {z,} is a Cauchy sequence.
By construction of the set C),, we know that z,, = Pc, xy € C,, C C,, for m > n.
From Lemma 2.2.51, it follows that

[m = 2nll* < llm = zoll* = [l — 2ol* — 0, (4.1.3)

as m,n — oo. Hence {z,} is a Cauchy sequence. By the completeness of H and the
closedness of C', we can assume that z,, — ¢ € C.

Step 4. Show that g € F.
From (4.1.3), we get

||xn+1 "o an — 0,
as n — o0. Since x,11 € Cpyq C C,,
||Zn - an < Hzn - xn+1|| + me—l - l‘nH < 2||xn+1 - an — 0, (4~1~4)

as n — oo. Hence 2z, — ¢ as n — oo. By the nonexpansiveness of Jjy, and the inverse
strongly monotonicity of A, we obtain
20 =2l < Ny = AnAya — (0 = X Ap) ||
<y = 2l7 + X (An = 20)][ Ay, — Apl|?
< lzw = pl* + e(d = 20)|| Ay, — Ap]]*.
This implies
c(2a = d)[| Ay, — AplI* < lzn = plI* = ll2n — pII*
< lew = zall (e = pll + 120 = p1l)-
It follows from (4.1.4) that

lim || Ay, — Ap|| = 0. (4.1.5)

Noting Jjs 5, is 1-inverse strongly monotone, we obtain

12w = pII” = [ Tar2n (U = AAYn) = Jan, (0 = AnAp) ||
S <<yn B )\nAyn) | | (p & )\nAp)a Zn — p>

1
= 5 (I = MAya) = (0 = MAD)I + 120 — oI

— (Y — AnAYn) — (0 — AnAp) — (20 — p)|\2>

1
< 5 (Il =PI+ ll20 =PI = 1 = 20) = MlAyn = Ap) )
1
< 5 (llzw =PI+ llz0 = Bl = llyn = 2l
+ 200 (Yn — 2, Ay — Ap))
1
< 5 (llzw =PI+ llz0 = Bl = llyn = 2l

+ 20allyn = 2allll Ay — Apl)).
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This implies
Iz =21* < Nzn =Dl = llyn = 20ll* + 220llyn — 20l Ayn — Apl.
It follows that

1yn — 2all® < Nz = 20l (l2n = pll + 120 = plI)
+ 2d”yn - ZnHHAyn o) Ap“.

From (4.1.4) and (4.1.5) we get
lim ||y, — z,|| = 0. (4.1.6)

It follows from (4.1.4) and (4.1.6) that

1
1—a,

Wty — 2| = lYn — znl| — 0, (4.1.7)

as n — oo. Since S, is firmly nonexpansive and w,, = S, z,, we have

(|t _pH2 = ISy, 2 — SranQ
S <Srnxn N Srnpa Tp — p>
= (Up —p, 7, — D)
1
= 5 (Ihtw =PI + llzw =PI = llzw = wa]?),
which implies
[t = plI* < [ — plI* = |20 — unl®. (4.1.8)

It follows from (4.1.8) that

lyn — 2P < anllan, —pl* + (1 — an)[[Wauy — pl?
< ayllr, - pH2 + (1 = ap)||lun — pH2
< anllzn —pl? + (1= o) (llzn — 21> = |20 — uall?)

= oo —pl? = (1 = an)||zn — ualf?,
which yields
(1= a)llzn —ual® < N = pl* = llyn — pl*.
Hence from (4.1.4) and (4.1.6), we also have
lim ||z, — u,|| = 0. (4.1.9)
From (4.1.7) and (4.1.9) we get

lim ||u, — Whu,|| = 0.
n—oo

From Lemma 2.4.24 we obtain lim, . ||, — Wu,|| = 0. From Lemma 2.4.23 (2), we
know that W is Lipschitz. Since u,, — q asn — oo, ¢ € F(W). Moreover, from Lemma
2.4.23 (1), we can conclude that ¢ € F := X, F(T}).

Step 5. Show that ¢ € MEP(f, ).

Noting w,, = S,,z,, we have

1
J(un,y) + o(y) + r—<y — Up, Up — Tp) > P(uy), VyeC.

n
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From (A2), we obtain

o(y) + i(ZJ — Up, Uy — T) > [y, un) + p(un), Yy e C.

n

It follows from (A5) and the weakly lower semi-continuity of ¢, ||z, — u,||/r, — 0, and
u, — ¢ that

fy,q) +¢(q) < e(y), YyeC.

Put y; = ty + (1 — t)q for each ¢t € (0,1] and y € C' N domep. Since y € C' N domp and
q € CNdomyp, we obtain y, € C'Ndomep. Hence f(y,q) +¢(q) < ¢(y:). By (Al), (A4)
and the convexity of ¢, we have

0 = fyeye) + o) —oye)
< tf(yey) + (1 =) f(yeq) +tey) + (1 =t)p(q) — @(y:)
<t f (e y) +o(y) — o(y)]-
Hence

(e, y) +0(y) — e(y) = 0.

By letting t — 0, it follows from (A3) and the weakly semi-continuity of ¢ that

fla,y) +o(y) > ¢(q)

for all y € C' N domep. Observe that if y € C'\ domep, then f(q,y) + ¢(y) > ©(q) holds.
Hence g € MEP(f, ).

Step 6. Show that ¢ € I(A, M).

First observe that A is an (1/«)-Lipschitz monotone mapping and D(A) = H. From
Lemma 2.4.10, we know that M + A is maximal monotone. Let (v,g) € G(M + A), that
is, g — Av € M (v). Since z, = Jpr, (Yn — AAyn), we get yn, — A Ay, € (I + M) (2,),
that is,

1
)\—(yn — Zn — MAY,) € M(z,).
By the maximal monotonicity of M + A, we have

<U —Zn, g — AU - i(yn — Zn — )\nAyn)> Z 07

An
and hence
1
(v—12n,9) > <v — Zp, Av + )\—(yn — Zp — )\nAyn)>
1
= <U — 2Zp, Av — Az, + Az — Ay + — (Yo — Zn>>

An

> 0+ <v — 2Zn, Az, — Ayn> + <U — Zn, /\i(yn — zn)>

n

It follows from ||y, — z.|| — 0, || Ay, — Az,|| — 0 and z, — ¢ that

lim <U_Znag> = <U_Qag> ZO

n—oo
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By the maximal monotonicity of M + A, we have § € (M + A)(q); consequently,
qe I(AM).

Step 7. Show that ¢ = 2y = Pqxo.
Since z,, = P, z¢ and Q C C,,, we obtain

<xg — X, Ty —p> >0 Vpeq. (4.1.10)
By taking the limit in (4.1.10), we obtain

(zg—q,q—p) >0 VpeQ.

This shows that ¢ = Poxg = 2.
From Step 1 to Step 7, we can conclude that {z,},{y.},{z,} and {u,} converge
strongly to zg = Poxg. This completes the proof. O

As a direct consequence of Theorem 4.1.2, we obtain new results in a Hilbert
space as follows:

Corollary 4.1.3. Let C' be a nonempty, closed and convex subset of a Hilbert space
H, f: CxC — R a bifunction satisfying (A1) — (A5), ¢ : C — R U {+o0} a
proper, lower semi-continuous and convex function, A : C'— H an a-inverse strongly
monotone mapping, and {T;}Y.| a finite famzly of quasi-nonexpansive and L;-Lipschitz
mappings on C. Assume that Q = (i, F(T;) N MEP(f,¢) N VI(A,C) # 0 and
either (B1) or (B2) holds. Let W,, be the W-mapping generated by T1,Ts,--- , Ty and
BnasBnz, -, Bon. For an initial point g € H with Cy = C and 1 = Peyxo, let
{z,}, {ynt, {20} and {u,} be defined by

Yn = QnTyp + (]- - an)Wnuny
Zn = PC(yn - A Ayn)a

Cot1 = {2 € Cptllzn — 2| < llyn — 2l < llzn — 2l
Tpyl = Pcn+1 0, Vn € N,

where {a,} C [0,a] for some a € [0,1), {r,} C [b,00) for some b € (0,00) and
{\.} C e, d] for some ¢,d € (0,2a).
Then {xn}, {yn},{zn} and {u,} converge strongly to zy = Poxy.

Proof. In Theorem 4.1.2, take M = 96c : H — 28 where dc : H — [0,00] is the
indicator function of C'. It is well-known that the subdifferential 0dc is a maximal
monotone operator. Then the resolvent operator Jy, = Pc for all n € N. O

Corollary 4.1.4. Let C' be a nonempty, closed and convexr subset of a Hilbert space
H, f: C xC — R a bifunction satisfying (A1) — (A5), A : H — H an a-inverse
strongly monotone mapping, M : H — 25 o mazimal monotone mapping and {T;},
a finite famzly of quasi-nonexpansive and L;-Lipschitz mappings on C. Assume that
Q= N, F(T) N EP(f) N I(A, M) # 0 and either (B1) or (B3) holds. Let W, be
the W-mapping generated by 11,15, --- ,Tn and Bn1, Bn2, -, Ban. For xg € H with
Cy = C and xy = Po,xg, let {z,}, {yn}, {20} and {u,} be defined by

Flun,y) + %<y — Upy Uy — Ty ) >0, VyeC,
Yn = @y + (1 — o) Wy,
Zn = JM 2, (yn A AYn),
Crt1 = {ZGC 120 = 2| < Ny — 21| < [z — 2|},
Ty = Po, . w0, Vn €N,
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where {a,} C [0,a] for some a € [0,1), {r,} C [b,00) for some b € (0,00) and
{\n} C e, d] for some c,d € (0,2a).
Then {x,}, {yn},{zn} and {u,} converge strongly to zy = Poxy.

Remark 4.1.5. Theorem 4.1.2 mainly improves and extends the main results obtained
in [71, 99, 104].

4.2 Convergence Analysis for a System of Generalized Equi-
librium Problems and a Countable Family of Strict
Pseudocontractions

In this section, we study strong convergence of a system of generalized equilib-
rium problems and a countable family of strict pseudocontractions in Hilbert spaces.

Let C' be a nonempty, closed and convex subset of a Hilbert space H. Let
S : C — C be a nonexpansive mapping. Let {fz}iL, : C x C — R be a family
of bifunctions, let {Az}, : C — H be a family of aj-inverse-strongly monotone
mappings and let ry € (0,2q;). For each k € {1,2,---, M}, we denote the mapping
Ték’Ak :C' — C by

Tr.)Zc,Ak A TT..];k (I — rpAy) (4.2.1)

where T/t is the mapping defined as in Lemma 2.4.35. For each ¢ € (0,1), we define
the mapping S; : C' — C' as follows:

Six = ST /M AMpivM-1,AM-1 .T7{1,A1PC[(1 4 t)x], Vo e C.

™M TM~—1

We see that T,J:f and I — rp Ay are nonexpansive for each k € {1,2,--- M}. So the
mapping Ti’ﬂ’Ak is also nonexpansive for each k € {1,2,--- , M}. This implies that S; is
a contraction. Then the Banach contraction principle ensures that there exists a unique
fixed point x; of S; in C', that is,

xp = STHrAvT-v A I Pol(1 — )], t € (0,1). (4.2.2)

™M TM—1

Proposition 4.2.1. Let C' be a nonempty, closed and convex subset of a Hilbert space H.
Let S : C — C be a nonexpansive mapping. Let {fi}iL, : C x C — R be a family of
bifunctions, let { Ax}AL, : C — H be a family of ay,-inverse strongly monotone mappings
and let vy, € (0,2qy). For each k € {1,2,---, M}, let the mapping T,!;’“Ak be defined by

(4.2.1). Assume that F := (ﬂiil GEP(fy, Ax)) N F(S) # 0. For each t € (0,1), let
the net {x;} be generated by (4.2.2). Then, ast — 0, the net {x;} converges strongly to
an element in F.

Proof. First, we show that {z;} is bounded. For each t € (0,1), let y;, = Po[(1 — t)x,]
and u; = TJ&I’AMT,{{Y;“AM” -+ THA1y, . From (4.2.2) we have for each p € F' that

lze = pll = [[Sue = Spl| < [Jue = pll < [lye = pll < (L= )[lwe — pl| + ¢llpll.

It follows that

lze — pll < [|pll-
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Hence {x;} is bounded and so are {y;} and {u;}. Observe that
llye — || < tfjae|| — O, (4.2.3)

as t — 0 since {x;} is bounded.

Next, we show that [|u;—z,|| — 0 ast — 0. Denote ©F = T/» Ak Ak - The
for any k € {1,2,--- , M} and ©° = I. We note that u; = 0™y, for cach t € (0,1). For
each k € {1,2,--- M} and p € F, we see that

1% —plI* = T 0"y, — T 0 p|”
\]Trfc’“(@k’lyt - rkAk@k’lyt) = Ték(G)k’lp 4 rkAk@kflp)HQ

< (O ty — rAk©F y) — (05 Tp — 1 A8 ) |12
< ”@qut — pH2 + rp(re — Zak)HAk@kilyt - AkaZ-
It follows that
Jug—pl> = [[©My, —pH2

< Ay — pH +Z'f’z i — 204)|| A Chn 13/15 ipH2

M

= [IPl( = t)a] = pl* + Y rilri = 20,) | 40" 1y, — Apl|?

=1

M
< (e = pll + tllzell)* + > rilr — 200) | 4,07y, — Ap?
i=1

M
<l = plP M+ rilr — 200) | 4Oy, — Aip|? (4.2.4)

i1
where My = supg.,1{2||z¢ — pll||=:]| + ¢]|z:||*}. So we have
e —plI? < flug — plf®
M
< o —pl* + My + > ri(rs — 200) [ 4Oy — Aupl?,
—

which implies
lim | Ax©" 1y — Appl| = 0 (4.2.5)

for each k € {1,2,--- , M }. Since Tg:f is firmly nonexpansive for each k € {1,2,--- , M},
we have for each p € F and k € {1,2,--- , M} that

e e T
= ITJ(0" e = 1 AO " y) — T (05 p — 1 4,05 )|
<@k_1yt — e A Oy, — (p — i Arp), OFy, — p>
1 _ _
5 (10" = 1eAk© "y, = (p = reAp) |2 + 1O — o

- ||@'Hyt - T’kAk@kilyt — (p — redip) — <@kyt N p)H2)

IN
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1 _
< 5 (18 g = pl? + 5y — pl?
— (65t — Oy — (440" 1y, — Aep)|?)
1 _ _
< (105 y = pll? + €%y — pll* — 16"y — Oy

+ 2m[0F 1y — OFyi 40 1y — i),
This implies
€%y —pl* < 10"y — plI* ~ €0y — Oyl
+ 2r |08y, — O4y [ A0y — v

where My = maxj<p<nr SUPg<ieq {27’k||®k_1yt — @kyt”}. This shows that
lue —plI> = 10"y, — p|?

M M
< e =plP =D 107y — O'y* + Mo Y [ A0y, — Aup|
i=1

i=1

< 04y — bl — 10471y — Oyl + Mol 405y — Aupll

M M
< e —pl2+ 0y — S0y — O + My 3 |40y, — Aupl.
=1 =1

Hence

lze = plI* < Jlue —pl®

i=1 i=1
From (4.2.5) we obtain

M
Z 107y — Oy — 0,
i=1
as t — 0. So we can conclude that
%H% ||@k_1yt — @k'yt” = 0

for each k € {1,2,--- , M}. Observing
lun =l = 10y — il

M M
<l —plP + My =Y 07y — Oy + Ma Y A0y — Aipl.

(4.2.6)

< 10My, — My, || + ||0Mty, — M2y, || + - + |10y — well,

it follows by (4.2.6) that
i — 31| = .
From (4.2.3) and (4.2.7) we have

lim [|uy — [ = 0.

(4.2.7)

(4.2.8)
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Hence
|z — Sze|| = [[Swr — Szl < flue — 24f| — 0, (4.2.9)

as t — 0.
We next show that {x;} is relatively norm compact as t — 0. Let {t,,} C (0,1)
be a sequence such that ¢, — 0 as n — oo. Put z,, :== z;,. From (4.2.9) we obtain

lim ||z, — Sx,| = 0. (4.2.10)

Since {z,} is bounded, without loss of generality, we may assume that {x,} converges
weakly to z* € C'. Applying Lemma 2.4.3 to (4.2.10), we can conclude that z* € F(S).

Next, we show that z* € ﬂfc\il GEP(fr, Ar). Note that ©Fy,, = T/-4x0r 1y, =
T/ (O tyy — 1, AO 1y,) for each k € {1,2,---,M}. Hence, for each y € C' and
ke {1,2,---, M}, we obtain

1
fk:(gkynv y) + <y - @kym @kyn - (Gk_lyn - rkAk@k_lyn)> 2 0.

Tk

From (A2) we have

1
E<y - kam @kyn - (Gkilyn u rkAk@kilyn)> Z fk(y: kan)a vy eC.
Therefore
@kyn' - Gk_lyn-
<y Oy, s +Ak@’f*1ynj> > fuly,©,), VyeC.  (42.11)

For each t € (0,1) and y € C, put z;, = ty + (1 — t)z*. Then we have z; € C. From
(4.2.11) we get

<Zt - @kynj’ Akzzt> > <2’t - @kynj7Ath>

OFy,. — OF 1y,
— (2= Oy, — = 4 408y,
Tk
+ fi(zt, O%yy,)
= <zt — @kynj,Akzt — Ak@kynj> (4.2.12)

+ (2 — O yy,, A®y,, — A0 1y, )
@kyn - Qk_lyn'
— (20— OFyn,, — S) + Sl ©%n,).

Tk
We note that [|AxOFy, — 4,08 1y, || < i”@kynj — 0y, || — 0, OFy,, — x* as
j — oo, and {A;}, is a family of monotone mappings. It follows from (4.2.12) that

(zp — ", Agze) > fr(zg, 27). (4.2.13)

So by (A1), (A4) and (4.2.13), we have for each y € C and k € {1,2,---, M} that
0 = filze, 2e) < tfilze,y) + (1 =) fu(ze, 27)
< tfk(zta y) + (1 - t><zt - l‘*7 Akzt>
= ez y) +1(1 =)y — 2", Az,
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This implies that

fulze,y) + (1 =)y — 2, Ayz) >0, Vy € C. (4.2.14)
Letting ¢t — 0 in (4.2.14), it follows from (A3) that

fola®,y) + (y — 2", Aga™) 20, VyeC.

Hence z* € ﬂﬁil GEP(fy, Ax); consequently, * € F. Further, we see that

lze —2*||* = ||Su —2*|?
< g — 2|
< lye — 2|
< oy — 2 —tay|?
= o — 2" |” = 26y, 2 — %) + |2
= |z — 2*||* - 2t{x, — o*, 3, — T¥) = 2t(x*, 3, — *) + 13| 2|2
So we have

e — 2| < {2 = ) + < el

In particular,

t
lzn = 27| < (2%, 27 = 2a) + Fllzall”

Since z,, — x*, x, — ¥ as n — oo. By using the same argument as in the proof of
Theorem 3.1 in [115], we can show that x; — z* € ' as t — 0. This completes the
proof. O

Now we prove our main theorem.

Theorem 4.2.2. Let C' be a nonempty, closed and convex subset of a Hilbert space H.
Let {fi}L, : C x C — R be a family of bifunctions, let { Ax}2L, : C — H be a family of
ag-inverse strongly monotone mappings and let {T,}>2 | : C — C be a countable family
of k-strict pseudocontractions for some 0 < k < 1 such that F' := (ﬂfy:l GEP(fr, Ar))N
(Mg F(Ty)) # 0. Assume that {o,}22, C (0,1), {8,152, € (0,1), v € (k,1) and
ri € (0,20a4) for each k € {1,2,--- , M} satisfy the following conditions:

(1) lim, ooy, =0 and Y7 @, = +00;
(2) 0 <liminf, . G, <limsup,_, . G, < 1.
Suppose that ({Tn}, T) satisfies the AKTT-condition. Let {x,} be generated by x; € C,

Yn = Pe [(1 - Oén)*’pn}»
A _1,AM— A A
u, = Tr{y’ MTTJ;Jy_ll, M-1 . 'Trf;’ 2Trf11, YU,

Tpy1 = ﬁnxn + (1 - ﬁn) [’7un + (1 - V)Tnun]a n Z L.

Then {x,} converges strongly to an element in F.
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Proof. For each n € N, define S, : C — C by S,z = vz + (1 — )Tz, x € C.

Then F(S,) = F(T,)

= F(T) since v € (0,1). Moreover, we know that {S,} satisfies

the AKTT-condition since {7),} satisfies the AKTT-condition. From Lemma 2.4.15,
we can define the mapping S : ¢ — C by Sx = lim,_ S,z for z € C. Hence
St =~x+ (1 —v)Tz, v € C since T,x — Tx for x € C. Further, we know that S, is
nonexpansive for each n € N. Indeed, for each z,y € C' and n € N, we have

1Snz — Spyll* =

<

<

vz + (1 = )Tz — vy — (1 — ) Toyl?

Iv(z = y) + (1 =) (Tox — Toy) |

Yz —yl* + A = NI Toz — Tyl

— (1 =N = Tz — (I = Tyl

e —ylI? + @ =)z =yl + (1 =&l = Tz — (I — Tyl
— Q=PI = Tz — (I = Tyl?

o —yl> + (1 =) (e = NI = To)e — (I = T,)yl?

lz —yl*.

Hence S,, is nonexpansive for each n € N and so is S.
Next, we show that {z,} is bounded. Denote ©F = T,J;’“’AkTﬂ;’“jf’A’“‘l Lo T

for any k € {1,2,---

[ 21 —pll =

IN TN

VANVAN

IN

Hence, by induction,

, M} and ©° = I. We note that u,, = ©My,,. Then for each p € F,

[|Bnn + (1 = Bn) Sntn||
Bulln = pll + (1 = Bu) | Sntn — pll
Bolln — pll + (1 = Ba)lun — pll
Bullzn = pll + (1 = 810"y — pl
Bullzn = pll + (1 = Bu)llyn — P
Ballzn = pll + (1 = Ba) [(1 = o) |20 — pll + awlIp]
(1= an(l = Ba)) llen — pll + (1 = Ba) 2l
max{||z, — pll, |[pl}-
{z,} is bounded and so are {y,} and {u,}.

Next, we show that

lim ||zp41 — 2| = 0.
n—oo

Since u, = @My, and u,,; = OMy, 1,

[tngr —unll = 0"y — OM ||
< |[Ynt1 = Yall- (4.2.15)
Set 2z, = Spun,, n € N. From (4.2.15) we have

||Zn+1 T Zn”

VAN VAN VAN VAN

IA

[ Sns1tns1 — Sptnl|

HSnJrlunJrl - Sn+1unH + HSnJrlun - SnunH
[un+1 = wnll + [[Snrttn — Spun||

[9ns1 = Ynll + [|Shsrtin — Snt|

H(l - Oén+1)xn+1 - (1 - Oén)an + sup HSnJrlz - SnZH
z€{un

[#n1 = Zoll + Qnrr|Tnra || + anllznll + sup [[Sps1z — Szl
z€{un}
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Since {95, } satisfies the AKTT-condition and lim,,_,. o, = 0, it follows that

lim sup (Hznﬂ — Znll = |Tns1 — an) < 0.

n—oo

So from Lemma 2.4.7 we obtain

lim ||z, —z,|| = 0. (4.2.16)
Hence
lim ||zp41 — 2| = Um (1 — 5,)]|2n — 2| = 0. (4.2.17)

Observe that
Hyn <Y $n|| 5 HPC[(l - an)xn] - PanH < O‘onnH — 0, (4-2-18)

as n — o0o. Similar to the proof of Proposition 4.2.1, for each p € F', we have
M
lun — 2> < |2n — p||* + an M| + Zri(ri —20)|| A0y, — Apl)? (4.2.19)
i=1

and

M
Jun —pl* < lzn —pl? + M — Z 167y, — Oy,

=1

M
+ My A0y, — A (4.2.20)

=1

for some M| > 0 and M} > 0. Then from (4.2.19) we have
[E— pl* < Ballwn — p”2 + (L = Bu)llSnun — sz

< ﬁn”xn _pH2 + (1 - ﬂn)Hun _p||2
< Bullan oI + (1 = B) (e = pI> + an ]
+ Zn ri = 209) 40y, — Apl?)
M
S H33n—p”2+04nM/ Zrz —2@1 HA @1 lyn_AipHQa
=1

which implies that
M

(L= Bu) D ri(20i = r) [ A0y = Aipl® < [|2ass = plI — llza — plI* + a M.

i=1
So from (4.2.17), (1), (2) and 0 < 7 < 20y, for each k =1,2,--- , M we have

lim || A0 'y, — Agp| =0 (4.2.21)

n—oo
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for each k € {1,2,---, M}. Similarly, from (4.2.20), we have

|Znt1 — p”2 < Bullzn _pH2 + (1 = Bu) || Snun — pHZ
< Bullzn = pl + (1 = B)lun — pl?
< Bullan = pIP+ (1= Ba) (llzw = pI* +
M M
= D116 = Ol + M3 Y |40y — Aip))
i=1 =1
M
< o =plP + andd = (1= 5,) Y1167y, — ',
i=1

M
+ My Y |40y, — Al
i=1
This implies that

M
(1= 8) Y110 g = O'al® <l —pl* = llznsr — plI* + an M
=1

M
+ MY || AO Yy, — A
i=1
From (1), (2), (4.2.17) and (4.2.21), it follows that
lim [|©" 1y, — 0%y,|| =0 (4.2.22)

for each k € {1,2,--- ,M}.

Next, we show that

lim ||z, — Sx,| = 0.
Observing
lun = yull = 110y — yul

< [0y, — 0ty || + |©0M Ty, — O Pyl 4 -+ 101y — wall,
it follows, by (4.2.22), that

lim ||u, — yn|| = 0. (4.2.23)

From (4.2.18) and (4.2.23), we have

lim ||u, — 2,/ = 0. (4.2.24)
We see that
| 2n — Sy || |Zn — Sptin|| + |Sntin — Spnl| + || Snwn — S|

<
< e — Spun|| + ||un — xa|| + sup ||Snz — Sz||.

ZE{In}

So, by (4.2.16), (4.2.24) and Lemma 2.4.15, we have

lim ||z, — Sz,|| = 0. (4.2.25)
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Let the net {z;} be defined by (4.2.2). From Proposition 4.2.1, we have z; — z* € F
as t — 0. Moreover, by proving in the same manner as in Theorem 3.2 of [115], we can
show that

limsup(z*, 2™ — z,,) < 0. (4.2.26)

n—oo

Finally, we show that z,, — z* € ' as n — oo. We see that

Zns1 =21 < Ballwn — 27" + (1 = Ba) [ Snutn — 2"|1*

< Ballwn — 2P + (1 = B) lun — 2*||?

< Bn“xn_x*”Q (1 _BN)“yn_x*HQ

< Ballzn = 22+ (1= Bl — an)(@n — %) — apz™|?

< Ballow — "2+ (1= 8 (1 = @)z — 2|
= 2a,(1 = an) (@, 20 — 7°) + a2} [|?)

= (I-an(1=35))|zn — = H2
+ an(l = B0) (201 = an)(a, " = 2,) + alla"|2).

By (1) and (4.2.26), it follows that x,, — x* € F'. This completes the proof. O

Corollary 4.2.3. Let C' be a nonempty, closed and convex subset of a Hilbert space
H. Let {fi}, : C x C — R be a family of bifunctions, let {A L, : C — H
be a family of ayp-inverse strongly monotone mappings and let {SM} be a sequence
of k;-strict pseudocontractions of C into itself such that F : ( ol GEP(fk,Ak))
(N2, F(S;) # 0 and sup{x; : i € N} =k > 0. Assume that v € (k,1) and 1}, €
(0,2ay) for each k € {1,2,--- ,M}. Define the sequence {z,} by z1 € C,

Yn = Pe [(1 - an)xn}
u, = TfM AMTfM LAM-1 | 'TTJ;%AZTrfl’Alyn,

™M TM—1

Tpt+1 = ﬁnxn + (1 T ﬁn) [7“n + (1 e 7) ZH’;LSZUN}; n>1,

where {a, 122, and {5,}5°, are real sequences in (0, 1)
4.2.2, and {u'} is a real sequence which satisfies (1)-(3

converges strongly to an element in F'.

which satisfy (1)-(2) of Theorem
) of Lemma 2.4.19. Then {x,}

Remark 4.2.4. Proposition 4.2.1 and Theorem 4.2.2 extend the main results in [115]
from a nonexpansive mapping to an infinite family of strict pseudocontractions and a
system of generalized equilibrium problems.

Remark 4.2.5. If we take Ay =0 and f, =0 foreach k =1,2,--- , M, then Proposition
4.2.1, Theorem 4.2.2 and Corollary 4.2.3 can be applied to a system of equilibrium
problems and to a system of variational inequality problems, respectively.

Remark 4.2.6. Let 51,55, -+, be an infinite family of nonexpansive mappings of C' into
itself and let &1, &, - -+ be real numbers such that 0 < & < 1 for all 7 € N. Moreover,
let W,, and W be the W-mappings [94] generated by Sy, S, -+ ,S, and &1,&s, -+, &,
and Sy, Ss, -+ and &, &, - - -. Then, we know from [79, 94] that ({Wn}, W) satisfies the
AKTT-condition. Therefore, in Theorem 4.2.2, the mapping 7,, can be also replaced
by W,.
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4.3 Existence and Iteration for a Mixed Equilibrium Prob-
lem and a Countable Family of Nonexpansive Map-
pings in Banach Spaces

In this section, we first prove the existence and the convergence theorems con-
cerning the mixed equilibrium problem and the fixed points of nonexpansive mappings

in Banach spaces. For solving the mixed equilibrium problem, let us assume the follow-
ing conditions for a bifunction f:

(A1) f(z,z) =0 for all z € C;

(A2) f is monotone, i.e. f(z,y)+ f(y,x) <0 for all z,y € C,
(A3) for all y € C, f(-,y) is weakly upper semi-continuous;
(A4) for all z € C, f(x,-) is convex.

Proposition 4.3.1. Let X be a smooth, strictly convex and reflexive Banach space. Let
C' be a nonempty, bounded, closed and convex subset of X, let f be a bifunction from
C x C to R satisfying (A1)-(A4) and let ¢ be a lower semi-continuous and convex
function from C to R. For allv > 0 and x € X, define the mapping S, : X — 2° as
follows:

1
Sp@) ={zeC: f(zy) +ely) + ~(y =2 (2 —2)) 2 ¢(2), VyeC}.
Then the following statements hold:

1) for each x € X, S,(z) # 0;

2) S, 1s single-valued;

4) F(S;) = MEP(f,);

(1)
(2)
(3) <S:1: Ty,J(Sx—x><<Sx ry,J(Sry—y)>forallx,yeX;
(4)
(5) MEP(f,p) is nonempty, closed and convet.

Proof. (1) Let z( be any given point in X. For each y € C, we define

1
={z€C: fEy) +oW) + ~(y—2J(z — ) 2 p(2)}.
Since y € G(y), we have G(y) # (0. First, we will show that G is a KKM mapping.

Suppose that there exists a finite subset {y1, 42, -+ ,ym} of C and 5; > 0 with " 3; =
1 such that & =" Biy; ¢ G(y;) for all i = 1,2,--- ,m. It follows that

N AR 1 , S :
f(@y) + p(y) —p(z) + ;<yl —z,J (& — x0)> <0, i=1,2,---,m.
y (A1), (A4) and the convexity of ¢, we have
.. R R 7S

< S0 B (7w + o) — 0l@) + (= 8,9 — w0))) <0,
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which is a contradiction. Thus G is a KKM mapping on C.
Next, we show that G(y) is closed for all y € C. Let {z,} be a sequence in G(y)
such that z, — z as n — oo. Hence 2, — g — 2 — xg as n — 00. Since z, € G(y),

Flens) + 0l) + ~(y = 2, S (o0 = 70)) 2 ). (131)

By (A3), the norm to weak® continuity of .J, and the lower semi-continuity of ¢ and
| - 1|?, it follows from (4.3.1) that

o(z) < liminfp(z,)

IA

<y — Zn, J (20 — xg)>>

(y — 0, J (2 — o)) + %<9§0 — Zn, I (2 — x0)>>

lim sup (f(zn, y) + o(y) +

n—o0o

= limsup (f(zn, y) +p(y) +

n—0o0

S|/ 3| = 3|k

= timsup (£(zu ) + 0(w) + {5~ 70, T — 7)) = 20 — 0l

n—0o0o

1 1
< limsup f(2,,y) + @(y) + = limsup (y — xo, J (2, — 20)) — = liminf |2, — 2o]|?
T n—oo

n—0o0 n—oo

< F0) + o) + (g = a0, Iz~ 20)) — )z ol
~ f(Z;Z/)+<P(Z/)+%<y—$oaj(2—1?o)>—%<Z—$07J(2—$0)>

= f(z,y) +vly) + %<y — 2, J(z — x0))-

This shows that z € G(y) and hence G(y) is closed for all y € C.

We now equip X with the weak topology. Then C', as a closed bounded convex
subset in a reflexive space, is weakly compact. Hence G(y) is also weakly compact.
Then by Lemma 2.4.2, we have S,(20) = [),cc G(y) # 0. From the arbitrariness of o,
we can conclude that S,(x) # 0 for all x € X.

(2) For x € C'and r > 0, let 21,29 € S,(z). Then,

f(21,22) + p(22) — p(21) + %<Z2 — 21, J(z1 —x)) >0
and

Flen 1) + plen) = 9(22) + (o1 — 22, I (22 — ) 2 0.
Adding the two inequalities, we have

f(z2,21) + f(21,22) + %<zz — 21, J(z1 —x) — J(z0 — x)) > 0.
It follows from (A2) that

(20— 21, J(z1 — ) — J(z — ) > 0.

Hence

0< (-2, J(z1—2) = J(z2—2)) = (22 — @) — (21 — @), J (21 — @) — J(22 — @)).
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Since J is monotone and X is strictly convex, we obtain that z; —x = z5 — 2 and hence
z1 = z3. Therefore S, is single-valued.

(3) For z,y € C, we have
F(Suz, So) + o(Ssy) — o(S,) + %<sry S, J(Syr—2)) > 0
and
F(Sr, 5,) + 9(5,2) — o(S,y) + -(S,7 — S, J(S, ~ ) > 0.
Again, adding the two inequalities, we also have
(Syy — Sy, J (S, — ) — J(S,y —y)) > 0.
Hence

(Srx — Spy, J(S,x — 2)) < (S,x — Sy, J(Sry — y)).

(4) It is easy to see that
z€ F(S,) & z=5=2
1
& 0+ o)~ o)+ Hly— 2 d(: - 2)) 20, Ve C

& flzy)+ey) —p(z) 20, vy e C
& 2e MEP(f,9).

This implies that F(S,) = MEP(f, ).

(5) Finally, we claim that M EP(f,¢) is nonempty, closed and convex. For each
y € C, we define

H(y)={z e C: f(z,y) + ¢(y) > ¢(z)}.

Since y € H(y), we have H(y) # (). Suppose that there exists a finite subset {21, 22, ..., 2m }
of C'and o; > 0 with 7", o; = L such that 2 =3"", a2 ¢ H(z) foralli =1,2,....m
Then

f(éazz)‘i‘@(zz)_SO(é) <07 Z:1727 , M

From (A1), (A4) and the convexity of ¢, we have

0=f(2,2)+¢(2) <Zaz( 2,2) + (=) - ¢(2)) <0,

which is a contradiction. Thus H is a KKM mapping on C'
Let u, € H(y) such that u,, — u. Then, for each y € C, we have

Fun y) +¢(y) 2 @(un).
By (A3) and the lower semi-continuity of ¢, we see that

J(u,y) + ¢(y) = limsup f(un, y) + ¢ (y) = liminf o (u,) > (u).

n—oo
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This shows that u € H(y) and H(y) is closed for each y € C. Thus (., H(y) =
MEP(f,¢) is also closed. Since C' is bounded, closed and convex, we also have H(y)
is weakly compact in the weak topology. By Lemma 2.4.2, we get that (,. H(y) =

MEP(f,¢) # 0.
Let u,v € F(S,) and 2z = tu + (1 — t)v for t € (0,1). From (3), we know that

<Sru — Spz, J(Srze — 2¢) — J(Spu — u)> > (.
This yields that

<u — Spzy, J(Srze — zt)> > 0. (4.3.2)
Similarly, we also have

<v — Sz, J(Srze — zt)> > 0. (4.3.3)
It follows from (4.3.2) and (4.3.3) that

l2ze — Sezell®> = (20— Seze, J(z — Spze))

= t<u —Spzy, J(z — Srzt)> + (1 - t)<v — Srzy, J (2 — Sth)>

0.

Hence z; € F(S,) = MEP(f,¢) and MEP(f, ) is convex. This completes the proof.
[

AN

Before proving the main result, we consider the following condition introduced
in [69, 70]: let C' be a nonempty, closed and convex subset of a Banach space X and let
{T.} be sequence of mappings of C' into itself such that (2, F(T},) # 0. Then {7,,} is
said to satisfy the NST-condition if for each bounded sequence {z,} C C,

lim ||z, — Thzal| =0
n—oo

implies wy,(2,) C (ory F(T},), where wy,(2,) is the set of all weak cluster points of {z,}.

Remark 4.3.2. Tt is remarked that if ({7},},T) satisies the AKTT-condition, then {7},}
satisfies the NST-condition (see [72]) and also satisfies the (x)-condition.

Theorem 4.3.3. Let X be a uniformly convex and smooth Banach space and let C
be a nonempty, bounded, closed and convexr subset of X. Let f be a bifunction from
C x C to R satisfying (A1)-(A4), let ¢ be a lower semi-continuous and convex function
from C to R and let {T,,}32, be a sequence of nonexpansive mappings of C into itself
such that F = (_, F(T,) "N MEP(f,¢) # 0 and suppose that {T,}>> satisfy the
NST-condition. Let {x,} be the sequence in C' generated by

Tg € C, D[) = C,

Cn=7t0{z € C: |z —T,z2|| < tulzy — Thznll}, n>0,

D, = {z €D,_;: <Srn:1:n —z, J(x, — Srnznn)> > O}, n>1,
Tnt1 = Po,np,To, 1 >0,

where {t,} and {r,} are real sequences which satisfy the conditions:
(C1) {t,} € (0,1) and lim,_, t, = 0;
(C2) {rn,} C (0,00) and liminf, . r, > 0.

Then {z,} converges strongly to Prxo, where Pr is the metric projection from C
onto I
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Proof. We first show that {z,} is well-defined. We see that C,, N D,, is closed and
convex and F' C C, for all n > 0. Since Dy = C', we have F' C Cy N Dy. Suppose that
F C Cy_1 N Dy for k > 2. From Proposition 4.3.1 (3) we have

(S — Srpu, J(Spu — w) — J(Spxp — 1)) > 0,
for all uw € F. This implies that
<STkZL‘k — U, J(:L‘k — SrkZL‘k)> Z O,

for all w € F. Hence F' C Dy. By induction, we get F' C C,, N D,, for each n > 0 and
hence {x,} is well-defined. Put w = Przy. Since F' C C,, N D,, and x,.1 = Pc,np,To,
we have

[ 2011 = ol| < Jw = @ol|, 7 >0, (4.3.4)

Since {z,} is bounded, there exists a subsequence {xz,, } of {z,} such that z,, = v € C.
Since 49 € D41 C D, and x,,41 = Pe,np, o, We have

| Zns1 — 2ol < ||Tny2 — 20l (4.3.5)

Combining (4.3.4) and (4.3.5), we have lim, . ||z, — xo|]| = d. Moreover, by the
convexity of D,,, we also have 1 (:En+1 + Zn42) € D, and hence

T +x
Tt 22 < (oo = @naall + o — znsall).

_ < _
ol < [

This implies that

lim H _ Tpg1 + Tng2 + Tnt2 H 4

From Lemma 2.4.6 we have lim,, o |2 — Tpaa]] = 0.
Next, we show that v € (), F(T,). Since z,11 € C,, and ¢, > 0, there exists

m € N, {)\0,)\1, ;Am} C [0,1] and {yo,yl, - ,Ym} C C such that

m m

Z Ai =1, |[Znt1 — Z Aiyi|| < tn, and [ly; — Toysll < tullvn — T, ||

i=0 i=0
for each © = 0,1, -+ ,m. Since C' is bounded, by Lemma 2.3.7, we have

Tpy1 — Z AiYi
+H Xm: ATy: — Z \igi)
i=0

o0 = Tagall < llon = znsall + |

+ H Z Aili — Z ATy
, Ly,
Z Aii) = Totn

+f%g@QNM—wwwnw—nmw
£ ( max (g~ Tl + Ny, — Ty )

0<i<j<m
< 2wy — Tpya|l + (2 + 2M)t, + 7 (4ME,),

where M = sup, 5 ||z, — wl|. It follows from (C1) that

lim ||z, — Thx,| = 0.

n—oo
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Since {T,,} satisfies the NST-condition, we have v € (2, F(T,,).
Next, we show that v € M EP(f,¢). By construction of the set D,,, we see that
Sy, xn = Pp, x,. Since x,.1 € D,, we obtain

”xn - SrnInH < ||xn - xn-&-lH — 0,

as n — oo. From (C2), we also have
1 1
EHJ(In — Srnxn)H = EHmn — Srnan — 0, (4.3.6)

as n — 0o. Since z,, — v, we also have S, z,, — v. By definition of S, , for each
y € C, we obtain

1
f(S’/‘nixNi7 y) + CP(y) + ’I“_<y 4 Sm,-xnm J(Srnz Tn; — Im)> > @(Srnl'rm)

By (A3), (4.3.6) and the weak lower semi-continuity of ¢, we have

fw,y)+oy) > o), VyeC.

This shows that v € MEP(f,¢) and hence v € F :=(>_, F(T,,) N MEP(f, ).
Note that w = Ppxy. Finally, we show that x, — w as n — oo. By the weak
lower semi-continuity of the norm, it follows from (4.3.4) that

o — wll < o — ]| < liminf 2 — ]| < limsup o — ]| < [|zo — w]|

71— 00

This shows that

lim [|zo — 25, || = |20 — w]| = [0 — ]|
1—00

and v = w. Since X is uniformly convex, xo—z,, — xo—w by the Kadec-Klee property.
It follows that x,, — w. So we have z,, — w as n — oco. This completes the proof. [

Corollary 4.3.4. Let X be a uniformly convex and smooth Banach space and C' a non-
empty, bounded, closed and convez subset of X. Let {T,,}°°, be a sequence of nonexpan-
sive mappings of C into itself such that F := ("~ F(T,,) # 0 and suppose that {T,,}>,
satisfy the NST-condition. Let {x,} be the sequence in C generated by

o € C,
Cn=7t0{z € C: ||z = T2|| < tullzn — Thzall},
Tni1 = Po,xo, n>0.

If {t,} € (0,1) and lim, o t, = 0, then {z,} converges strongly to Prxy, where Pg is
the metric projection from C' onto F'.

Remark 4.3.5. From [52], if we define T}, = a, ] + (1 — a,) Y p_ 35Sy for all n > 0 in
Theorem 4.3.3 and Corollary 4.3.4, then the results also hold. Moreover, the mapping
T, can be replaced by the W-mapping W,, studied in [52].

If we take T,, = I for all n > 0 in Theorem 4.3.3, then we obtain the following
result.
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Corollary 4.3.6. Let X be a uniformly convex and smooth Banach space and C' a non-
empty, bounded, closed and convex subset of X. Let f be a bifunction from C x C to R
satisfying (A1)-(A4) and let ¢ be a lower semi-continuous and convex function from C
to R. Let {x,} be the sequence in C' generated by

Tg € C, DO = C,
D, = {z €D,_i: <Srnxn —z,J(x, — S,,n:r:n)> > ()}, n>1,
Tntl1 = PD,Lan n Z 0.

If {rn} € (0,00) and liminf, .7, > 0, then {x,} converges strongly to Prgp(ss)%o,
where Pypp(f.yp) s the metric projection from C onto MEP(f, ).

If we take ¢ = 0 in Corollary 4.3.6, then we obtain the following result con-
cerning an equilibrium problem in a Banach space setting.

Corollary 4.3.7. Let X be a uniformly convex and smooth Banach space and C' a non-
empty, bounded, closed and convex subset of X. Let f be a bifunction from C' x C' to R
satisfying (A1)-(A4). Let {x,} be the sequence in C' generated by

.T()EC, D():C,

yn € C' such that f(yn,y)+%<y—yn,J(yn—xn)>ZO YVye C, n>1,
D, = {z €D,_: <yn —Z,J(a:n—yn)> > 0}, n>1,

Tn+1 = Pp,xo, n>0.

If {rn} C (0,00) and liminf, .7, > 0, then {x,} converges strongly to Pgp(s)xo,
where Ppp(yy is the metric projection from C' onto EP(f).

If we take f = 0 in Corollary 4.3.6, then we obtain the following result concern-
ing a convex minimization problem in a Banach space setting.

Corollary 4.3.8. Let X be a uniformly convex and smooth Banach space and C' a non-
empty, bounded, closed and convex subset of X. Let ¢ be a lower semi-continuous and
convez function from C to R. Let {x,} be the sequence in C' generated by

Xg € C, D[) = C,

yn € C' such that o(y) + =Y = Yn, J(Yn — 2n)) = @(yn), Yy €O, n =1,
D, = {z €D,_;: <yn —z,J(zp — yn)> > O}, n>1,

Tnt1 = Pp,xg, n>0.

If {r,} C (0,00) and liminf, .7, > 0, then {x,} converges strongly to Pcarpp)To,
where Poarp(y) is the metric projection from C onto CMP(yp).

Remark 4.3.9. The main result obtained in this section generalizes that of Matsushita-
Takahashi [63] from a nonexpansive mapping to a countable family of nonexpansive
mappings and a mixed equilibrium problem in Banach spaces.



