Chapter 5

Hybrid Methods for Relatively
Quasi-nonexpansive Mappings and Equilibrium
Problems

In this chapter, we study strong convergence of the sequences generated by
hybrid projection methods of relatively quasi-nonexpasive mappings and equilibrium
problems in the framework of Banach spaces.

5.1 Convergence Analysis for a System of Equilibrium Prob-
lems and a Countable Family of Relatively Quasi -
nonexpansive Mappings in Banach Spaces

Theorem 5.1.1. Let X be a uniformly convexr and uniformly smooth Banach space and
let C' be a nonempty, closed and convex subset of X. Let {f]};\il be bifunctions from
C'xC to R which satisfies conditions (A1)-(A4) and let {T;}5°, be an infinitely countable
family of closed and relatively quasi-nonexpansive mappings from C' into itself. Assume
that F .= (ﬂ;’il F(ﬂ)) N (ﬂjj\il EP(fj)) # (0. For any xo € X with 1 = Ilg, o and
Cy = C, define {x,} by

Yni = J N anJz, + (1 — o) J Ty,
unvi 7 T":f]\];[,an,fﬁl:lla" T T".fll,nynvi’

Cn-l—l - {Z S Cn . Supizl gb(Z,U,—m‘) S gb(Z,l'n)},
Tt = e, 29, n>1.

(5.1.1)

Assume that {o,} and {r;,} for j =1,2,--- M are sequences satisfying the following:
(B1) limsup,,_., an < 1;
(B2) liminf, .. 7;, > 0.

Then the sequence {x,} converges strongly to Ilpxy.

Proof. We divide our proof into six steps.

Step 1. FF C C, for all n > 1.

From Lemma 2.4.31 we know that F'(T;) is closed and convex for all i« > 1. From
Lemma 2.4.35 (4), we also know that EP(f;) is closed and convex for each j =
1,2,---, M. Hence F := <ﬂfi1 F(ﬂ)) N <ﬂjj‘i1 EP(fj)> is a nonempty, closed and
convex subset of C'. Clearly C'; = C' is closed and convex. Suppose that C} is closed
and convex for some k € N. For each z € Cy and ¢ > 1, we see that ¢(z, uy;) < ¢(z, xx)
is equivalent to

2(z, Jrg) — 2(z, Jug,;) < [ ”“sz2



1)

By the construction of the set Cj 1, we see that

Cry1 = {2€C: sup O(z,uk;) < Oz, 1) }

= m {z € Cr: (2, up,) < ¢(Zaxk)}

i=1
Hence Cy,4 is also closed and convex.
It is obvious that F' C C} = C. Now, suppose that ' C C} for some k£ € N and let

peF = (m;’; F(E)) N (njﬂil EP(fj)>. Then

o(p, ug;) = Cb(p,T?f]onTrfyjfm"'Tifnyk7i)

< Glp, Ty T2 o TH )
< ¢(p7 Ty{{nyk,z)
< (D, k)
= o(p, I (anTo+ (1 - an)J Ty
= pll* = 2(p, awJzp + (1 — o) J T,
—+ Hozijk + (1 5 ozk)JTZkaQ
< |pl* = 20u(p, Jak) — 2(1 — ax)(p, JTiy)

+ allgl® + (1 — a) || T |
= ad(p, x) + (1 — ar)o(p, Tizy)
< é(p ). (5.1.2)
Hence F' C Cly1. By induction, we can conclude that I C C), for all n > 1.

Step 2. lim,, ., ¢(z,, x() exists.

From z,, = Ilo,xo and ©,+1 = IIo, 29 € Cpy1 C C,, we have

n+1
O(xn, x0) < O(Tpi1, o), n > 1. (5.1.3)
From Lemma 2.4.29 we get that
¢($n7$0) = ¢(H0nx07$0) S ¢(p7 $0) - ¢(p7 xn) S ¢(p7 330)- (514)

Combining (5.1.3) and (5.1.4), we get that lim, .., ¢(x,, o) exists.

Step 3. {z,} is a Cauchy sequence in C.
Since z,, = lg, x9 € Cp, C C, for m > n, we obtain from Lemma 2.4.29 that

(T, Tn) = O(Tm, e, xo) < G(Tm, o) — ¢(Lle, w0, To)
= ¢($m71’0) - ¢(ﬂfn,$o)-
We see that ¢(z,,z,) — 0 as m,n — oo which implies with Lemma 2.4.26 that
|em—2,|] — 0asm,n — oo. Therefore {z,} is a Cauchy sequence. By the completeness

of the space X and the closedness of the set C', we can assume that z, — ¢ € C as
n — oo. Moreover, we get

lim ¢(zp41,2,) = 0. (5.1.5)

n—oo
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Since x,11 = ¢, ., x9 € C,11, we have for all ¢ > 1 that

n+1

¢($n+1>un,i) S ¢<xn+la xn) - 0 (516)
Applying Lemma 2.4.26 to (5.1.5) and (5.1.6), we derive

lim ||un; —x,]| =0, Vi>1. (5.1.7)

n—oo

This shows that u,,; — ¢ as n — oo for all ¢ > 1. Since J is uniformly norm-to-norm
continuous on bounded subsets of E, we obtain that

lim || Ju,,; — Jx,|| =0, Vi>1. (5.1.8)

Step 4. ¢ € (.2, F(T;).
Denote ©7 = T,{{nTrJ;’in T forany j € {1,2,---,M}and ©) = I foralln > 1.

We note that u,; = ©My, ; for all i > 1. From (5.1.2) we observe that

30, 00 Yni) < (P, 05 yni) <o < BD,Yng) < G(pwa), Vi1 (5.1.9)
Since p € EP(fy) = F(T,f]\ﬂ;n) for all n > 1, it follows from (5.1.9) and Lemma 2.4.36
that
S0, 05 Yn i) — S0, uns)

(b(pa xn) B (b(pu un,i)-

From (5.1.7) and (5.1.8), we get that lim,, .. ¢(u,:, OM 1y, ;) = 0 for all i > 1. From
Lemma 2.4.26, we have

<
<

lim |t — OM 1y, =0, Vi>1. (5.1.10)

From (5.1.7) and (5.1.10), we have

lim ||z, — ©M 1y, =0, Vi>1 (5.1.11)
and hence,
lim || Jz, — JOM 1ty || =0, Vi>1 (5.1.12)

Again, since p € EP(fy-1) F(Tr]}‘fjﬁn) for all n > 1, it follows from (5.1.9) and

Lemma 2.4.36 that

OO0 Wi 01 yni) < 0P OF P yni) — A0, O3 )
< 0(p,zn) — (P, 05" yns)-
From (5.1.11) and (5.1.12), we also have

lim [|©M 1y, — ©M~2y || =0, Vi>1. (5.1.13)

Hence, from (5.1.11) and (5.1.13), we get

lim ||z, — OM 2y, =0, Vi>1 (5.1.14)
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and

lim || Jz, — JOM 2y, .|| =0, Vi>1. (5.1.15)

n—oo

In a similar way, we can verify that
lim ||@7]\L/[_2yn,i < @ﬂ/]—gyn,i“ == lim ||@'}Lyn,i — Ynil =0
for all # > 1 and

lim ”xn - 9%_3%,1'” = O nlggo ”xn 7 yn,iH =0

n—oo

for all # > 1 and

lim || Jz, — JOM By, il =--- = lim ||Jz, — Jynl =0 (5.1.16)

n—oo

for all 2 > 1. Hence, we can conclude that
lim [|6)yn; — 0% ynull =0 (5.1.17)

foreach j =1,2,--- , M and ¢ > 1. Observe

W JYni — Jzn|| = |anJon, + (1 — an)J Tz, — Jx,||
= (1 —an)||JTizy, — Jxy||
then we obtain from (B1) and (5.1.16) that

lim ||JTz, — Jx,|| =0, Vi>1.

Since J~! is also uniformly norm-to-norm continuous on bounded subsets, we get that
lim | Tz, — x,]| =0, Vi>1.
n—oo

Since T; is closed for all ¢ > 1 and z,, — ¢, we conclude that g € (2, F(T;).
Step 5. ¢ € (L, EP(f;).

, -
From (5.1.17) and (B2), we have that ”Jez‘y"’i;‘]@% vnil _, 0 as n — oco. Then, for
J.n
each j =1,2,--- , M, we obtain that

) 1 . ) .
[0y y) + —(Y = Oy i, JOLYni — JOI Myns) > 0, Yy e C.
7,n
From (A2) we have that
| ||J®Zzyn,z B J@Zz_lyn,in > 1

— (Y = O0Yn,is JOLYni — SO Yni)
Tin Tjn

”y - @%yn,z‘

> —fi(OLyni,y) = fi(y, OLyn,), Yy e C.

From (A4) and the fact that ©%y,; — ¢ for i > 1, we get f;(y,q) < 0 for all y € C.
For each 0 < t < 1 and y € C, denote y;, = ty + (1 — t)g. Then y, € C, which
implies that f;(y:,¢) < 0. From (Al) and (A4), we obtain that 0 = f;(ys, ) <
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tfityey) + (1 — ) fi(ye,q) < tfi(y,y). Thus, f;(yr,y) > 0. From (A3), we have
filg,y) >0forally e Cand j=1,2,---, M. Hence q € ﬂjleEP(fj).

Step 6. ¢ = Ilpxy.
From z,, = Ilo, o, we have

<J;E0 — Jr,, Ty — z> >0 Vzel,.
Since F' C C,,, we also have

<J:170—J:1:n,xn—p> >0 VpeF. (5.1.18)
Letting n — oo in (5.1.18), we obtain that

<Jx0—Jq,q—p> >0 VpeF.
From Lemma 2.4.28 we conclude that ¢ = Ilrpxy. This completes the proof. O

Remark 5.1.2. Theorem 5.1.1 improves and extends Theorem 3.1 of Takahashi-Zembayashi
[105] in the following senses:

(1) from the case of an equilibrium problem to a finite family of equilibrium problems;

(2) from a single relatively nonexpansive mapping to an infinitely countable family of
relatively quasi-nonexpansive mappings;

(3) if M =1 and T; = T for all ¢ > 1, then our restriction on {a,} is weaker than
Theorem 3.1 of [105].

Remark 5.1.3. The iteration defined by (5.1.1) can be viewed as a modification of [105]
in the following ways:

Tj,n

(1) We use the composition of mappings {7, /; }3L, in the second step.

(2) We construct the set C,,,; by using the concept of supremum concerning an in-
finitely countable family of closed and relatively quasi-nonexpansive mappings

{112,

If we take a,, = 0 for all n € N in Theorem 5.1.1, then we have the following
corollary.

Corollary 5.1.4. Let X be a uniformly convex and uniformly smooth Banach space and
let C' be a nonempty, closed and convex subset of X. Let {fJ}J]Vi1 be bifunctions from
C'xC toR which satisfies conditions (A1)-(A4) and let {T;}2, be an infinitely countable
family of closed and relatively quasi-nonexpansive mappings from C into itself. Assume
that F = <ﬂfi1 F(T,)) N (ﬂjle EP(fj)> # 0. For any xg € X with x1 = g, o and
Cy = C, define {x,} by

Yni = Tin,
_ pfm M-t )
unﬂ - TT]\/[,nTT]\/Tfl,n T’I’Lnynvl’

Cn—H - {2 € Cn : Supizl Qb(Z, un,i) S Qb(Z, l’n)},
Tni1 = e,y 20, 12> 1

If liminf, .7, >0 for each j =1,2,--- .M, then {x,} converges strongly to Ipxy.
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We next give several applications of Theorem 5.1.1 in the framework of Banach
spaces and Hilbert spaces.

Let A: C'— X* be a nonlinear mapping. The variational inequality problem
is to find £ € C' such that

(Az,y—2)>0, VyeC. (5.1.19)

The solutions set of (5.1.19) is denoted by VI(C, A). For each r > 0 and x € X, define
the mapping T4 : X — C as follows:

1
Tf‘(:ﬂ):{zEC:<Az,y—z)+;<y—z,Jz—Jw) >0, VyEC’}.

Theorem 5.1.5. Let X be a uniformly convexr and uniformly smooth Banach space and
let C' be a nonempty, closed and convex subset of X. Let {A; }M be continuous and
monotone operators from C to X* and let {T;}2, be an infinitely countable family of
closed and relatively quasi-nonexpansive mappings from C' into itself such that F =

<ﬂfil F(TZ)) N (ﬂj\il VI(C, Aj)> # (. For any xy € X with x1 = I¢,x¢ and Cy = C,
define {x,} by

Yni = I Han Tz + (1 — o) J Ty,

A AmM-1 Al
Unp,; = ij“ TTM 1n T ynu

Cry1 = {Z SHOM - SUP;>1 (b(z Un;) < (2, xn)}a

T+l = HC'LJrZ 0, nZ 1.

Assume that {a,,} and {r;,} forj =1,2,--- M are sequences which satisfy conditions
(B1) and (B2) of Theorem 5.1.1. Then {x,} converges strongly to lIpx.

Proof. Define f;(x,y) = (Ajz,y —x) forall z,y € C'and j =1,2,--- , M. First, we see
that F(T7) = EP(f;) = VI(C, A;) = F(T{) for each j =1,2,- -+, M.
Next, we show that {f;}}Z, satisfy conditions (A1)-(A4).
(A1) fi(z,2) = (Ajz,o —x) =0forallz € Cand j=1,2,--- , M.
(A2) For each z,y € C' and j = 1,2,--- , M, we observe that
filz,y) + fi(y,2) = (Az,y—2) + (4y,2 —y)
= (Ajx—Ajy,y — o).

By the monotonicity of A;, we obtain that f; is monotone. Thus {f; }Jle satisfy condi-
tion (A2).

(A3) For each z,y,z € C' and j =1,2,--- , M, we have by the continuity of A; that
limsup f;(tz + (1 —t)z,y) = limsup (A;(tz + (1 —t)z),y — (tz + (1 — t)z))
t]0 tl0
<ij7 Y- SL’>
= [ilz,y).
This shows that {f;}}2, satisfy condition (A3).

?
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(A4) Let u,v € C and s € (0,1). Then, for each z € C'and j =1,2,--- , M, we have
fi (a:, su+ (1— s)v) = <Aj:v, su+ (1 —s)v— :c>
= s(Ajz,u—z)+ (1 —s)(Ajz,v—x)
= sfi(z,u) + (1 —s)fi(x,v).
Thus f; is convex in the second variable. Let u, € C' and lim,,_,o 4, = u. Then
filz,w) = (Ajzr,u—x)

lim (A;z, u, — )

n—oo

= lim f;(z,u,).

n—oo

This shows that f; is lower semi-continuous in the second variable. Hence { fj} 7 | satisfy
condition (A4). From Theorem 5.1.1 we obtain the desired result. O

If we take o, = 0 for all n € N in Theorem 5.1.5, we have the following corollary.

Corollary 5.1.6. Let X be a uniformly convex and uniformly smooth Banach space and
let C' be a nonempty, closed and convex subset of X. Let {A;}}, be continuous and
monotone operators from C to X* and let {T;}°, be an mﬁmtely countable family of
closed and relatively quasi-nonexpansive mappings from C' into itself such that F =
<ﬂfil F(Tl)) N <ﬂj\i1 VI(C, Aj)) # 0. For any xy € X with x1 = I¢,x¢ and Cy = C,
define {x,} by

Yni = Tixy,

Un,i = TAM Tf‘fz‘»ﬁ/l; T Yn,is

T1,n

Cpi1 = {Z € Cp s sup;sy ¢(2,un ;) < (2, ) },
Tpp1 = g, 29, n=>1.

If liminf, 7, >0 for each j =1,2,--- .M, then {x,} converges strongly to Ipxy.

Let ¢ : C'— R be a real-valued function. The convex minimization problem is
to find € C such that

e(2) < o(y), VyeC. (5.1.20)

The solutions set of (5.1.20) is denoted by C'M P(p). For each r > 0 and x € X, define
the mapping 77 : X — C as follows:

T¢(x)={z€C: gp(y)+%(y—z, Jz—Jz) > p(z), VyeC}.

Theorem 5.1.7. Let X be a uniformly conver and uniformly smooth Banach space
and let C'" be a nonempty, closed and convexr subset of X. Let {goj}j”il be lower semi-
continuous and convez functions from C' to R and let {T;}2, be an infinitely countable
family of closed and relatively quasi-nonexpansive mappings from C into itself such that
F = (ﬂf; F(TJ) N (ﬂjj\il C’MP(goj)> # (. For any xo € X with xy = g,z and
Cy = C, define {z,} by

Yn,i = Jﬁ (anjxn ( Q{n)J,I'zxn))

Uni = T T(’OM PRRRY Mo Yn iy

TM,n T1,n

n+1 {Z € C Supzzl Cb(Z, un,i) S ¢(Za xn)}a
Tpy1 = g, ,v9, n>1
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Assume that {oy,} and {r;,} for j =1,2,--- .M are sequences which satisfy conditions
(B1) and (B2) of Theorem 5.1.1. Then {x,} converges strongly to Ilpxy.

Proof. Define f;(z,y) = ¢;(y) — ¢;(x) for all z,y € C and j = 1,2,--- ;M. Then
F(T}) = EP(f;) = CMP(p;) = F(T{") for each j = 1,2,---, M and therefore
{f;}}L, satisfy conditions (A1) and (A2).

Next, we show that {f;}}2, satisfy conditions (A3) and (A4). For each z,y, z €

C, we have by the lower semi-continuity of ¢; that
limsup f;(tz + (1 — t)z,y) = limsup (¢;(y) — p;(tz + (1 —t)z))
t10 t10

< pi(y) — @i(z)
= =ﬂ(xay)
This implies that {f;}}Z, satisfy condition (A3).
Let u,v € C and s € (0,1). For each x € C, we have by the convexity of ¢;
that

1 (x, su+ (1— s)v) = pi(su+(1—s)v)—@;(z)

spj(u) + (1 = s)g;(v) — ¢;(@)

= s(pi(u) — @i(2)) + (1= 5)(p;(v) — ;(x))
= sfi(z,u) + (1 —s)fi(x,v).

On the other hand, let u,, € C and lim,,_.o u,, = u. By the lower semi-continuity of ¢;
we have

IA

filz,u) = @j(u) — ;)
< liminf (p;(un) — ¢;(@))
= liminf f;(z, u,).

Thus {f;}}, satisfy condition (A4). From Theorem 5.1.1 we obtain the desired result.
[

If we take o, = 0 for all n € N in Theorem 5.1.7, we have the following corollary.

Corollary 5.1.8. Let X be a uniformly convexr and uniformly smooth Banach space
and let C be a nonempty, closed and convex subset of X. Let {gpj}j]‘il be lower semi-
continuous and convez functions from C to R and let {T;}2, be an infinitely countable
family of closed and relatively quasi-nonexpansive mappings from C' into itself such that

e <ﬂ;’i1 F(TJ) N (ﬂ;‘il CMP(goj)) # (. For any xy € X with xy = g,z and
Cy = C, define {x,} by

Yni = T'ixn7
J— M TPM-1 1 )
Ung = TEM TR T2 s

C'n—O—l - {Z S Cn : Supizl ¢(Z, un,i) < ¢(Z; l’n)},

Tpp1 = g, 9, n>1.
If liminf, .7, >0 for each j =1,2,--- M, then {x,} converges strongly to Hpxy.

As a direct consequence of Theorem 5.1.1, we obtain the following application
in a Hilbert space.
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Theorem 5.1.9. Let C' be a nonempty, closed and convex subset of a Hilbert space H.
Let {f;}3L, be bifunctions from C' x C to R which satisfies conditions (A1)-(A4) and
let {T;}32, be an infinitely countable family of closed and quasi-nonexpansive mappings
from C into itself such that ' := (ﬂﬁl F(TJ) N (ﬂjj\il EP(fj)> # (). For any xg € H
with x1 = Poyxo and Cy = C, define {z,,} by

Yni = Ty + (1 — o) Ty,
g = TIM TINL T g,

Chi1 = {Z € Oy sup;sy |2 = unll <12 — |},
Tny1 = Po,, 0o, n > 1,

where P is the metric projection. Assume that {a,} and {r;,} for j = 1,2,--- M
are sequences which satisfy conditions (B1) and (B2) of Theorem 5.1.1. Then {z,}
converges strongly to Prxg.

Proof. Taking X = H a Hilbert space in Theorem 5.1.1, the result is obtained. O

Remark 5.1.10. Theorem 5.1.9 improves and extends the main results of [71, 99, 104]
in the following senses:

(1) from the case of an equilibrium problem to a system of equilibrium problems;

(2) from the class of nonexpansive mappings to the class of an infinitely countable
family of quasi-nonexpansive mappings.

5.2 A Hybrid Method for a Family of Relatively Quasi-
nonexpansive Mappings and an Equilibrium Problem
in Banach Spaces

In this section, we introduce a new hybrid algorithm for a family of relative
quasi-nonexpansive mappings and equilibrium problems in Banach spaces. Using the
concept of Mosco convergence, we prove strong convergence theorems.

Theorem 5.2.1. Let X be a uniformly convexr and uniformly smooth Banach space
and let C' be a nonempty, closed and convexr subset of X. Let f : C x C — R be a
bifunction which satisfies conditions (A1)-(A4). Let {T,}°2, be a family of relatively
quasi-nonexpansive mappings of C' into itself which satisfies the (x)-condition such that
F:=N"_, F(T,)NEP(f)#0. For any x € X, define {z,} by x1 € C, C; =C and

3471 (aann (1 —a)JT, :Bn),
un € C such that f(un,y)+ = <y Up, Jup — Jyn) >0, Yy e C,

Cop1={2€Cp:¢(z,u,) < gb(z Tn)},

xn"l‘l HC71+1 n 2 1

where {a, } C [0, 1] with limsup,,_,., o, < 1 and {r,} C (0,00) with liminf,, . r, > 0.
Then {x,} converges strongly to Ilpx.
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Proof. From Lemma 2.4.30, we see that C), is closed and convex for all n > 1. From
Lemma 2.4.31 and Lemma 2.4.35 (4), we get F := ("~ F(T,) N EP(f) is closed and
convex. We next show that F' C C, for all n > 1. Note that u, =T, vy, for all n > 1.
Let w € F'. Then for each n > 1,

d(u,un) = o(u, Ty yn) < d(u,yn) = gb(u, S (anJmn +(1- ozn)JTnxn))
< and(u,x,) + (1 — ay)o(u, Trxy)
< o(u, ). (5.2.1)
Thus u € C, for all n > 1 and hence F' C C,, for all n > 1. Since F' is nonempty,
C,, is a nonempty, closed and convex subset of E. Thus {z,} is well defined. By the

construction of the set C,, we see that {C,} is a decreasing sequence of closed and
convex subsets of E such that Cy = ("~ C,, # (). It follows by Lemma 2.2.8 that

M — lim C, = Co = [ Cp # 0.
n=1

n—oo

By Lemma 2.4.33, we get that {z,} = {Il¢,xz} converges strongly to zo = Il¢, .
Next, we show that lim, . ||z, — Thx,|| = 0. Since xy € C,, for all n > 1,
d(zo, un) < P(x0,2,) for all n > 1. From Remark 2.4.25 (2) we see that
O(Tn, un) = O(xn, x0) + O(T0, Up) + 2{xy, — 0, Jxo — JUY)
< @@, x0) + O(20, Tn) + 2(xn — To, JT0 — JUp)
= (Jlzall® = 2(en, Jwo) + ll20l) + Izl = 240, Jwa) + ll2all?)
+ 2(z,, — xo, Jxo — Juy)
= 2(x, — xo, Jx, — Jxg) + 2(xy — T0, JT0 — JUy)
2(x, — xo, Jxp, — Juy)
< 2lan — wolll[ Jan — Junl|

A

Since x,, — xg as n — 00, lim, .., ¢(zp,, u,) = 0. From Lemma 2.4.26, we obtain

nangO T — unl| = 0. (5.2.2)
This implies that

nlggo Sz, — Ju,| = 0. (5.2.3)

From (5.2.1), we know that ¢(u,y,) < é(u,z,) for all n > 1. From Lemma 2.4.36 we
have

¢(un7 yn) = ¢(T7"nyn’ yn) S ¢(u7 y?’l) - ¢(u7 T’I”nyn) S QS(U, ‘/Bn) - ¢(u’ un)

From (5.2.2) and (5.2.3) we have lim,, oo &(Un,yn) = 0; consequently, Lemma 2.4.26
asserts that

lim ||u, — yn|| = 0. (5.2.4)
It also follows from (5.2.2) and (5.2.4) that

lim ||y, — z,|| = 0. (5.2.5)
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On the other hand, we see that
(1 = a) | Tnwn — Jxul| = ([ Jyn — Tz,

which implies by limsup,,_, . a,, < 1, (5.2.5) and the uniform norm-to-norm continuity
of J! that

lim ||[JT,2z, — Jz,|| = lim ||T,2, — z,|| = 0. (5.2.6)

Since T, satisfies the (x)-condition, we have zo € ()., F(T,).
Next, we will show that zyp € EP(f). From (5.2.4) and liminf, ., 7, > 0, we

| Jvn—JTyn |l
Tn

have — 0. From u,, =T, y,, we get that

1
flun,y) + —(y — tp, Ju, — Jy,) >0, VyeC.

By (A2), we have

Ju, — Jy, 1
[[Jun = Jynll Lty = Ju, — Ty

n n

Z _f(UTL?y) Z f(yvun)a vy € C

From (A4) and u,, — xy, we get that f(y,z¢) < 0 for all y € C. For 0 < ¢t < 1 and
y € C, Define y;, = ty + (1 — t)zg. Then y, € C, which implies that f(y;, o) < 0.
From (A1), we obtain that 0 = f(ys,4:) < tf(ys,y) + (1 —1)f(ye, 20) < tf(ys,y). Thus,
f(ye,y) > 0. From (A3), we have f(xg,y) > 0 for all y € C. Hence 2y € EP(f) and
Xo € F.

Finally, we show that z¢o = I[Ipx. From x, = IIo,x and F' C C, for all n > 1,
we have

Y

1y — ual

(Jo — Jxp, 2, —p) >0 Vpe€F. (5.2.7)
By taking limit in (5.2.7), we obtain that

<J3:— J:vo,yco—p> >0 VpeF.
By Lemma 2.4.28, we conclude that xq = IIrxz. This completes the proof. O]

As a direct consequence of Theorem 5.2.1, Lemma 2.4.39, Lemma 2.4.42 and
Lemma 2.4.45, we obtain the following results concerning the approximating fixed point
of a family of relatively quasi-nonexpansive mappings in Banach spaces.

Corollary 5.2.2. Let X be a uniformly convex and uniformly smooth Banach space and
let C' be a nonempty, closed and convex subset of X. Let f : C'x C — R be a bifunction
which satisfies conditions (A1)-(A4). Let V,, be as in Lemma 2.4.39 such that F :=
N, F(T)NEP(f) #0. For any x € X, define {x,} by z, € C, C; = C and

Yo = J HanJzn + (1 — o) I Vyy),
uy, € C' such that f(u,,y) + %(y — Up, Ju, — Jy,) >0, Yy e C,
Chi1 = {z €Cp:o(z,uy) < gb(z,:cn)},

Tpp1 = g, v, n=>1,

where {ay,} C [0, 1] with limsup,,_, o, < 1 and {r,} C (0,00) with liminf,_ ., r, > 0.
Then {x,} converges strongly to Ilpx.
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Remark 5.2.3. Corollary 5.2.2 improves and extends Theorem 3.1 of [84] from two rel-
atively quasi-nonexpansive mappings to a family of relative quasi-nonexpansive map-

pings.

Corollary 5.2.4. Let X be a uniformly convex and uniformly smooth Banach space and
let C' be a nonempty, closed and convex subset of X. Let f : C x C' — R be a bifunction
which satisfies conditions (A1)-(A4). Let W, be as in Lemma 2.4.42 such that F :=
NY, F(T,) NEP(f) #0. For any = € X, define {x,} by z, € C, C, = C and

Yn = J_l(oszxn +(1- ozn)Jann),
u, € C such that  f(un,y) + -y — tn, Jun — Jyn) >0, Vy € O,

Cn—l—l —3 {Z S CTL : ¢(Z,Un) < ¢(za In)}a
Tpy1 = g, v, n>1,

where {ay,} C [0, 1] with limsup,,_, o, < 1 and {r,} C (0,00) with liminf,_ ., r, > 0.
Then {x,} converges strongly to Ilpx.

Corollary 5.2.5. Let X be a uniformly convex and uniformly smooth Banach space and
let C' be a nonempty, closed and convex subset of X. Let f : C'x C — R be a bifunction
which satisfies conditions (A1)-(A4). Let K, be as in Lemma 2.4.45 such that F :=
N, F(T)NEP(f) # 0. For any xz € X, define {x,} by z, € C, C; = C and

Yp = J (anJSL’n +(1-— an)JKna:n),
u, € C such that f(u,,y) + %(y — Up, Ju, — Jy,) >0, Yy eC,
Cr1 = {2z € Cn: ¢(z,u,) < &(z,24)},

Ty = e, v, n>1,

where {a,} C [0,1] with limsup,,_, . o, < 1 and {r,} C (0,00) withliminf,_ . r, > 0.
Then {x,} converges strongly to llpx.

We next give applications of Theorem 5.2.1.

Theorem 5.2.6. Let X be a uniformly convex and uniformly smooth Banach space and
let C' be a nonempty, closed and convexr subset of X. Let A : C — X* be a continu-
ous and monotone mapping. Let {T,}5°, be a family of relatively quasi-nonexpansive
mappings of C' into itself such that F := (., F(T,,) N VI(C,A) # 0. For any x € X,
define {x,} by x, € C, C, = C and

Yp = J‘l(oszxn + (1 - ozn)JTnxn),

u, € C' such that (Au,,y — u,) + Tln (y — U, Jup, — Jyp) >0, Yy e C,
Chi1 = {ZGC’ (2, up) <¢zxn}

Ty = g, , n>1,

where {ay,} C [0, 1] with limsup,,_,., o, < 1 and {r,} C (0,00) withliminf,_, r, > 0.
Then {x,} converges strongly to llpx.

Proof. Define f(z,y) = (Az,y — z) for all x,y € C. Then f satisfies the conditions
(A1)-(A4). From Theorem 5.2.1 we obtain the desired result. O
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Theorem 5.2.7. Let X be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty, closed and convex subset of X. Let ¢ : C — R be a lower
semi-continuous and convex function. Let {T,}°°, be a family of relatively quasi-
nonezpansive mappings of C into itself such that F = (", F(T,,) N CMP(p) # 0.
For any x € X, define {z,} byxy € C, C, =C and

Yo = J HanJzn + (1 — o) I Tyy,),
u, € C' such that ¢(y) + %(y — Upy JUy — JYn) > o(uy,), Yy e C,
Cn—l—l = {Z S CTL : ¢<Z7un) S ¢(Z,In)},

Tpp1 = g, v, n=>1,

where {ay,} C [0, 1] with limsup,,_,, o, < 1 and {r,} C (0,00) with liminf,_ .., r, > 0.
Then {x,} converges strongly to Ilpx.

Proof. Define f(z,y) = p(y) — ¢(z) for all z,y € C. Then f satisfies the conditions
(A1)-(A4). So the result follows from Theorem 5.2.1. O

Remark 5.2.8. Theorem 5.2.1 mainly extends the main result announced by Takahashi-
Zembayashi [106].



