

Chapter 5

Hybrid Methods for Relatively Quasi-nonexpansive Mappings and Equilibrium Problems

In this chapter, we study strong convergence of the sequences generated by hybrid projection methods of relatively quasi-nonexpansive mappings and equilibrium problems in the framework of Banach spaces.

5.1 Convergence Analysis for a System of Equilibrium Problems and a Countable Family of Relatively Quasi - nonexpansive Mappings in Banach Spaces

Theorem 5.1.1. *Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $\{f_j\}_{j=1}^M$ be bifunctions from $C \times C$ to \mathbb{R} which satisfies conditions (A1)-(A4) and let $\{T_i\}_{i=1}^\infty$ be an infinitely countable family of closed and relatively quasi-nonexpansive mappings from C into itself. Assume that $F := \left(\bigcap_{i=1}^\infty F(T_i) \right) \cap \left(\bigcap_{j=1}^M EP(f_j) \right) \neq \emptyset$. For any $x_0 \in X$ with $x_1 = \Pi_{C_1} x_0$ and $C_1 = C$, define $\{x_n\}$ by*

$$\begin{cases} y_{n,i} = J^{-1}(\alpha_n Jx_n + (1 - \alpha_n) JT_i x_n), \\ u_{n,i} = T_{r_{M,n}}^{f_M} T_{r_{M-1,n}}^{f_{M-1}} \cdots T_{r_{1,n}}^{f_1} y_{n,i}, \\ C_{n+1} = \{z \in C_n : \sup_{i \geq 1} \phi(z, u_{n,i}) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x_0, \quad n \geq 1. \end{cases} \quad (5.1.1)$$

Assume that $\{\alpha_n\}$ and $\{r_{j,n}\}$ for $j = 1, 2, \dots, M$ are sequences satisfying the following:

- (B1) $\limsup_{n \rightarrow \infty} \alpha_n < 1$;
- (B2) $\liminf_{n \rightarrow \infty} r_{j,n} > 0$.

Then the sequence $\{x_n\}$ converges strongly to $\Pi_F x_0$.

Proof. We divide our proof into six steps.

Step 1. $F \subset C_n$ for all $n \geq 1$.

From Lemma 2.4.31 we know that $F(T_i)$ is closed and convex for all $i \geq 1$. From Lemma 2.4.35 (4), we also know that $EP(f_j)$ is closed and convex for each $j = 1, 2, \dots, M$. Hence $F := \left(\bigcap_{i=1}^\infty F(T_i) \right) \cap \left(\bigcap_{j=1}^M EP(f_j) \right)$ is a nonempty, closed and convex subset of C . Clearly $C_1 = C$ is closed and convex. Suppose that C_k is closed and convex for some $k \in \mathbb{N}$. For each $z \in C_k$ and $i \geq 1$, we see that $\phi(z, u_{k,i}) \leq \phi(z, x_k)$ is equivalent to

$$2\langle z, Jx_k \rangle - 2\langle z, Ju_{k,i} \rangle \leq \|x_k\|^2 - \|u_{k,i}\|^2.$$

By the construction of the set C_{k+1} , we see that

$$\begin{aligned} C_{k+1} &= \{z \in C_k : \sup_{i \geq 1} \phi(z, u_{k,i}) \leq \phi(z, x_k)\} \\ &= \bigcap_{i=1}^{\infty} \{z \in C_k : \phi(z, u_{k,i}) \leq \phi(z, x_k)\}. \end{aligned}$$

Hence C_{k+1} is also closed and convex.

It is obvious that $F \subset C_1 = C$. Now, suppose that $F \subset C_k$ for some $k \in \mathbb{N}$ and let $p \in F := \left(\bigcap_{i=1}^{\infty} F(T_i) \right) \cap \left(\bigcap_{j=1}^M EP(f_j) \right)$. Then

$$\begin{aligned} \phi(p, u_{k,i}) &= \phi(p, T_{r_{M,n}}^{f_M} T_{r_{M-1,n}}^{f_{M-1}} \cdots T_{r_{1,n}}^{f_1} y_{k,i}) \\ &\leq \phi(p, T_{r_{M-1,n}}^{f_{M-1}} T_{r_{M-2,n}}^{f_{M-2}} \cdots T_{r_{1,n}}^{f_1} y_{k,i}) \\ &\quad \vdots \\ &\leq \phi(p, T_{r_{1,n}}^{f_1} y_{k,i}) \\ &\leq \phi(p, y_{k,i}) \\ &= \phi(p, J^{-1}(\alpha_k Jx_k + (1 - \alpha_k) JT_i x_k)) \\ &= \|p\|^2 - 2\langle p, \alpha_k Jx_k + (1 - \alpha_k) JT_i x_k \rangle \\ &\quad + \|\alpha_k Jx_k + (1 - \alpha_k) JT_i x_k\|^2 \\ &\leq \|p\|^2 - 2\alpha_k \langle p, Jx_k \rangle - 2(1 - \alpha_k) \langle p, JT_i x_k \rangle \\ &\quad + \alpha_k \|x_k\|^2 + (1 - \alpha_k) \|T_i x_k\|^2 \\ &= \alpha_k \phi(p, x_k) + (1 - \alpha_k) \phi(p, T_i x_k) \\ &\leq \phi(p, x_k). \end{aligned} \tag{5.1.2}$$

Hence $F \subset C_{k+1}$. By induction, we can conclude that $F \subset C_n$ for all $n \geq 1$.

Step 2. $\lim_{n \rightarrow \infty} \phi(x_n, x_0)$ exists.

From $x_n = \Pi_{C_n} x_0$ and $x_{n+1} = \Pi_{C_{n+1}} x_0 \in C_{n+1} \subset C_n$, we have

$$\phi(x_n, x_0) \leq \phi(x_{n+1}, x_0), \quad n \geq 1. \tag{5.1.3}$$

From Lemma 2.4.29 we get that

$$\phi(x_n, x_0) = \phi(\Pi_{C_n} x_0, x_0) \leq \phi(p, x_0) - \phi(p, x_n) \leq \phi(p, x_0). \tag{5.1.4}$$

Combining (5.1.3) and (5.1.4), we get that $\lim_{n \rightarrow \infty} \phi(x_n, x_0)$ exists.

Step 3. $\{x_n\}$ is a Cauchy sequence in C .

Since $x_m = \Pi_{C_m} x_0 \in C_m \subset C_n$ for $m > n$, we obtain from Lemma 2.4.29 that

$$\begin{aligned} \phi(x_m, x_n) &= \phi(x_m, \Pi_{C_n} x_0) \leq \phi(x_m, x_0) - \phi(\Pi_{C_n} x_0, x_0) \\ &= \phi(x_m, x_0) - \phi(x_n, x_0). \end{aligned}$$

We see that $\phi(x_m, x_n) \rightarrow 0$ as $m, n \rightarrow \infty$ which implies with Lemma 2.4.26 that $\|x_m - x_n\| \rightarrow 0$ as $m, n \rightarrow \infty$. Therefore $\{x_n\}$ is a Cauchy sequence. By the completeness of the space X and the closedness of the set C , we can assume that $x_n \rightarrow q \in C$ as $n \rightarrow \infty$. Moreover, we get

$$\lim_{n \rightarrow \infty} \phi(x_{n+1}, x_n) = 0. \tag{5.1.5}$$

Since $x_{n+1} = \Pi_{C_{n+1}} x_0 \in C_{n+1}$, we have for all $i \geq 1$ that

$$\phi(x_{n+1}, u_{n,i}) \leq \phi(x_{n+1}, x_n) \rightarrow 0. \quad (5.1.6)$$

Applying Lemma 2.4.26 to (5.1.5) and (5.1.6), we derive

$$\lim_{n \rightarrow \infty} \|u_{n,i} - x_n\| = 0, \quad \forall i \geq 1. \quad (5.1.7)$$

This shows that $u_{n,i} \rightarrow q$ as $n \rightarrow \infty$ for all $i \geq 1$. Since J is uniformly norm-to-norm continuous on bounded subsets of E , we obtain that

$$\lim_{n \rightarrow \infty} \|Ju_{n,i} - Jx_n\| = 0, \quad \forall i \geq 1. \quad (5.1.8)$$

Step 4. $q \in \bigcap_{i=1}^{\infty} F(T_i)$.

Denote $\Theta_n^j = T_{r_{j,n}}^{f_j} T_{r_{j-1,n}}^{f_{j-1}} \cdots T_{r_{1,n}}^{f_1}$ for any $j \in \{1, 2, \dots, M\}$ and $\Theta_n^0 = I$ for all $n \geq 1$. We note that $u_{n,i} = \Theta_n^M y_{n,i}$ for all $i \geq 1$. From (5.1.2) we observe that

$$\phi(p, \Theta_n^{M-1} y_{n,i}) \leq \phi(p, \Theta_n^{M-2} y_{n,i}) \leq \cdots \leq \phi(p, y_{n,i}) \leq \phi(p, x_n), \quad \forall i \geq 1. \quad (5.1.9)$$

Since $p \in EP(f_M) = F(T_{r_{M,n}}^{f_M})$ for all $n \geq 1$, it follows from (5.1.9) and Lemma 2.4.36 that

$$\begin{aligned} \phi(u_{n,i}, \Theta_n^{M-1} y_{n,i}) &\leq \phi(p, \Theta_n^{M-1} y_{n,i}) - \phi(p, u_{n,i}) \\ &\leq \phi(p, x_n) - \phi(p, u_{n,i}). \end{aligned}$$

From (5.1.7) and (5.1.8), we get that $\lim_{n \rightarrow \infty} \phi(u_{n,i}, \Theta_n^{M-1} y_{n,i}) = 0$ for all $i \geq 1$. From Lemma 2.4.26, we have

$$\lim_{n \rightarrow \infty} \|u_{n,i} - \Theta_n^{M-1} y_{n,i}\| = 0, \quad \forall i \geq 1. \quad (5.1.10)$$

From (5.1.7) and (5.1.10), we have

$$\lim_{n \rightarrow \infty} \|x_n - \Theta_n^{M-1} y_{n,i}\| = 0, \quad \forall i \geq 1 \quad (5.1.11)$$

and hence,

$$\lim_{n \rightarrow \infty} \|Jx_n - J\Theta_n^{M-1} y_{n,i}\| = 0, \quad \forall i \geq 1 \quad (5.1.12)$$

Again, since $p \in EP(f_{M-1}) = F(T_{r_{M-1,n}}^{f_{M-1}})$ for all $n \geq 1$, it follows from (5.1.9) and Lemma 2.4.36 that

$$\begin{aligned} \phi(\Theta_n^{M-1} y_{n,i}, \Theta_n^{M-2} y_{n,i}) &\leq \phi(p, \Theta_n^{M-2} y_{n,i}) - \phi(p, \Theta_n^{M-1} y_{n,i}) \\ &\leq \phi(p, x_n) - \phi(p, \Theta_n^{M-1} y_{n,i}). \end{aligned}$$

From (5.1.11) and (5.1.12), we also have

$$\lim_{n \rightarrow \infty} \|\Theta_n^{M-1} y_{n,i} - \Theta_n^{M-2} y_{n,i}\| = 0, \quad \forall i \geq 1. \quad (5.1.13)$$

Hence, from (5.1.11) and (5.1.13), we get

$$\lim_{n \rightarrow \infty} \|x_n - \Theta_n^{M-2} y_{n,i}\| = 0, \quad \forall i \geq 1 \quad (5.1.14)$$

and

$$\lim_{n \rightarrow \infty} \|Jx_n - J\Theta_n^{M-2}y_{n,i}\| = 0, \quad \forall i \geq 1. \quad (5.1.15)$$

In a similar way, we can verify that

$$\lim_{n \rightarrow \infty} \|\Theta_n^{M-2}y_{n,i} - \Theta_n^{M-3}y_{n,i}\| = \cdots = \lim_{n \rightarrow \infty} \|\Theta_n^1y_{n,i} - y_{n,i}\| = 0$$

for all $i \geq 1$ and

$$\lim_{n \rightarrow \infty} \|x_n - \Theta_n^{M-3}y_{n,i}\| = \cdots = \lim_{n \rightarrow \infty} \|x_n - y_{n,i}\| = 0$$

for all $i \geq 1$ and

$$\lim_{n \rightarrow \infty} \|Jx_n - J\Theta_n^{M-3}y_{n,i}\| = \cdots = \lim_{n \rightarrow \infty} \|Jx_n - Jy_{n,i}\| = 0 \quad (5.1.16)$$

for all $i \geq 1$. Hence, we can conclude that

$$\lim_{n \rightarrow \infty} \|\Theta_n^jy_{n,i} - \Theta_n^{j-1}y_{n,i}\| = 0 \quad (5.1.17)$$

for each $j = 1, 2, \dots, M$ and $i \geq 1$. Observe

$$\begin{aligned} \|Jy_{n,i} - Jx_n\| &= \|\alpha_n Jx_n + (1 - \alpha_n)JT_i x_n - Jx_n\| \\ &= (1 - \alpha_n) \|JT_i x_n - Jx_n\| \end{aligned}$$

then we obtain from (B1) and (5.1.16) that

$$\lim_{n \rightarrow \infty} \|JT_i x_n - Jx_n\| = 0, \quad \forall i \geq 1.$$

Since J^{-1} is also uniformly norm-to-norm continuous on bounded subsets, we get that

$$\lim_{n \rightarrow \infty} \|T_i x_n - x_n\| = 0, \quad \forall i \geq 1.$$

Since T_i is closed for all $i \geq 1$ and $x_n \rightarrow q$, we conclude that $q \in \bigcap_{i=1}^{\infty} F(T_i)$.

Step 5. $q \in \bigcap_{j=1}^M EP(f_j)$.

From (5.1.17) and (B2), we have that $\frac{\|J\Theta_n^jy_{n,i} - J\Theta_n^{j-1}y_{n,i}\|}{r_{j,n}} \rightarrow 0$ as $n \rightarrow \infty$. Then, for each $j = 1, 2, \dots, M$, we obtain that

$$f_j(\Theta_n^jy_{n,i}, y) + \frac{1}{r_{j,n}} \langle y - \Theta_n^jy_{n,i}, J\Theta_n^jy_{n,i} - J\Theta_n^{j-1}y_{n,i} \rangle \geq 0, \quad \forall y \in C.$$

From (A2) we have that

$$\begin{aligned} \|y - \Theta_n^jy_{n,i}\| \frac{\|J\Theta_n^jy_{n,i} - J\Theta_n^{j-1}y_{n,i}\|}{r_{j,n}} &\geq \frac{1}{r_{j,n}} \langle y - \Theta_n^jy_{n,i}, J\Theta_n^jy_{n,i} - J\Theta_n^{j-1}y_{n,i} \rangle \\ &\geq -f_j(\Theta_n^jy_{n,i}, y) \geq f_j(y, \Theta_n^jy_{n,i}), \quad \forall y \in C. \end{aligned}$$

From (A4) and the fact that $\Theta_n^jy_{n,i} \rightarrow q$ for $i \geq 1$, we get $f_j(y, q) \leq 0$ for all $y \in C$. For each $0 < t < 1$ and $y \in C$, denote $y_t = ty + (1 - t)q$. Then $y_t \in C$, which implies that $f_j(y_t, q) \leq 0$. From (A1) and (A4), we obtain that $0 = f_j(y_t, y_t) \leq$

$tf_j(y_t, y) + (1 - t)f_j(y_t, q) \leq tf_j(y_t, y)$. Thus, $f_j(y_t, y) \geq 0$. From (A3), we have $f_j(q, y) \geq 0$ for all $y \in C$ and $j = 1, 2, \dots, M$. Hence $q \in \bigcap_{j=1}^M EP(f_j)$.

Step 6. $q = \Pi_F x_0$.

From $x_n = \Pi_{C_n} x_0$, we have

$$\langle Jx_0 - Jx_n, x_n - z \rangle \geq 0 \quad \forall z \in C_n.$$

Since $F \subset C_n$, we also have

$$\langle Jx_0 - Jx_n, x_n - p \rangle \geq 0 \quad \forall p \in F. \quad (5.1.18)$$

Letting $n \rightarrow \infty$ in (5.1.18), we obtain that

$$\langle Jx_0 - Jq, q - p \rangle \geq 0 \quad \forall p \in F.$$

From Lemma 2.4.28 we conclude that $q = \Pi_F x_0$. This completes the proof. \square

Remark 5.1.2. Theorem 5.1.1 improves and extends Theorem 3.1 of Takahashi-Zembayashi [105] in the following senses:

- (1) from the case of an equilibrium problem to a finite family of equilibrium problems;
- (2) from a single relatively nonexpansive mapping to an infinitely countable family of relatively quasi-nonexpansive mappings;
- (3) if $M = 1$ and $T_i = T$ for all $i \geq 1$, then our restriction on $\{\alpha_n\}$ is weaker than Theorem 3.1 of [105].

Remark 5.1.3. The iteration defined by (5.1.1) can be viewed as a modification of [105] in the following ways:

- (1) We use the composition of mappings $\{T_{r_{j,n}}^{f_j}\}_{j=1}^M$ in the second step.
- (2) We construct the set C_{n+1} by using the concept of supremum concerning an infinitely countable family of closed and relatively quasi-nonexpansive mappings $\{T_i\}_{i=1}^\infty$.

If we take $\alpha_n = 0$ for all $n \in \mathbb{N}$ in Theorem 5.1.1, then we have the following corollary.

Corollary 5.1.4. Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $\{f_j\}_{j=1}^M$ be bifunctions from $C \times C$ to \mathbb{R} which satisfies conditions (A1)-(A4) and let $\{T_i\}_{i=1}^\infty$ be an infinitely countable family of closed and relatively quasi-nonexpansive mappings from C into itself. Assume that $F := \left(\bigcap_{i=1}^\infty F(T_i) \right) \cap \left(\bigcap_{j=1}^M EP(f_j) \right) \neq \emptyset$. For any $x_0 \in X$ with $x_1 = \Pi_{C_1} x_0$ and $C_1 = C$, define $\{x_n\}$ by

$$\begin{cases} y_{n,i} = T_i x_n, \\ u_{n,i} = T_{r_{M,n}}^{f_M} T_{r_{M-1,n}}^{f_{M-1}} \cdots T_{r_{1,n}}^{f_1} y_{n,i}, \\ C_{n+1} = \{z \in C_n : \sup_{i \geq 1} \phi(z, u_{n,i}) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x_0, \quad n \geq 1. \end{cases}$$

If $\liminf_{n \rightarrow \infty} r_{j,n} > 0$ for each $j = 1, 2, \dots, M$, then $\{x_n\}$ converges strongly to $\Pi_F x_0$.

We next give several applications of Theorem 5.1.1 in the framework of Banach spaces and Hilbert spaces.

Let $A : C \rightarrow X^*$ be a nonlinear mapping. The variational inequality problem is to find $\hat{x} \in C$ such that

$$\langle A\hat{x}, y - \hat{x} \rangle \geq 0, \quad \forall y \in C. \quad (5.1.19)$$

The solutions set of (5.1.19) is denoted by $VI(C, A)$. For each $r > 0$ and $x \in X$, define the mapping $T_r^A : X \rightarrow C$ as follows:

$$T_r^A(x) = \left\{ z \in C : \langle Az, y - z \rangle + \frac{1}{r} \langle y - z, Jz - Jx \rangle \geq 0, \quad \forall y \in C \right\}.$$

Theorem 5.1.5. *Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $\{A_j\}_{j=1}^M$ be continuous and monotone operators from C to X^* and let $\{T_i\}_{i=1}^\infty$ be an infinitely countable family of closed and relatively quasi-nonexpansive mappings from C into itself such that $F := \left(\bigcap_{i=1}^\infty F(T_i) \right) \cap \left(\bigcap_{j=1}^M VI(C, A_j) \right) \neq \emptyset$. For any $x_0 \in X$ with $x_1 = \Pi_{C_1} x_0$ and $C_1 = C$, define $\{x_n\}$ by*

$$\begin{cases} y_{n,i} = J^{-1}(\alpha_n Jx_n + (1 - \alpha_n) JT_i x_n), \\ u_{n,i} = T_{r_{M,n}}^{A_{M-1}} \cdots T_{r_{1,n}}^{A_1} y_{n,i}, \\ C_{n+1} = \left\{ z \in C_n : \sup_{i \geq 1} \phi(z, u_{n,i}) \leq \phi(z, x_n) \right\}, \\ x_{n+1} = \Pi_{C_{n+1}} x_0, \quad n \geq 1. \end{cases}$$

Assume that $\{\alpha_n\}$ and $\{r_{j,n}\}$ for $j = 1, 2, \dots, M$ are sequences which satisfy conditions (B1) and (B2) of Theorem 5.1.1. Then $\{x_n\}$ converges strongly to $\Pi_F x_0$.

Proof. Define $f_j(x, y) = \langle A_j x, y - x \rangle$ for all $x, y \in C$ and $j = 1, 2, \dots, M$. First, we see that $F(T_{r_j}^{f_j}) = EP(f_j) = VI(C, A_j) = F(T_{r_j}^{A_j})$ for each $j = 1, 2, \dots, M$.

Next, we show that $\{f_j\}_{j=1}^M$ satisfy conditions (A1)-(A4).

(A1) $f_j(x, x) = \langle A_j x, x - x \rangle = 0$ for all $x \in C$ and $j = 1, 2, \dots, M$.

(A2) For each $x, y \in C$ and $j = 1, 2, \dots, M$, we observe that

$$\begin{aligned} f_j(x, y) + f_j(y, x) &= \langle A_j x, y - x \rangle + \langle A_j y, x - y \rangle \\ &= \langle A_j x - A_j y, y - x \rangle. \end{aligned}$$

By the monotonicity of A_j , we obtain that f_j is monotone. Thus $\{f_j\}_{j=1}^M$ satisfy condition (A2).

(A3) For each $x, y, z \in C$ and $j = 1, 2, \dots, M$, we have by the continuity of A_j that

$$\begin{aligned} \limsup_{t \downarrow 0} f_j(tz + (1 - t)x, y) &= \limsup_{t \downarrow 0} \langle A_j(tz + (1 - t)x), y - (tz + (1 - t)x) \rangle \\ &= \langle A_j x, y - x \rangle \\ &= f_j(x, y). \end{aligned}$$

This shows that $\{f_j\}_{j=1}^M$ satisfy condition (A3).

(A4) Let $u, v \in C$ and $s \in (0, 1)$. Then, for each $x \in C$ and $j = 1, 2, \dots, M$, we have

$$\begin{aligned} f_j(x, su + (1-s)v) &= \langle A_j x, su + (1-s)v - x \rangle \\ &= s \langle A_j x, u - x \rangle + (1-s) \langle A_j x, v - x \rangle \\ &= sf_j(x, u) + (1-s)f_j(x, v). \end{aligned}$$

Thus f_j is convex in the second variable. Let $u_n \in C$ and $\lim_{n \rightarrow \infty} u_n = u$. Then

$$\begin{aligned} f_j(x, u) &= \langle A_j x, u - x \rangle \\ &= \lim_{n \rightarrow \infty} \langle A_j x, u_n - x \rangle \\ &= \lim_{n \rightarrow \infty} f_j(x, u_n). \end{aligned}$$

This shows that f_j is lower semi-continuous in the second variable. Hence $\{f_j\}_{j=1}^M$ satisfy condition (A4). From Theorem 5.1.1 we obtain the desired result. \square

If we take $\alpha_n = 0$ for all $n \in \mathbb{N}$ in Theorem 5.1.5, we have the following corollary.

Corollary 5.1.6. *Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $\{A_j\}_{j=1}^M$ be continuous and monotone operators from C to X^* and let $\{T_i\}_{i=1}^\infty$ be an infinitely countable family of closed and relatively quasi-nonexpansive mappings from C into itself such that $F := \left(\bigcap_{i=1}^\infty F(T_i) \right) \cap \left(\bigcap_{j=1}^M VI(C, A_j) \right) \neq \emptyset$. For any $x_0 \in X$ with $x_1 = \Pi_{C_1} x_0$ and $C_1 = C$, define $\{x_n\}$ by*

$$\begin{cases} y_{n,i} = T_i x_n, \\ u_{n,i} = T_{r_{M,n}}^{A_M} T_{r_{M-1,n}}^{A_{M-1}} \cdots T_{r_{1,n}}^{A_1} y_{n,i}, \\ C_{n+1} = \{z \in C_n : \sup_{i \geq 1} \phi(z, u_{n,i}) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x_0, \quad n \geq 1. \end{cases}$$

If $\liminf_{n \rightarrow \infty} r_{j,n} > 0$ for each $j = 1, 2, \dots, M$, then $\{x_n\}$ converges strongly to $\Pi_F x_0$.

Let $\varphi : C \rightarrow \mathbb{R}$ be a real-valued function. The convex minimization problem is to find $\hat{x} \in C$ such that

$$\varphi(\hat{x}) \leq \varphi(y), \quad \forall y \in C. \quad (5.1.20)$$

The solutions set of (5.1.20) is denoted by $CMP(\varphi)$. For each $r > 0$ and $x \in X$, define the mapping $T_r^\varphi : X \rightarrow C$ as follows:

$$T_r^\varphi(x) = \{z \in C : \varphi(y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \geq \varphi(z), \quad \forall y \in C\}.$$

Theorem 5.1.7. *Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $\{\varphi_j\}_{j=1}^M$ be lower semi-continuous and convex functions from C to \mathbb{R} and let $\{T_i\}_{i=1}^\infty$ be an infinitely countable family of closed and relatively quasi-nonexpansive mappings from C into itself such that $F := \left(\bigcap_{i=1}^\infty F(T_i) \right) \cap \left(\bigcap_{j=1}^M CMP(\varphi_j) \right) \neq \emptyset$. For any $x_0 \in X$ with $x_1 = \Pi_{C_1} x_0$ and $C_1 = C$, define $\{x_n\}$ by*

$$\begin{cases} y_{n,i} = J^{-1}(\alpha_n J x_n + (1-\alpha_n) J T_i x_n), \\ u_{n,i} = T_{r_{M,n}}^{\varphi_M} T_{r_{M-1,n}}^{\varphi_{M-1}} \cdots T_{r_{1,n}}^{\varphi_1} y_{n,i}, \\ C_{n+1} = \{z \in C_n : \sup_{i \geq 1} \phi(z, u_{n,i}) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x_0, \quad n \geq 1. \end{cases}$$

Assume that $\{\alpha_n\}$ and $\{r_{j,n}\}$ for $j = 1, 2, \dots, M$ are sequences which satisfy conditions (B1) and (B2) of Theorem 5.1.1. Then $\{x_n\}$ converges strongly to $\Pi_F x_0$.

Proof. Define $f_j(x, y) = \varphi_j(y) - \varphi_j(x)$ for all $x, y \in C$ and $j = 1, 2, \dots, M$. Then $F(T_{r_j}^{f_j}) = EP(f_j) = CMP(\varphi_j) = F(T_{r_j}^{\varphi_j})$ for each $j = 1, 2, \dots, M$ and therefore $\{f_j\}_{j=1}^M$ satisfy conditions (A1) and (A2).

Next, we show that $\{f_j\}_{j=1}^M$ satisfy conditions (A3) and (A4). For each $x, y, z \in C$, we have by the lower semi-continuity of φ_j that

$$\begin{aligned} \limsup_{t \downarrow 0} f_j(tz + (1-t)x, y) &= \limsup_{t \downarrow 0} (\varphi_j(y) - \varphi_j(tz + (1-t)x)) \\ &\leq \varphi_j(y) - \varphi_j(x) \\ &= f_j(x, y). \end{aligned}$$

This implies that $\{f_j\}_{j=1}^M$ satisfy condition (A3).

Let $u, v \in C$ and $s \in (0, 1)$. For each $x \in C$, we have by the convexity of φ_j that

$$\begin{aligned} f_j(x, su + (1-s)v) &= \varphi_j(su + (1-s)v) - \varphi_j(x) \\ &\leq s\varphi_j(u) + (1-s)\varphi_j(v) - \varphi_j(x) \\ &= s(\varphi_j(u) - \varphi_j(x)) + (1-s)(\varphi_j(v) - \varphi_j(x)) \\ &= sf_j(x, u) + (1-s)f_j(x, v). \end{aligned}$$

On the other hand, let $u_n \in C$ and $\lim_{n \rightarrow \infty} u_n = u$. By the lower semi-continuity of φ_j we have

$$\begin{aligned} f_j(x, u) &= \varphi_j(u) - \varphi_j(x) \\ &\leq \liminf_{n \rightarrow \infty} (\varphi_j(u_n) - \varphi_j(x)) \\ &= \liminf_{n \rightarrow \infty} f_j(x, u_n). \end{aligned}$$

Thus $\{f_j\}_{j=1}^M$ satisfy condition (A4). From Theorem 5.1.1 we obtain the desired result. \square

If we take $\alpha_n = 0$ for all $n \in \mathbb{N}$ in Theorem 5.1.7, we have the following corollary.

Corollary 5.1.8. *Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $\{\varphi_j\}_{j=1}^M$ be lower semi-continuous and convex functions from C to \mathbb{R} and let $\{T_i\}_{i=1}^\infty$ be an infinitely countable family of closed and relatively quasi-nonexpansive mappings from C into itself such that $F := \left(\bigcap_{i=1}^\infty F(T_i) \right) \cap \left(\bigcap_{j=1}^M CMP(\varphi_j) \right) \neq \emptyset$. For any $x_0 \in X$ with $x_1 = \Pi_{C_1} x_0$ and $C_1 = C$, define $\{x_n\}$ by*

$$\begin{cases} y_{n,i} = T_i x_n, \\ u_{n,i} = T_{r_{M,n}}^{\varphi_M} T_{r_{M-1,n}}^{\varphi_{M-1}} \cdots T_{r_{1,n}}^{\varphi_1} y_{n,i}, \\ C_{n+1} = \{z \in C_n : \sup_{i \geq 1} \phi(z, u_{n,i}) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x_0, \quad n \geq 1. \end{cases}$$

If $\liminf_{n \rightarrow \infty} r_{j,n} > 0$ for each $j = 1, 2, \dots, M$, then $\{x_n\}$ converges strongly to $\Pi_F x_0$.

As a direct consequence of Theorem 5.1.1, we obtain the following application in a Hilbert space.

Theorem 5.1.9. Let C be a nonempty, closed and convex subset of a Hilbert space H . Let $\{f_j\}_{j=1}^M$ be bifunctions from $C \times C$ to \mathbb{R} which satisfies conditions (A1)-(A4) and let $\{T_i\}_{i=1}^\infty$ be an infinitely countable family of closed and quasi-nonexpansive mappings from C into itself such that $F := \left(\bigcap_{i=1}^\infty F(T_i)\right) \cap \left(\bigcap_{j=1}^M EP(f_j)\right) \neq \emptyset$. For any $x_0 \in H$ with $x_1 = P_{C_1}x_0$ and $C_1 = C$, define $\{x_n\}$ by

$$\begin{cases} y_{n,i} = \alpha_n x_n + (1 - \alpha_n) T_i x_n, \\ u_{n,i} = T_{r_{M,n}}^{f_M} T_{r_{M-1,n}}^{f_{M-1}} \cdots T_{r_{1,n}}^{f_1} y_{n,i}, \\ C_{n+1} = \{z \in C_n : \sup_{i \geq 1} \|z - u_{n,i}\| \leq \|z - x_n\|\}, \\ x_{n+1} = P_{C_{n+1}} x_0, \quad n \geq 1, \end{cases}$$

where P is the metric projection. Assume that $\{\alpha_n\}$ and $\{r_{j,n}\}$ for $j = 1, 2, \dots, M$ are sequences which satisfy conditions (B1) and (B2) of Theorem 5.1.1. Then $\{x_n\}$ converges strongly to $P_F x_0$.

Proof. Taking $X = H$ a Hilbert space in Theorem 5.1.1, the result is obtained. \square

Remark 5.1.10. Theorem 5.1.9 improves and extends the main results of [71, 99, 104] in the following senses:

- (1) from the case of an equilibrium problem to a system of equilibrium problems;
- (2) from the class of nonexpansive mappings to the class of an infinitely countable family of quasi-nonexpansive mappings.

5.2 A Hybrid Method for a Family of Relatively Quasi-nonexpansive Mappings and an Equilibrium Problem in Banach Spaces

In this section, we introduce a new hybrid algorithm for a family of relative quasi-nonexpansive mappings and equilibrium problems in Banach spaces. Using the concept of Mosco convergence, we prove strong convergence theorems.

Theorem 5.2.1. Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $f : C \times C \rightarrow \mathbb{R}$ be a bifunction which satisfies conditions (A1)-(A4). Let $\{T_n\}_{n=1}^\infty$ be a family of relatively quasi-nonexpansive mappings of C into itself which satisfies the $(*)$ -condition such that $F := \bigcap_{n=1}^\infty F(T_n) \cap EP(f) \neq \emptyset$. For any $x \in X$, define $\{x_n\}$ by $x_1 \in C$, $C_1 = C$ and

$$\begin{cases} y_n = J^{-1}(\alpha_n J x_n + (1 - \alpha_n) J T_n x_n), \\ u_n \in C \text{ such that } f(u_n, y) + \frac{1}{r_n} \langle y - u_n, J u_n - J y_n \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x, \quad n \geq 1, \end{cases}$$

where $\{\alpha_n\} \subset [0, 1]$ with $\limsup_{n \rightarrow \infty} \alpha_n < 1$ and $\{r_n\} \subset (0, \infty)$ with $\liminf_{n \rightarrow \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $\Pi_F x$.

Proof. From Lemma 2.4.30, we see that C_n is closed and convex for all $n \geq 1$. From Lemma 2.4.31 and Lemma 2.4.35 (4), we get $F := \bigcap_{n=1}^{\infty} F(T_n) \cap EP(f)$ is closed and convex. We next show that $F \subset C_n$ for all $n \geq 1$. Note that $u_n = T_{r_n}y_n$ for all $n \geq 1$. Let $u \in F$. Then for each $n \geq 1$,

$$\begin{aligned}\phi(u, u_n) = \phi(u, T_{r_n}y_n) &\leq \phi(u, y_n) = \phi\left(u, J^{-1}(\alpha_n Jx_n + (1 - \alpha_n)JT_nx_n)\right) \\ &\leq \alpha_n\phi(u, x_n) + (1 - \alpha_n)\phi(u, T_nx_n) \\ &\leq \phi(u, x_n).\end{aligned}\tag{5.2.1}$$

Thus $u \in C_n$ for all $n \geq 1$ and hence $F \subset C_n$ for all $n \geq 1$. Since F is nonempty, C_n is a nonempty, closed and convex subset of E . Thus $\{x_n\}$ is well defined. By the construction of the set C_n , we see that $\{C_n\}$ is a decreasing sequence of closed and convex subsets of E such that $C_0 = \bigcap_{n=1}^{\infty} C_n \neq \emptyset$. It follows by Lemma 2.2.8 that

$$M - \lim_{n \rightarrow \infty} C_n = C_0 = \bigcap_{n=1}^{\infty} C_n \neq \emptyset.$$

By Lemma 2.4.33, we get that $\{x_n\} = \{\Pi_{C_n}x\}$ converges strongly to $x_0 = \Pi_{C_0}x$.

Next, we show that $\lim_{n \rightarrow \infty} \|x_n - T_nx_n\| = 0$. Since $x_0 \in C_n$ for all $n \geq 1$, $\phi(x_0, u_n) \leq \phi(x_0, x_n)$ for all $n \geq 1$. From Remark 2.4.25 (2) we see that

$$\begin{aligned}\phi(x_n, u_n) &= \phi(x_n, x_0) + \phi(x_0, u_n) + 2\langle x_n - x_0, Jx_0 - Ju_n \rangle \\ &\leq \phi(x_n, x_0) + \phi(x_0, x_n) + 2\langle x_n - x_0, Jx_0 - Ju_n \rangle \\ &= \left(\|x_n\|^2 - 2\langle x_n, Jx_0 \rangle + \|x_0\|^2\right) + \left(\|x_0\|^2 - 2\langle x_0, Jx_n \rangle + \|x_n\|^2\right) \\ &\quad + 2\langle x_n - x_0, Jx_0 - Ju_n \rangle \\ &= 2\langle x_n - x_0, Jx_n - Jx_0 \rangle + 2\langle x_n - x_0, Jx_0 - Ju_n \rangle \\ &= 2\langle x_n - x_0, Jx_n - Ju_n \rangle \\ &\leq 2\|x_n - x_0\|\|Jx_n - Ju_n\|.\end{aligned}$$

Since $x_n \rightarrow x_0$ as $n \rightarrow \infty$, $\lim_{n \rightarrow \infty} \phi(x_n, u_n) = 0$. From Lemma 2.4.26, we obtain

$$\lim_{n \rightarrow \infty} \|x_n - u_n\| = 0.\tag{5.2.2}$$

This implies that

$$\lim_{n \rightarrow \infty} \|Jx_n - Ju_n\| = 0.\tag{5.2.3}$$

From (5.2.1), we know that $\phi(u, y_n) \leq \phi(u, x_n)$ for all $n \geq 1$. From Lemma 2.4.36 we have

$$\phi(u_n, y_n) = \phi(T_{r_n}y_n, y_n) \leq \phi(u, y_n) - \phi(u, T_{r_n}y_n) \leq \phi(u, x_n) - \phi(u, u_n).$$

From (5.2.2) and (5.2.3) we have $\lim_{n \rightarrow \infty} \phi(u_n, y_n) = 0$; consequently, Lemma 2.4.26 asserts that

$$\lim_{n \rightarrow \infty} \|u_n - y_n\| = 0.\tag{5.2.4}$$

It also follows from (5.2.2) and (5.2.4) that

$$\lim_{n \rightarrow \infty} \|y_n - x_n\| = 0.\tag{5.2.5}$$

On the other hand, we see that

$$(1 - \alpha_n) \|JT_n x_n - Jx_n\| = \|Jy_n - Jx_n\|,$$

which implies by $\limsup_{n \rightarrow \infty} \alpha_n < 1$, (5.2.5) and the uniform norm-to-norm continuity of J^{-1} that

$$\lim_{n \rightarrow \infty} \|JT_n x_n - Jx_n\| = \lim_{n \rightarrow \infty} \|T_n x_n - x_n\| = 0. \quad (5.2.6)$$

Since T_n satisfies the $(*)$ -condition, we have $x_0 \in \bigcap_{n=1}^{\infty} F(T_n)$.

Next, we will show that $x_0 \in EP(f)$. From (5.2.4) and $\liminf_{n \rightarrow \infty} r_n > 0$, we have $\frac{\|Ju_n - Jy_n\|}{r_n} \rightarrow 0$. From $u_n = T_{r_n} y_n$, we get that

$$f(u_n, y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_n \rangle \geq 0, \quad \forall y \in C.$$

By (A2), we have

$$\begin{aligned} \|y - u_n\| \frac{\|Ju_n - Jy_n\|}{r_n} &\geq \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_n \rangle \\ &\geq -f(u_n, y) \geq f(y, u_n), \quad \forall y \in C. \end{aligned}$$

From (A4) and $u_n \rightarrow x_0$, we get that $f(y, x_0) \leq 0$ for all $y \in C$. For $0 < t < 1$ and $y \in C$, Define $y_t = ty + (1 - t)x_0$. Then $y_t \in C$, which implies that $f(y_t, x_0) \leq 0$. From (A1), we obtain that $0 = f(y_t, y_t) \leq tf(y_t, y) + (1 - t)f(y_t, x_0) \leq tf(y_t, y)$. Thus, $f(y_t, y) \geq 0$. From (A3), we have $f(x_0, y) \geq 0$ for all $y \in C$. Hence $x_0 \in EP(f)$ and $x_0 \in F$.

Finally, we show that $x_0 = \Pi_F x$. From $x_n = \Pi_{C_n} x$ and $F \subset C_n$ for all $n \geq 1$, we have

$$\langle Jx - Jx_n, x_n - p \rangle \geq 0 \quad \forall p \in F. \quad (5.2.7)$$

By taking limit in (5.2.7), we obtain that

$$\langle Jx - Jx_0, x_0 - p \rangle \geq 0 \quad \forall p \in F.$$

By Lemma 2.4.28, we conclude that $x_0 = \Pi_F x$. This completes the proof. \square

As a direct consequence of Theorem 5.2.1, Lemma 2.4.39, Lemma 2.4.42 and Lemma 2.4.45, we obtain the following results concerning the approximating fixed point of a family of relatively quasi-nonexpansive mappings in Banach spaces.

Corollary 5.2.2. *Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $f : C \times C \rightarrow \mathbb{R}$ be a bifunction which satisfies conditions (A1)-(A4). Let V_n be as in Lemma 2.4.39 such that $F := \bigcap_{i=1}^N F(T_i) \cap EP(f) \neq \emptyset$. For any $x \in X$, define $\{x_n\}$ by $x_1 \in C$, $C_1 = C$ and*

$$\begin{cases} y_n = J^{-1}(\alpha_n Jx_n + (1 - \alpha_n) JV_n x_n), \\ u_n \in C \text{ such that } f(u_n, y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_n \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x, \quad n \geq 1, \end{cases}$$

where $\{\alpha_n\} \subset [0, 1]$ with $\limsup_{n \rightarrow \infty} \alpha_n < 1$ and $\{r_n\} \subset (0, \infty)$ with $\liminf_{n \rightarrow \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $\Pi_F x$.

Remark 5.2.3. Corollary 5.2.2 improves and extends Theorem 3.1 of [84] from two relatively quasi-nonexpansive mappings to a family of relative quasi-nonexpansive mappings.

Corollary 5.2.4. Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $f : C \times C \rightarrow \mathbb{R}$ be a bifunction which satisfies conditions (A1)-(A4). Let W_n be as in Lemma 2.4.42 such that $F := \bigcap_{i=1}^N F(T_i) \cap EP(f) \neq \emptyset$. For any $x \in X$, define $\{x_n\}$ by $x_1 \in C$, $C_1 = C$ and

$$\begin{cases} y_n = J^{-1}(\alpha_n Jx_n + (1 - \alpha_n) JW_n x_n), \\ u_n \in C \text{ such that } f(u_n, y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_n \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x, \quad n \geq 1, \end{cases}$$

where $\{\alpha_n\} \subset [0, 1]$ with $\limsup_{n \rightarrow \infty} \alpha_n < 1$ and $\{r_n\} \subset (0, \infty)$ with $\liminf_{n \rightarrow \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $\Pi_F x$.

Corollary 5.2.5. Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $f : C \times C \rightarrow \mathbb{R}$ be a bifunction which satisfies conditions (A1)-(A4). Let K_n be as in Lemma 2.4.45 such that $F := \bigcap_{i=1}^N F(T_i) \cap EP(f) \neq \emptyset$. For any $x \in X$, define $\{x_n\}$ by $x_1 \in C$, $C_1 = C$ and

$$\begin{cases} y_n = J^{-1}(\alpha_n Jx_n + (1 - \alpha_n) JK_n x_n), \\ u_n \in C \text{ such that } f(u_n, y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_n \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x, \quad n \geq 1, \end{cases}$$

where $\{\alpha_n\} \subset [0, 1]$ with $\limsup_{n \rightarrow \infty} \alpha_n < 1$ and $\{r_n\} \subset (0, \infty)$ with $\liminf_{n \rightarrow \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $\Pi_F x$.

We next give applications of Theorem 5.2.1.

Theorem 5.2.6. Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $A : C \rightarrow X^*$ be a continuous and monotone mapping. Let $\{T_n\}_{n=1}^\infty$ be a family of relatively quasi-nonexpansive mappings of C into itself such that $F := \bigcap_{n=1}^\infty F(T_n) \cap VI(C, A) \neq \emptyset$. For any $x \in X$, define $\{x_n\}$ by $x_1 \in C$, $C_1 = C$ and

$$\begin{cases} y_n = J^{-1}(\alpha_n Jx_n + (1 - \alpha_n) JT_n x_n), \\ u_n \in C \text{ such that } \langle Au_n, y - u_n \rangle + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_n \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x, \quad n \geq 1, \end{cases}$$

where $\{\alpha_n\} \subset [0, 1]$ with $\limsup_{n \rightarrow \infty} \alpha_n < 1$ and $\{r_n\} \subset (0, \infty)$ with $\liminf_{n \rightarrow \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $\Pi_F x$.

Proof. Define $f(x, y) = \langle Ax, y - x \rangle$ for all $x, y \in C$. Then f satisfies the conditions (A1)-(A4). From Theorem 5.2.1 we obtain the desired result. \square

Theorem 5.2.7. Let X be a uniformly convex and uniformly smooth Banach space and let C be a nonempty, closed and convex subset of X . Let $\varphi : C \rightarrow \mathbb{R}$ be a lower semi-continuous and convex function. Let $\{T_n\}_{n=1}^{\infty}$ be a family of relatively quasi-nonexpansive mappings of C into itself such that $F := \bigcap_{n=1}^{\infty} F(T_n) \cap \text{CMP}(\varphi) \neq \emptyset$. For any $x \in X$, define $\{x_n\}$ by $x_1 \in C$, $C_1 = C$ and

$$\begin{cases} y_n = J^{-1}(\alpha_n Jx_n + (1 - \alpha_n)JT_n x_n), \\ u_n \in C \text{ such that } \varphi(y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_n \rangle \geq \varphi(u_n), \quad \forall y \in C, \\ C_{n+1} = \{z \in C_n : \phi(z, u_n) \leq \phi(z, x_n)\}, \\ x_{n+1} = \Pi_{C_{n+1}} x, \quad n \geq 1, \end{cases}$$

where $\{\alpha_n\} \subset [0, 1]$ with $\limsup_{n \rightarrow \infty} \alpha_n < 1$ and $\{r_n\} \subset (0, \infty)$ with $\liminf_{n \rightarrow \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $\Pi_F x$.

Proof. Define $f(x, y) = \varphi(y) - \varphi(x)$ for all $x, y \in C$. Then f satisfies the conditions (A1)-(A4). So the result follows from Theorem 5.2.1. \square

Remark 5.2.8. Theorem 5.2.1 mainly extends the main result announced by Takahashi-Zembayashi [106].