
Chapter 5
Hybrid Methods for Relatively

Quasi-nonexpansive Mappings and Equilibrium
Problems

In this chapter, we study strong convergence of the sequences generated by
hybrid projection methods of relatively quasi-nonexpasive mappings and equilibrium
problems in the framework of Banach spaces.

5.1 Convergence Analysis for a System of Equilibrium Prob-

lems and a Countable Family of Relatively Quasi -

nonexpansive Mappings in Banach Spaces

Theorem 5.1.1. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let {fj}M

j=1 be bifunctions from
C×C to R which satisfies conditions (A1)-(A4) and let {Ti}∞i=1 be an infinitely countable
family of closed and relatively quasi-nonexpansive mappings from C into itself. Assume

that F :=
(⋂∞

i=1 F (Ti)
)
∩
(⋂M

j=1 EP (fj)
)
6= ∅. For any x0 ∈ X with x1 = ΠC1 x0 and

C1 = C, define {xn} by
yn,i = J−1

(
αnJxn + (1− αn)JTixn

)
,

un,i = T fM
rM,n

T
fM−1
rM−1,n · · ·T f1

r1,n
yn,i,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, un,i) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x0, n ≥ 1.

(5.1.1)

Assume that {αn} and {rj,n} for j = 1, 2, · · · , M are sequences satisfying the following:

(B1) lim supn→∞ αn < 1;
(B2) lim infn→∞ rj,n > 0.

Then the sequence {xn} converges strongly to ΠFx0.

Proof. We divide our proof into six steps.

Step 1. F ⊂ Cn for all n ≥ 1.
From Lemma 2.4.31 we know that F (Ti) is closed and convex for all i ≥ 1. From

Lemma 2.4.35 (4), we also know that EP (fj) is closed and convex for each j =

1, 2, · · · , M . Hence F :=
(⋂∞

i=1 F (Ti)
)
∩
(⋂M

j=1 EP (fj)
)

is a nonempty, closed and

convex subset of C. Clearly C1 = C is closed and convex. Suppose that Ck is closed
and convex for some k ∈ N. For each z ∈ Ck and i ≥ 1, we see that φ(z, uk,i) ≤ φ(z, xk)
is equivalent to

2〈z, Jxk〉 − 2〈z, Juk,i〉 ≤ ‖xk‖2 − ‖uk,i‖2.



75

By the construction of the set Ck+1, we see that

Ck+1 =
{
z ∈ Ck : sup

i≥1
φ(z, uk,i) ≤ φ(z, xk)

}
=

∞⋂
i=1

{
z ∈ Ck : φ(z, uk,i) ≤ φ(z, xk)

}
.

Hence Ck+1 is also closed and convex.
It is obvious that F ⊂ C1 = C. Now, suppose that F ⊂ Ck for some k ∈ N and let

p ∈ F :=
(⋂∞

i=1 F (Ti)
)
∩
(⋂M

j=1 EP (fj)
)
. Then

φ(p, uk,i) = φ(p, T fM
rM,n

T fM−1
rM−1,n

· · ·T f1
r1,n

yk,i)

≤ φ(p, T fM−1
rM−1,n

T fM−2
rM−2,n

· · ·T f1
r1,n

yk,i)

...

≤ φ(p, T f1
r1,n

yk,i)

≤ φ(p, yk,i)

= φ
(
p, J−1

(
αkJxk + (1− αk)JTixk

))
= ‖p‖2 − 2

〈
p, αkJxk + (1− αk)JTixk

〉
+ ‖αkJxk + (1− αk)JTixk‖2

≤ ‖p‖2 − 2αk

〈
p, Jxk〉 − 2(1− αk)

〈
p, JTixk〉

+ αk‖xk‖2 + (1− αk)‖Tixk‖2

= αkφ(p, xk) + (1− αk)φ(p, Tixk)

≤ φ(p, xk). (5.1.2)

Hence F ⊂ Ck+1. By induction, we can conclude that F ⊂ Cn for all n ≥ 1.

Step 2. limn→∞ φ(xn, x0) exists.
From xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), n ≥ 1. (5.1.3)

From Lemma 2.4.29 we get that

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(p, x0)− φ(p, xn) ≤ φ(p, x0). (5.1.4)

Combining (5.1.3) and (5.1.4), we get that limn→∞ φ(xn, x0) exists.

Step 3. {xn} is a Cauchy sequence in C.
Since xm = ΠCmx0 ∈ Cm ⊂ Cn for m > n, we obtain from Lemma 2.4.29 that

φ(xm, xn) = φ(xm,ΠCnx0) ≤ φ(xm, x0)− φ(ΠCnx0, x0)

= φ(xm, x0)− φ(xn, x0).

We see that φ(xm, xn) → 0 as m, n → ∞ which implies with Lemma 2.4.26 that
‖xm−xn‖ → 0 as m, n →∞. Therefore {xn} is a Cauchy sequence. By the completeness
of the space X and the closedness of the set C, we can assume that xn → q ∈ C as
n →∞. Moreover, we get

lim
n→∞

φ(xn+1, xn) = 0. (5.1.5)
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Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have for all i ≥ 1 that

φ(xn+1, un,i) ≤ φ(xn+1, xn) → 0. (5.1.6)

Applying Lemma 2.4.26 to (5.1.5) and (5.1.6), we derive

lim
n→∞

‖un,i − xn‖ = 0, ∀i ≥ 1. (5.1.7)

This shows that un,i → q as n → ∞ for all i ≥ 1. Since J is uniformly norm-to-norm
continuous on bounded subsets of E, we obtain that

lim
n→∞

‖Jun,i − Jxn‖ = 0, ∀i ≥ 1. (5.1.8)

Step 4. q ∈
⋂∞

i=1 F (Ti).

Denote Θj
n = T

fj
rj,nT

fj−1
rj−1,n · · ·T f1

r1,n
for any j ∈ {1, 2, · · · , M} and Θ0

n = I for all n ≥ 1.

We note that un,i = ΘM
n yn,i for all i ≥ 1. From (5.1.2) we observe that

φ(p, ΘM−1
n yn,i) ≤ φ(p, ΘM−2

n yn,i) ≤ · · · ≤ φ(p, yn,i) ≤ φ(p, xn), ∀i ≥ 1. (5.1.9)

Since p ∈ EP (fM) = F (T fM
rM,n

) for all n ≥ 1, it follows from (5.1.9) and Lemma 2.4.36
that

φ(un,i, Θ
M−1
n yn,i) ≤ φ(p, ΘM−1

n yn,i)− φ(p, un,i)

≤ φ(p, xn)− φ(p, un,i).

From (5.1.7) and (5.1.8), we get that limn→∞ φ(un,i, Θ
M−1
n yn,i) = 0 for all i ≥ 1. From

Lemma 2.4.26, we have

lim
n→∞

‖un,i −ΘM−1
n yn,i‖ = 0, ∀i ≥ 1. (5.1.10)

From (5.1.7) and (5.1.10), we have

lim
n→∞

‖xn −ΘM−1
n yn,i‖ = 0, ∀i ≥ 1 (5.1.11)

and hence,

lim
n→∞

‖Jxn − JΘM−1
n yn,i‖ = 0, ∀i ≥ 1 (5.1.12)

Again, since p ∈ EP (fM−1) = F (T
fM−1
rM−1,n) for all n ≥ 1, it follows from (5.1.9) and

Lemma 2.4.36 that

φ(ΘM−1
n yn,i, Θ

M−2
n yn,i) ≤ φ(p, ΘM−2

n yn,i)− φ(p, ΘM−1
n yn,i)

≤ φ(p, xn)− φ(p, ΘM−1
n yn,i).

From (5.1.11) and (5.1.12), we also have

lim
n→∞

‖ΘM−1
n yn,i −ΘM−2

n yn,i‖ = 0, ∀i ≥ 1. (5.1.13)

Hence, from (5.1.11) and (5.1.13), we get

lim
n→∞

‖xn −ΘM−2
n yn,i‖ = 0, ∀i ≥ 1 (5.1.14)
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and

lim
n→∞

‖Jxn − JΘM−2
n yn,i‖ = 0, ∀i ≥ 1. (5.1.15)

In a similar way, we can verify that

lim
n→∞

‖ΘM−2
n yn,i −ΘM−3

n yn,i‖ = · · · = lim
n→∞

‖Θ1
nyn,i − yn,i‖ = 0

for all i ≥ 1 and

lim
n→∞

‖xn −ΘM−3
n yn,i‖ = · · · = lim

n→∞
‖xn − yn,i‖ = 0

for all i ≥ 1 and

lim
n→∞

‖Jxn − JΘM−3
n yn,i‖ = · · · = lim

n→∞
‖Jxn − Jyn,i‖ = 0 (5.1.16)

for all i ≥ 1. Hence, we can conclude that

lim
n→∞

‖Θj
nyn,i −Θj−1

n yn,i‖ = 0 (5.1.17)

for each j = 1, 2, · · · , M and i ≥ 1. Observe

‖Jyn,i − Jxn‖ = ‖αnJxn + (1− αn)JTixn − Jxn‖
= (1− αn)‖JTixn − Jxn‖

then we obtain from (B1) and (5.1.16) that

lim
n→∞

‖JTixn − Jxn‖ = 0, ∀i ≥ 1.

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets, we get that

lim
n→∞

‖Tixn − xn‖ = 0, ∀i ≥ 1.

Since Ti is closed for all i ≥ 1 and xn → q, we conclude that q ∈
⋂∞

i=1 F (Ti).

Step 5. q ∈
⋂M

j=1 EP (fj).

From (5.1.17) and (B2), we have that
‖JΘj

nyn,i−JΘj−1
n yn,i‖

rj,n
→ 0 as n → ∞. Then, for

each j = 1, 2, · · · , M , we obtain that

fj(Θ
j
nyn,i, y) +

1

rj,n

〈y −Θj
nyn,i, JΘj

nyn,i − JΘj−1
n yn,i〉 ≥ 0, ∀y ∈ C.

From (A2) we have that

‖y −Θj
nyn,i‖

‖JΘj
nyn,i − JΘj−1

n yn,i‖
rj,n

≥ 1

rj,n

〈y −Θj
nyn,i, JΘj

nyn,i − JΘj−1
n yn,i〉

≥ −fj(Θ
j
nyn,i, y) ≥ fj(y, Θj

nyn,i), ∀y ∈ C.

From (A4) and the fact that Θj
nyn,i → q for i ≥ 1, we get fj(y, q) ≤ 0 for all y ∈ C.

For each 0 < t < 1 and y ∈ C, denote yt = ty + (1 − t)q. Then yt ∈ C, which
implies that fj(yt, q) ≤ 0. From (A1) and (A4), we obtain that 0 = fj(yt, yt) ≤
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tfj(yt, y) + (1 − t)fj(yt, q) ≤ tfj(yt, y). Thus, fj(yt, y) ≥ 0. From (A3), we have

fj(q, y) ≥ 0 for all y ∈ C and j = 1, 2, · · · , M . Hence q ∈
⋂M

j=1 EP (fj).

Step 6. q = ΠF x0.
From xn = ΠCnx0, we have〈

Jx0 − Jxn, xn − z
〉
≥ 0 ∀z ∈ Cn.

Since F ⊂ Cn, we also have〈
Jx0 − Jxn, xn − p

〉
≥ 0 ∀p ∈ F. (5.1.18)

Letting n →∞ in (5.1.18), we obtain that〈
Jx0 − Jq, q − p

〉
≥ 0 ∀p ∈ F.

From Lemma 2.4.28 we conclude that q = ΠF x0. This completes the proof.

Remark 5.1.2. Theorem 5.1.1 improves and extends Theorem 3.1 of Takahashi-Zembayashi
[105] in the following senses:

(1) from the case of an equilibrium problem to a finite family of equilibrium problems;

(2) from a single relatively nonexpansive mapping to an infinitely countable family of
relatively quasi-nonexpansive mappings;

(3) if M = 1 and Ti = T for all i ≥ 1, then our restriction on {αn} is weaker than
Theorem 3.1 of [105].

Remark 5.1.3. The iteration defined by (5.1.1) can be viewed as a modification of [105]
in the following ways:

(1) We use the composition of mappings {T fj
rj,n}M

j=1 in the second step.

(2) We construct the set Cn+1 by using the concept of supremum concerning an in-
finitely countable family of closed and relatively quasi-nonexpansive mappings
{Ti}∞i=1.

If we take αn = 0 for all n ∈ N in Theorem 5.1.1, then we have the following
corollary.

Corollary 5.1.4. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let {fj}M

j=1 be bifunctions from
C×C to R which satisfies conditions (A1)-(A4) and let {Ti}∞i=1 be an infinitely countable
family of closed and relatively quasi-nonexpansive mappings from C into itself. Assume

that F :=
(⋂∞

i=1 F (Ti)
)
∩
(⋂M

j=1 EP (fj)
)
6= ∅. For any x0 ∈ X with x1 = ΠC1 x0 and

C1 = C, define {xn} by
yn,i = Tixn,

un,i = T fM
rM,n

T
fM−1
rM−1,n · · ·T f1

r1,n
yn,i,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, un,i) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x0, n ≥ 1.

If lim infn→∞ rj,n > 0 for each j = 1, 2, · · · , M , then {xn} converges strongly to ΠFx0.
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We next give several applications of Theorem 5.1.1 in the framework of Banach
spaces and Hilbert spaces.

Let A : C → X∗ be a nonlinear mapping. The variational inequality problem
is to find x̂ ∈ C such that

〈Ax̂, y − x̂〉 ≥ 0, ∀y ∈ C. (5.1.19)

The solutions set of (5.1.19) is denoted by V I(C, A). For each r > 0 and x ∈ X, define
the mapping TA

r : X → C as follows:

TA
r (x) =

{
z ∈ C : 〈Az, y − z〉+

1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
.

Theorem 5.1.5. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let {Aj}M

j=1 be continuous and
monotone operators from C to X∗ and let {Ti}∞i=1 be an infinitely countable family of
closed and relatively quasi-nonexpansive mappings from C into itself such that F :=(⋂∞

i=1 F (Ti)
)
∩
(⋂M

j=1 V I(C, Aj)
)
6= ∅. For any x0 ∈ X with x1 = ΠC1 x0 and C1 = C,

define {xn} by 
yn,i = J−1

(
αnJxn + (1− αn)JTixn

)
,

un,i = TAM
rM,n

T
AM−1
rM−1,n · · ·TA1

r1,n
yn,i,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, un,i) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x0, n ≥ 1.

Assume that {αn} and {rj,n} for j = 1, 2, · · · , M are sequences which satisfy conditions
(B1) and (B2) of Theorem 5.1.1. Then {xn} converges strongly to ΠFx0.

Proof. Define fj(x, y) = 〈Ajx, y− x〉 for all x, y ∈ C and j = 1, 2, · · · , M . First, we see

that F (T
fj
rj ) = EP (fj) = V I(C, Aj) = F (T

Aj
rj ) for each j = 1, 2, · · · , M .

Next, we show that {fj}M
j=1 satisfy conditions (A1)-(A4).

(A1) fj(x, x) = 〈Ajx, x− x〉 = 0 for all x ∈ C and j = 1, 2, · · · , M .

(A2) For each x, y ∈ C and j = 1, 2, · · · , M , we observe that

fj(x, y) + fj(y, x) = 〈Ajx, y − x〉+ 〈Ajy, x− y〉
= 〈Ajx− Ajy, y − x〉.

By the monotonicity of Aj, we obtain that fj is monotone. Thus {fj}M
j=1 satisfy condi-

tion (A2).

(A3) For each x, y, z ∈ C and j = 1, 2, · · · , M , we have by the continuity of Aj that

lim sup
t↓0

fj

(
tz + (1− t)x, y

)
= lim sup

t↓0

〈
Aj(tz + (1− t)x), y − (tz + (1− t)x)

〉
= 〈Ajx, y − x〉
= fj(x, y).

This shows that {fj}M
j=1 satisfy condition (A3).
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(A4) Let u, v ∈ C and s ∈ (0, 1). Then, for each x ∈ C and j = 1, 2, · · · , M , we have

fj

(
x, su + (1− s)v

)
=

〈
Ajx, su + (1− s)v − x

〉
= s〈Ajx, u− x〉+ (1− s)〈Ajx, v − x〉
= sfj(x, u) + (1− s)fj(x, v).

Thus fj is convex in the second variable. Let un ∈ C and limn→∞ un = u. Then

fj(x, u) = 〈Ajx, u− x〉
= lim

n→∞
〈Ajx, un − x〉

= lim
n→∞

fj(x, un).

This shows that fj is lower semi-continuous in the second variable. Hence {fj}M
j=1 satisfy

condition (A4). From Theorem 5.1.1 we obtain the desired result.

If we take αn = 0 for all n ∈ N in Theorem 5.1.5, we have the following corollary.

Corollary 5.1.6. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let {Aj}M

j=1 be continuous and
monotone operators from C to X∗ and let {Ti}∞i=1 be an infinitely countable family of
closed and relatively quasi-nonexpansive mappings from C into itself such that F :=(⋂∞

i=1 F (Ti)
)
∩
(⋂M

j=1 V I(C, Aj)
)
6= ∅. For any x0 ∈ X with x1 = ΠC1 x0 and C1 = C,

define {xn} by 
yn,i = Tixn,

un,i = TAM
rM,n

T
AM−1
rM−1,n · · ·TA1

r1,n
yn,i,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, un,i) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x0, n ≥ 1.

If lim infn→∞ rj,n > 0 for each j = 1, 2, · · · , M , then {xn} converges strongly to ΠFx0.

Let ϕ : C → R be a real-valued function. The convex minimization problem is
to find x̂ ∈ C such that

ϕ(x̂) ≤ ϕ(y), ∀y ∈ C. (5.1.20)

The solutions set of (5.1.20) is denoted by CMP (ϕ). For each r > 0 and x ∈ X, define
the mapping Tϕ

r : X → C as follows:

Tϕ
r (x) =

{
z ∈ C : ϕ(y) +

1

r
〈y − z, Jz − Jx〉 ≥ ϕ(z), ∀y ∈ C

}
.

Theorem 5.1.7. Let X be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty, closed and convex subset of X. Let {ϕj}M

j=1 be lower semi-
continuous and convex functions from C to R and let {Ti}∞i=1 be an infinitely countable
family of closed and relatively quasi-nonexpansive mappings from C into itself such that

F :=
(⋂∞

i=1 F (Ti)
)
∩
(⋂M

j=1 CMP (ϕj)
)
6= ∅. For any x0 ∈ X with x1 = ΠC1 x0 and

C1 = C, define {xn} by
yn,i = J−1

(
αnJxn + (1− αn)JTixn

)
,

un,i = TϕM
rM,n

T
ϕM−1
rM−1,n · · ·Tϕ1

r1,n
yn,i,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, un,i) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x0, n ≥ 1.
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Assume that {αn} and {rj,n} for j = 1, 2, · · · , M are sequences which satisfy conditions
(B1) and (B2) of Theorem 5.1.1. Then {xn} converges strongly to ΠFx0.

Proof. Define fj(x, y) = ϕj(y) − ϕj(x) for all x, y ∈ C and j = 1, 2, · · · , M . Then

F (T
fj
rj ) = EP (fj) = CMP (ϕj) = F (T

ϕj
rj ) for each j = 1, 2, · · · , M and therefore

{fj}M
j=1 satisfy conditions (A1) and (A2).

Next, we show that {fj}M
j=1 satisfy conditions (A3) and (A4). For each x, y, z ∈

C, we have by the lower semi-continuity of ϕj that

lim sup
t↓0

fj

(
tz + (1− t)x, y

)
= lim sup

t↓0

(
ϕj(y)− ϕj(tz + (1− t)x)

)
≤ ϕj(y)− ϕj(x)

= fj(x, y).

This implies that {fj}M
j=1 satisfy condition (A3).

Let u, v ∈ C and s ∈ (0, 1). For each x ∈ C, we have by the convexity of ϕj

that

fj

(
x, su + (1− s)v

)
= ϕj(su + (1− s)v)− ϕj(x)

≤ sϕj(u) + (1− s)ϕj(v)− ϕj(x)

= s
(
ϕj(u)− ϕj(x)

)
+ (1− s)

(
ϕj(v)− ϕj(x)

)
= sfj(x, u) + (1− s)fj(x, v).

On the other hand, let un ∈ C and limn→∞ un = u. By the lower semi-continuity of ϕj

we have

fj(x, u) = ϕj(u)− ϕj(x)

≤ lim inf
n→∞

(
ϕj(un)− ϕj(x)

)
= lim inf

n→∞
fj(x, un).

Thus {fj}M
j=1 satisfy condition (A4). From Theorem 5.1.1 we obtain the desired result.

If we take αn = 0 for all n ∈ N in Theorem 5.1.7, we have the following corollary.

Corollary 5.1.8. Let X be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty, closed and convex subset of X. Let {ϕj}M

j=1 be lower semi-
continuous and convex functions from C to R and let {Ti}∞i=1 be an infinitely countable
family of closed and relatively quasi-nonexpansive mappings from C into itself such that

F :=
(⋂∞

i=1 F (Ti)
)
∩
(⋂M

j=1 CMP (ϕj)
)
6= ∅. For any x0 ∈ X with x1 = ΠC1 x0 and

C1 = C, define {xn} by
yn,i = Tixn,
un,i = TϕM

rM,n
T

ϕM−1
rM−1,n · · ·Tϕ1

r1,n
yn,i,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, un,i) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x0, n ≥ 1.

If lim infn→∞ rj,n > 0 for each j = 1, 2, · · · , M , then {xn} converges strongly to ΠFx0.

As a direct consequence of Theorem 5.1.1, we obtain the following application
in a Hilbert space.
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Theorem 5.1.9. Let C be a nonempty, closed and convex subset of a Hilbert space H.
Let {fj}M

j=1 be bifunctions from C × C to R which satisfies conditions (A1)-(A4) and
let {Ti}∞i=1 be an infinitely countable family of closed and quasi-nonexpansive mappings

from C into itself such that F :=
(⋂∞

i=1 F (Ti)
)
∩
(⋂M

j=1 EP (fj)
)
6= ∅. For any x0 ∈ H

with x1 = PC1x0 and C1 = C, define {xn} by
yn,i = αnxn + (1− αn)Tixn,

un,i = T fM
rM,n

T
fM−1
rM−1,n · · ·T f1

r1,n
yn,i,

Cn+1 =
{
z ∈ Cn : supi≥1 ‖z − un,i‖ ≤ ‖z − xn‖

}
,

xn+1 = PCn+1x0, n ≥ 1,

where P is the metric projection. Assume that {αn} and {rj,n} for j = 1, 2, · · · , M
are sequences which satisfy conditions (B1) and (B2) of Theorem 5.1.1. Then {xn}
converges strongly to PF x0.

Proof. Taking X = H a Hilbert space in Theorem 5.1.1, the result is obtained.

Remark 5.1.10. Theorem 5.1.9 improves and extends the main results of [71, 99, 104]
in the following senses:

(1) from the case of an equilibrium problem to a system of equilibrium problems;

(2) from the class of nonexpansive mappings to the class of an infinitely countable
family of quasi-nonexpansive mappings.

5.2 A Hybrid Method for a Family of Relatively Quasi-

nonexpansive Mappings and an Equilibrium Problem

in Banach Spaces

In this section, we introduce a new hybrid algorithm for a family of relative
quasi-nonexpansive mappings and equilibrium problems in Banach spaces. Using the
concept of Mosco convergence, we prove strong convergence theorems.

Theorem 5.2.1. Let X be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty, closed and convex subset of X. Let f : C × C → R be a
bifunction which satisfies conditions (A1)-(A4). Let {Tn}∞n=1 be a family of relatively
quasi-nonexpansive mappings of C into itself which satisfies the (∗)-condition such that
F :=

⋂∞
n=1 F (Tn) ∩ EP (f) 6= ∅. For any x ∈ X, define {xn} by x1 ∈ C, C1 = C and
yn = J−1

(
αnJxn + (1− αn)JTnxn

)
,

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x, n ≥ 1,

where {αn} ⊂ [0, 1] with lim supn→∞ αn < 1 and {rn} ⊂ (0,∞) with lim infn→∞ rn > 0.
Then {xn} converges strongly to ΠFx.
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Proof. From Lemma 2.4.30, we see that Cn is closed and convex for all n ≥ 1. From
Lemma 2.4.31 and Lemma 2.4.35 (4), we get F :=

⋂∞
n=1 F (Tn) ∩ EP (f) is closed and

convex. We next show that F ⊂ Cn for all n ≥ 1. Note that un = Trnyn for all n ≥ 1.
Let u ∈ F . Then for each n ≥ 1,

φ(u, un) = φ(u, Trnyn) ≤ φ(u, yn) = φ
(
u, J−1

(
αnJxn + (1− αn)JTnxn

))
≤ αnφ(u, xn) + (1− αn)φ(u, Tnxn)

≤ φ(u, xn). (5.2.1)

Thus u ∈ Cn for all n ≥ 1 and hence F ⊂ Cn for all n ≥ 1. Since F is nonempty,
Cn is a nonempty, closed and convex subset of E. Thus {xn} is well defined. By the
construction of the set Cn, we see that {Cn} is a decreasing sequence of closed and
convex subsets of E such that C0 =

⋂∞
n=1 Cn 6= ∅. It follows by Lemma 2.2.8 that

M − lim
n→∞

Cn = C0 =
∞⋂

n=1

Cn 6= ∅.

By Lemma 2.4.33, we get that {xn} = {ΠCnx} converges strongly to x0 = ΠC0 x.
Next, we show that limn→∞ ‖xn − Tnxn‖ = 0. Since x0 ∈ Cn for all n ≥ 1,

φ(x0, un) ≤ φ(x0, xn) for all n ≥ 1. From Remark 2.4.25 (2) we see that

φ(xn, un) = φ(xn, x0) + φ(x0, un) + 2〈xn − x0, Jx0 − Jun〉
≤ φ(xn, x0) + φ(x0, xn) + 2〈xn − x0, Jx0 − Jun〉

=
(
‖xn‖2 − 2〈xn, Jx0〉+ ‖x0‖2

)
+
(
‖x0‖2 − 2〈x0, Jxn〉+ ‖xn‖2

)
+ 2〈xn − x0, Jx0 − Jun〉

= 2〈xn − x0, Jxn − Jx0〉+ 2〈xn − x0, Jx0 − Jun〉
= 2〈xn − x0, Jxn − Jun〉
≤ 2‖xn − x0‖‖Jxn − Jun‖.

Since xn → x0 as n →∞, limn→∞ φ(xn, un) = 0. From Lemma 2.4.26, we obtain

lim
n→∞

‖xn − un‖ = 0. (5.2.2)

This implies that

lim
n→∞

‖Jxn − Jun‖ = 0. (5.2.3)

From (5.2.1), we know that φ(u, yn) ≤ φ(u, xn) for all n ≥ 1. From Lemma 2.4.36 we
have

φ(un, yn) = φ(Trnyn, yn) ≤ φ(u, yn)− φ(u, Trnyn) ≤ φ(u, xn)− φ(u, un).

From (5.2.2) and (5.2.3) we have limn→∞ φ(un, yn) = 0; consequently, Lemma 2.4.26
asserts that

lim
n→∞

‖un − yn‖ = 0. (5.2.4)

It also follows from (5.2.2) and (5.2.4) that

lim
n→∞

‖yn − xn‖ = 0. (5.2.5)
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On the other hand, we see that

(1− αn)‖JTnxn − Jxn‖ = ‖Jyn − Jxn‖,

which implies by lim supn→∞ αn < 1, (5.2.5) and the uniform norm-to-norm continuity
of J−1 that

lim
n→∞

‖JTnxn − Jxn‖ = lim
n→∞

‖Tnxn − xn‖ = 0. (5.2.6)

Since Tn satisfies the (∗)-condition, we have x0 ∈
⋂∞

n=1 F (Tn).
Next, we will show that x0 ∈ EP (f). From (5.2.4) and lim infn→∞ rn > 0, we

have ‖Jun−Jyn‖
rn

→ 0. From un = Trnyn, we get that

f(un, y) +
1

rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C.

By (A2), we have

‖y − un‖
‖Jun − Jyn‖

rn

≥ 1

rn

〈y − un, Jun − Jyn〉

≥ −f(un, y) ≥ f(y, un), ∀y ∈ C.

From (A4) and un → x0, we get that f(y, x0) ≤ 0 for all y ∈ C. For 0 < t < 1 and
y ∈ C, Define yt = ty + (1 − t)x0. Then yt ∈ C, which implies that f(yt, x0) ≤ 0.
From (A1), we obtain that 0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, x0) ≤ tf(yt, y). Thus,
f(yt, y) ≥ 0. From (A3), we have f(x0, y) ≥ 0 for all y ∈ C. Hence x0 ∈ EP (f) and
x0 ∈ F .

Finally, we show that x0 = ΠFx. From xn = ΠCnx and F ⊂ Cn for all n ≥ 1,
we have〈

Jx− Jxn, xn − p
〉
≥ 0 ∀p ∈ F. (5.2.7)

By taking limit in (5.2.7), we obtain that〈
Jx− Jx0, x0 − p

〉
≥ 0 ∀p ∈ F.

By Lemma 2.4.28, we conclude that x0 = ΠF x. This completes the proof.

As a direct consequence of Theorem 5.2.1, Lemma 2.4.39, Lemma 2.4.42 and
Lemma 2.4.45, we obtain the following results concerning the approximating fixed point
of a family of relatively quasi-nonexpansive mappings in Banach spaces.

Corollary 5.2.2. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let f : C×C → R be a bifunction
which satisfies conditions (A1)-(A4). Let Vn be as in Lemma 2.4.39 such that F :=⋂N

i=1 F (Ti) ∩ EP (f) 6= ∅. For any x ∈ X, define {xn} by x1 ∈ C, C1 = C and
yn = J−1

(
αnJxn + (1− αn)JVnxn

)
,

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x, n ≥ 1,

where {αn} ⊂ [0, 1] with lim supn→∞ αn < 1 and {rn} ⊂ (0,∞) with lim infn→∞ rn > 0.
Then {xn} converges strongly to ΠFx.
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Remark 5.2.3. Corollary 5.2.2 improves and extends Theorem 3.1 of [84] from two rel-
atively quasi-nonexpansive mappings to a family of relative quasi-nonexpansive map-
pings.

Corollary 5.2.4. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let f : C×C → R be a bifunction
which satisfies conditions (A1)-(A4). Let Wn be as in Lemma 2.4.42 such that F :=⋂N

i=1 F (Ti) ∩ EP (f) 6= ∅. For any x ∈ X, define {xn} by x1 ∈ C, C1 = C and
yn = J−1

(
αnJxn + (1− αn)JWnxn

)
,

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x, n ≥ 1,

where {αn} ⊂ [0, 1] with lim supn→∞ αn < 1 and {rn} ⊂ (0,∞) with lim infn→∞ rn > 0.
Then {xn} converges strongly to ΠFx.

Corollary 5.2.5. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let f : C×C → R be a bifunction
which satisfies conditions (A1)-(A4). Let Kn be as in Lemma 2.4.45 such that F :=⋂N

i=1 F (Ti) ∩ EP (f) 6= ∅. For any x ∈ X, define {xn} by x1 ∈ C, C1 = C and
yn = J−1

(
αnJxn + (1− αn)JKnxn

)
,

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x, n ≥ 1,

where {αn} ⊂ [0, 1] with lim supn→∞ αn < 1 and {rn} ⊂ (0,∞) withlim infn→∞ rn > 0.
Then {xn} converges strongly to ΠFx.

We next give applications of Theorem 5.2.1.

Theorem 5.2.6. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let A : C → X∗ be a continu-
ous and monotone mapping. Let {Tn}∞n=1 be a family of relatively quasi-nonexpansive
mappings of C into itself such that F :=

⋂∞
n=1 F (Tn) ∩ V I(C, A) 6= ∅. For any x ∈ X,

define {xn} by x1 ∈ C, C1 = C and
yn = J−1

(
αnJxn + (1− αn)JTnxn

)
,

un ∈ C such that 〈Aun, y − un〉+ 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x, n ≥ 1,

where {αn} ⊂ [0, 1] with lim supn→∞ αn < 1 and {rn} ⊂ (0,∞) withlim infn→∞ rn > 0.
Then {xn} converges strongly to ΠFx.

Proof. Define f(x, y) = 〈Ax, y − x〉 for all x, y ∈ C. Then f satisfies the conditions
(A1)-(A4). From Theorem 5.2.1 we obtain the desired result.
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Theorem 5.2.7. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let ϕ : C → R be a lower
semi-continuous and convex function. Let {Tn}∞n=1 be a family of relatively quasi-
nonexpansive mappings of C into itself such that F :=

⋂∞
n=1 F (Tn) ∩ CMP (ϕ) 6= ∅.

For any x ∈ X, define {xn} by x1 ∈ C, C1 = C and
yn = J−1

(
αnJxn + (1− αn)JTnxn

)
,

un ∈ C such that ϕ(y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ ϕ(un), ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1 x, n ≥ 1,

where {αn} ⊂ [0, 1] with lim supn→∞ αn < 1 and {rn} ⊂ (0,∞) with lim infn→∞ rn > 0.
Then {xn} converges strongly to ΠFx.

Proof. Define f(x, y) = ϕ(y) − ϕ(x) for all x, y ∈ C. Then f satisfies the conditions
(A1)-(A4). So the result follows from Theorem 5.2.1.

Remark 5.2.8. Theorem 5.2.1 mainly extends the main result announced by Takahashi-
Zembayashi [106].


