
Chapter 2
Basic Concepts and Preliminaries

The purpose of this chapter is to explain certain notations, terminologies
and elementary results used throughout the thesis. Although details are included
in some cases, many of the fundamental principles of functional analysis are merely
stated without proof.

2.1 Metric Spaces

Definition 2.1.1. ([30]) A metric space is a pair (X, d), where X is a set and d is
a metric on X(or distance function on X),that is, a real valued function defined
on X ×X such that for all x, y, z ∈ X we have:

(1) d(x, y) ≥ 0,

(2) d(x, y) = 0 if and only if x = y,

(3) d(x, y) = d(y, x) (symmetry),

(4) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

Example 2.1.2. ([2])

(1) X = R; d(x, y) = |x− y|, ∀x, y ∈ R, where |.| denotes the absolute value, is
a metric (a distance) on R;

(2) X = Rn; d(x, y) = [
∑n

i=1(xi − yi)
2]1/2, for all x = (x1, x2, . . . , xn), y =

(y1, y2, . . . , yn) ∈ Rn, is a metric on Rn, called the euclidean metric. The
next two mappings

δ(x, y) =
n∑

i=1

|xi − yi|, x, y ∈ Rn

and
ρ(x, y) = max

1≤1≤n
|xi − yi|, x, y ∈ Rn

are also metrics on Rn;

(3) Let X = {f : [a, b] → R| f is continuous}. We define d : X ×X → R+ by

d(f, g) = max
x∈[a,b]

|f(x)− g(x)|, for all f, g ∈ X.

Then d is a metric on X (called the Chebyshev metric); the metric space
(X,d) is usually denoted by C[a, b];
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(4) Let X be as (3) and δ : X ×X → R+ be given by

δ(f, g) = max
x∈[a,b]

(|f(x)− g(x)|e−τ |x−x0|),

for all f, g ∈ X, where τ > 0 is a constant and x0 ∈ [a, b] is fixed. Then δ
is a metric on X, called the Bielecki metric, and the metric space (X, δ) is
usually denoted by B[a, b]. ¤

Definition 2.1.3. ([2]) Let (X, d) be a metric space. The topology having basis as
the family of all open balls, B(x, r), x ∈ X, r > 0, is called the topology induced
by the metric d

Definition 2.1.4. ([2]) Two metrics d1 and d2 defined on the set X are called
equivalent if they induce the same topology on X.

Remark 2.1.5. ([2])

(1) Two metrics d1 and d2 are metrically equivalent if there exist two constants
m > 0 and M > 0 such that

md1(x, y) ≤ d2(x, y) ≤ Md1(x, y), for all x, y ∈ X;

(2) In Example 2.1.2, the metrics d, δ and ρ from (2) are equivalent; the metrics
d from (3) and ρ from (4) are also equivalent.

Definition 2.1.6. ([30]) A sequence {xn} in a metric space X = (X, d) is said to
be convergent if there is an x ∈ X such that

lim
n→∞

d(xn, x) = 0.

x is called the limit of {xn} and we write

lim
n→∞

xn = x or xn → x.

We say that {xn} converges to x. In the case that {xn} is not convergent, it is
said to be divergent.

Definition 2.1.7. ([30])A sequence {xn} in a metric space X = (X, d) is said to be
Cauchy if for every ε > 0 there is an N(ε) ∈ N such that d(xm, xn) < ε for every
m,n ≥ N(ε).

Definition 2.1.8. ([30]) A metric space (X, d) is said to be complete if every Cauchy
sequence in X converges.

Example 2.1.9. [52] Let S be a nonempty set and let B(S) be the function space
of bounded real valued functions defined on S. For any f, g ∈ B(S), define their
metric d(f, g) by

d(f, g) = sup
t∈S

|f(t)− g(t)|.

Then B(S) is a complete metric space. ¤



6

Example 2.1.10. [52] The N -dimensional Euclidean space RN is complete, that
is, if for any x = (x1, x2, ..., xN), y = (y1, y2, ..., yN) ∈ RN ,

d(x, y) = ‖x− y‖ =

√√√√
N∑

i=1

|xi − yi|2,

(RN , d) is complete. ¤

Definition 2.1.11. ([2]) Let (X, d) be a metric space. A mapping T : X → X is
called

• Lipschitzian (or L-Lipschitzian) if there exists L > 0 such that

d(Tx, Ty) ≤ Ld(x, y), for all x, y ∈ X;

• (strict) contraction (or a-contraction) if T is a-Lipschitzian, with a ∈ [0, 1);

• nonexpansive if T is 1-Lipschitzian;

• contractive if d(Tx, Ty) < d(x, y), for all x, y ∈ X, x 6= y;

• isometry if d(Tx, Ty) = d(x, y), for all x, y ∈ X.

Example 2.1.12. ([2])

(1) The function T : R→ R, T (x) = x
2

+ 3, x ∈ R, is a strict contraction;

(2) The function T : [1/2, 2] → [1/2, 2], Tx = 1/x, is 4-Lipschitzian;

(3) The function T : R→ R, T (x) = x + 2, is isometry;

(4) The function T : [1, +∞] → [1, +∞], Tx = x + 1
x
, is contractive.

Theorem 2.1.13. ([30]) Every convergent sequence in a metric space is a Cauchy
sequence.

Theorem 2.1.14. ([33]) Let {xn} be a sequence in R. If every subsequence {xnk
}

of {xn} has a convergent subsequence, then {xn} is convergent.

Definition 2.1.15. ([33]) Let X be a metric space and A be any nonempty subset
of X. For each x in X, the distance d(x,A) from x to A is inf{d(x, y)| y ∈ A}.

Let X be a metric space with a metric d. A subset F of X is called a closed
set if {xn} ⊂ F and xn → x imply x ∈ F .

Theorem 2.1.16. ([52]) (The fundamental properties of closed sets) Let X be a
metric space. Then the following hold:

(1) X and Ø are closed sets;
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(2) any intersection of closed sets in X is closed, that is,

Fµ (µ ∈ M) are closed ⇒
⋂

µ∈M

Fµ is closed;

(3) any finite union of closed sets in X is closed, that is,

Fi (i = 1, 2, . . . , m) are closed ⇒
m⋃

i=1

Fi is closed.

Definition 2.1.17. ([52]) Let X and Y be metric spaces and let f be a mapping of
X into Y . Then f is said to be continuous at x0 in X if

xn → x0 ⇒ f(xn) → f(x0).

A mapping f of X into Y is said to be continuous if it is continuous at each x in
X, that is

xn → x ⇒ f(xn) → f(x).

Definition 2.1.18. [53] Let X be a nonempty set. A class G of subsets of X is
called a topology on X if it satisfies the following conditions:

(1) X ∈ G and ∅ ∈ G;

(2) the union of every class of sets in G is a set in G;

(3) the intersection of every finite class of sets in G is a set in G.

A topological space consists of two objects: A nonempty set X and a topology
G on X. The sets in the class G are called the open sets of the topological space
(X,G).

Definition 2.1.19. [2] Let (X, d) be a metric space. The topology having as basis
the family of all open balls, Br(x), x ∈ X, r > 0, is called the topology induced by
the metrics d

Definition 2.1.20. ([53]) Let X be a topological space and let f be a function of
X into (−∞,∞]. Then f is said to be lower semicontinuous on X if for any real
number a, the set {x ∈ X : f(x) ≤ a} is closed in X.

Definition 2.1.21. Let X be a topological space and let f be a function of X into
(−∞,∞]. Then f is said to be a proper lower semicontinuous function on X if f
is lower semi-continuous and there is x ∈ X such that f(x) ∈ (−∞,∞).

Theorem 2.1.22. ([53]) Let X be a topological space and let f be a function of
X into (−∞,∞]. Then, f is lower semicontinuous on X if and only if, for any
x0 ∈ X,

xα → x0 =⇒ f(x0) ≤ lim inf
α

f(xα). (2.1.1)
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Definition 2.1.23. ([53]) Let X be a topological space and let f be a function of
X into [−∞,∞). Then f is called upper semicontinuous if for any real number
a, the set {x ∈ X : f(x) ≥ a} is closed in X.

Theorem 2.1.24. Let X be a topological space and let f be a function of X into
[−∞,∞). Then, f is upper semicontinuous on X if and only if, for any x0 ∈ X,

xα → x0 =⇒ lim sup
α

f(xα) ≤ f(x0). (2.1.2)

Definition 2.1.25. Let X be a topological space and let f be a function of X into
[−∞,∞). Then f is called weakly upper semicontinuous if for any x0 ∈ X,

xα ⇀ x0 =⇒ lim sup
α

f(xα) ≤ f(x0). (2.1.3)

Definition 2.1.26. [30] A linear space or vector space X over the field K(the real
field R or the complex field C) is a set X together with an internal binary operation
”+” called addition and a scalar multiplication carrying (α, x) in K×X to αx in
X satisfying the following for all x, y, z ∈ X and α, β ∈ K:

(1) x + y = y + x;

(2) (x + y) + z = x + (y + z);

(3) there exists an element 0 ∈ X called the zero vector of X such that x+0 = x
for all x ∈ X;

(4) for every element x ∈ X, there exists an element −x ∈ X called the addition
inverse or the negative of x such x + (−x) = 0;

(5) α(x + y) = αx + αy;

(6) (α + β)x = αx + βX;

(7) (αβ)x = α(βx);

(8) 1 · x = x.

The elements of a vector space X are called vector, and the elements of K called
scalars. In the sequel, unless otherwise stated, X denotes a linear space over field
R.

Example 2.1.27. [52] Consider the set RN = {x = (a1, a2, ..., aN) : a1, a2, ..., aN ∈
R}. For any x = (a1, a2, ..., aN), y = (b1, b2, ..., bN) ∈ RN and α ∈ R, we define
their addition x + y and their scalar multiplication αx by

x + y = (a1 + b1, a2 + b2, ..., aN + bN),

αx = (αa1, αa2, ..., αaN).

Then x + y ∈ RN and αx ∈ RN . Thus RN is a linear space with this operations.
¤
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Example 2.1.28. [52] Let L be the set of all real valued functions f defined on
[0, 1]. For any f, g ∈ L and α ∈ R, we define their addition f + g and their scalar
multiplication αf by

f + g : (f + g)(t) = f(t) + g(t),

αf : (αf)(t) = αf(t),

0 : 0(t) = 0,

−f : (−f)(t) = −f(t).

Then L is a linear space with these operations. ¤

Definition 2.1.29. ([30]) A subset C of a vector space X is said to be convex if
x, y ∈ C implies M = {z ∈ X| z = tx + (1− t)y, 0 ≤ t ≤ 1} ⊆ C.

Definition 2.1.30. [53] Let X be a vector space and let C be a convex subset of X.
A function F : C → (−∞,∞] is convex on C if for any x1, x2 ∈ C and t ∈ [0, 1],

F (tx1 + (1− t)x2) ≤ tF (x1) + (1− t)F (x2).

2.2 Banach Spaces and Hilbert spaces

Definition 2.2.1. ([33]) Let X be a linear space (or vector space). A norm on X
is a real-valued function ‖ · ‖ on X such that the following conditions are satisfied
by all members x and y of X and each scalar α:

(1) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,

(2) ‖αx‖ = |α|‖x‖,
(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

The ordered pair (X, ‖ · ‖) is called a normed space or normed vector space or
normed linear space.

Definition 2.2.2. ([33]) Let X be a normed space. The metric induced by the norm
of X is the metric d on X defined by the formula d(x, y) = ‖x−y‖ for all x, y ∈ X.
The norm topology of X is the topology obtained from this metric.

Definition 2.2.3. ([1]) The space of all bounded linear functionals on a normed
space X is called the dual space of X and is denoted by X∗.

Definition 2.2.4. ([30]) Let x be an element and {xn} be a sequence in a normed
space X. Then {xn} converges strongly to x written by xn → x, if limn→∞ ‖xn −
x‖ = 0.

Definition 2.2.5. ([30]) Let x be an element and {xn} be a sequence in a normed
space X. Then {xn} converges weakly to x written by xn ⇀ x, if f(xn) → f(x)
wherever f ∈ X∗.
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Theorem 2.2.6. ([53]) A normed space X is reflexive if and only if each of its
bounded sequence has a weakly convergent subsequence.

Definition 2.2.7. ([2]) A linear normed space X is called strictly convex if x, y ∈ X
with ‖x‖ = ‖y‖ = 1 and ‖(1− λ)x + λy‖ = 1 for a λ ∈ (0, 1) holds if and only if
x = y.

Definition 2.2.8. ([33]) A Banach norm or complete norm is a norm that induces a
complete metric. A normed space is a Banach space, B-space or complete normed
space if its norm is a Banach norm.

Example 2.2.9. [52] The real line R is a Banach space with the norm ‖x‖ =
|x|. The complex plan C is also a Banach space. From Example 2.1.10, the
N -dimensional Euclidean space RN is a Banach space. ¤

Example 2.2.10. [52] The space `∞ of all bounded sequences x = (x1, x2, ..., xn, ...)
of real numbers is a Banach space with the norm defined by

‖x‖ = sup
n
|xn|. ¤

Example 2.2.11. [52] Let p be a real number such that 1 ≤ p < ∞. We denote
by `p the space of all sequences x = (x1, x2, ..., xn, ...) of real numbers such that∑∞

n=1 |xn|p < ∞ with the norm defined by

‖x‖p =
( ∞∑

n=1

|xn|p
) 1

p .

Then `p is a Banach space. ¤

Example 2.2.12. [52] Let C[a, b] be the set of all continuous real valued functions
f on [a, b], with the norm defined by

‖x‖ = max
a≤x≤b

|x(t)|.

Then C[a, b] is a Banach space. ¤

Definition 2.2.13. ([53]) A Banach space X is uniformly convex if for any two
sequences {xn} and {yn} in X such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn+yn‖ =
2, imply limn→∞ ‖xn − yn‖ = 0.

Theorem 2.2.14. ([53]) Let X be a Banach space. Then the following conditions
are equivalent:

(1) X is uniformly convex;

(2) if for any two sequences {xn}, {yn} in X,

lim
n→∞

‖xn‖ = lim
n→∞

‖yn‖ = 1 and lim
n→∞

‖xn + yn‖ = 2,

then limn→∞ ‖xn − yn‖ = 0;
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(3) for any ε with 0 < ε ≤ 2, there exists δ > 0 depending only on ε > 0 such
that

‖x + y

2
‖ ≤ 1− δ

for any x, y ∈ X with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε.

Example 2.2.15. [16, 18] The Lp and `p spaces are uniformly convex for p ∈ (1,∞).

Theorem 2.2.16. ([12]) Every uniformly convex space is strictly convex.

Lemma 2.2.17. ([60]) Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + δn, n ≥ 1,
where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn = ∞;
(ii) lim supn→∞ δn/γn ≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 2.2.18. ([51]) Let {xn} and {yn} be bounded sequences in a Banach space
X and let {bn} be a sequence in [0, 1] with 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1.
Suppose xn+1 = (1− bn)yn + bnxn for all integers n ≥ 1 and lim supn→∞(‖yn+1 −
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Definition 2.2.19. ([37]) A Banach space X is said to satisfy Opial’s condition if
xn ⇀ x as n →∞ and x 6= y imply that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

Lemma 2.2.20. ([49, Lemma 2.7]) Let X be a Banach space which satisfies Opial’s
condition and let {xn} be a sequence in X. Let u, v ∈ X be such that lim

n→∞
‖xn−u‖

and lim
n→∞

‖xn − v‖ exist. If {xnk
} and {xmk

} are subsequences of {xn} which

converge weakly to u and v, respectively, then u = v.

Definition 2.2.21. ([12]) A Banach space E is said to have Kadec-Klee property if,
for every sequence {xn} in E, xn ⇀ x and ‖xn‖ → ‖x‖ imply ‖xn − x‖ → 0.

Definition 2.2.22. ([30]) An inner product space is a vector space X with an inner
product defined on X. A Hilbert space is a complete inner product space. Here,
an inner product on X is a mapping of X ×X into the scalar field F = R or C;
that is, with every pair of vectors x and y there is an associated scalar which is
written and is called the inner product of x and y, such that for all vectors x, y, z
and scalar α ∈ F we have:

(1) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0,

(2) 〈αx, y〉 = α〈x, y〉,
(3) 〈x, y〉 = 〈y, x〉,
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(4) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
An inner product on X defines a norm on X given by ‖x‖ =

√
〈x, x〉.

Remark 2.2.23. ([52])

(1) An inner product space is called a real inner product space if the scalars
are real numbers and 〈x, y〉 is a real number. Therefore, the equality (3) in
Definition (2.2.22) is equivalent to

〈x, y〉 = 〈y, x〉.

(2) Using (2), (3) and (4) in Definition (2.2.22), we obtain that for x, y ∈ X
and α, β ∈ C,

〈x, αy + βz〉 = ᾱ〈x, y〉+ β̄〈x, z〉.

Example 2.2.24. [52] The 3-dimensional Euclidean space R3 is Hilbert spaces, that
is, if for any x = (a1, a2, a3), y = (b1, b2, b3) ∈ R3,

〈x, y〉 = a1b1 + a2b2 + a3b3, and ‖x‖ =
√

a2
1 + a2

2 + a2
3.

Then R3 is a Hilbert space. ¤

Example 2.2.25. [52] The 3-dimensional Euclidean space C3 is Hilbert spaces, that
is, if for any x = (u1, u2, u3), y = (v1, v2, v3) ∈ C3,

〈x, y〉 = u1v1 + u2v2 + u3v3, and ‖x‖ =
√

u2
1 + u2

2 + u2
3.

Then C3 is a Hilbert space. ¤

Theorem 2.2.26. ([53])(The Schwarz inequality) If x and y are any two vectors
in an inner product space X, then |〈x, y〉| ≤ ‖x‖‖y‖.
Theorem 2.2.27. ([52]) For any inner product space H, the following holds:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Theorem 2.2.28. ([52]) (Opial’s Theorem) Any Hilbert space satisfies Opial’s con-
dition.

Theorem 2.2.29. ([52]) The inner product in an inner product space H is jointly
continuous:

xn → x and yn → y ⇒ 〈xn, yn〉 → 〈x, y〉.

Remark 2.2.30. ([52]) We of course obtain from Theorem 2.2.29 that xn → x,
then for a fixed y ∈ H,

〈xn, y〉 → 〈x, y〉 and 〈y, xn〉 → 〈y, x〉.

Definition 2.2.31. ([52]) Let H be an inner product space, {xn} be a sequence of
H and x be an element of H. Then {xn} is said to converge weakly to x, denoted
by xn ⇀ x, if for any y ∈ H, 〈xn, y〉 → 〈x, y〉.
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Remark 2.2.32. ([52]) If xn ⇀ x and xn ⇀ y, then x = y. In fact, we have

‖x− y‖2 = 〈x− y, x− y〉 = 〈x− xn + xn − y, x− y〉
= 〈x− xn, x− y〉+ 〈xn − y, x− y〉 → 0.

So, we get x = y.

Lemma 2.2.33. ([52]) Let H be an inner product space and {xn} be a bounded
sequence of H such that xn ⇀ x. Then following inequality holds:

‖x‖ ≤ lim inf
n→∞

‖xn‖.

Lemma 2.2.34. ([52]) Let {xn} be a Cauchy sequence of an inner product space
H such that xn ⇀ x. Then xn → x.

Let C be a nonempty closed convex subset of a real Hilbert space H. For every
point x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping of H onto C and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H. (2.2.1)

Obviously, this immediately implies that

‖(x− y)− (PCx− PCy)‖2 ≤ ‖x− y‖2 − ‖PCx− PCy‖2, ∀x, y ∈ H. (2.2.2)

Recall that, PCx is characterized by the following properties: PCx ∈ C and

〈x− PCx, y − PCx〉 ≤ 0,

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖PCx− y‖2, (2.2.3)

for all x ∈ H and y ∈ C; see Goebel and Kirk [25] for more details.

Lemma 2.2.35. ([5]) Given x ∈ H and y ∈ C. Then PCx = y if and only if there
holds the inequality

〈x− y, y − z〉 ≥ 0, ∀z ∈ C.

2.3 The Background of Fixed Point Theory

Let X be a nonempty set and T : X → X be a self-map. We say that x ∈ X
is a fixed point of T if

Tx = x

and we denote the set of all fixed points of T by F (T ) .

Example 2.3.1. ([2])
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(1) If X = R and T (x) = x2 + 5x + 4, then F (T ) = {−2};
(2) If X = R and T (x) = x2 − x, then F (T ) = {0, 2};
(3) If X = R and T (x) = x + 2, then F (T ) = Ø;

(4) If X = R and T (x) = x, then F (T ) = R.

Let X be any set and and T : X → X be a self-map. For any given x ∈ X,
we define T n(x) inductively by T 0(x) = x and T n+1(x) = T (T n(x)); we call T n(x)
the iterate of x under T . In order to simplify the notations we will often use Tx
instead of T (x).

The mapping T n(n ≥ 1) is called the nth iterate of T . For any x0 ∈ X, the
sequence {xn}n≥0, given by

xn = Txn−1 = T nx0, n = 1, 2, . . . ,

is called the sequence of successive approximations with the initial value x0. It is
also known as the Picard iteration starting at x0.

For a given self-map the following properties obviously hold:

(1) F (T ) ⊂ F (T n), for each n ∈ N;

(2) F (T n) = {x}, for some n ∈ N⇒ F (T ) = {x}.
The reverse of (2) is not true, in general, as shown by the next example.

Example 2.3.2. ([2]) Let T : {1, 2, 3} → {1, 2, 3}, T (1) = 3, T (2) = 2 and T (3) =
1. Then F (T 2) = {1, 2, 3} but F (T ) = {2}. ¤

Theorem 2.3.3. ([2]) (Contraction mapping principle) Let (X, d) be a complete
metric space and T : X → X be a given contraction. Then T has a unique fixed
point p and

T n(x) → p (as n →∞), for each x ∈ X.

We state several definitions of mappings in Banach spaces (or Hilbert spaces)
at the same time since it is easy to be read and compared.

Definition 2.3.4. Let C be a nonempty subset of a real Banach space (or Hilbert
space) X and T be a self-mapping of C. The fixed point set of T is denoted by
F (T ) = {x ∈ C : Tx = x}. If F (T ) is not empty, then T is called

(1) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, (2.3.1)

for all x, y ∈ C;

(2) quasi-nonexpansive [19] if

‖Tx− p‖ ≤ ‖x− p‖, (2.3.2)

for all x ∈ C and p ∈ F (T );
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(3) asymptotically nonexpansive [24] if there exists a sequence {rn} in [0,∞)
with
limn→∞ rn = 0 and

‖T nx− T ny‖ ≤ (1 + rn)‖x− y‖, (2.3.3)

for all x, y ∈ C and n = 1, 2, 3, . . .;

(4) asymptotically quasi-nonexpansive if there exists a sequence {rn} in [0,∞)
with limn→∞ rn = 0 and

‖T nx− p‖ ≤ (1 + rn)‖x− p‖, (2.3.4)

for all x ∈ C, p ∈ F (T ) and n = 1, 2, 3, . . .;

(5) generalized quasi-nonexpansive [48] if there exists a sequence {sn} in [0,∞)
with sn → 0 as n →∞ such that

‖T nx− p‖ ≤ ‖x− p‖+ sn, (2.3.5)

for all x ∈ C, p ∈ F (T ) and n = 1, 2, 3, . . .;

(6) generalized asymptotically quasi-nonexpansive [48] if there exist two se-
quences {rn} and {sn} in [0,∞) with rn → 0 and sn → as n →∞ such that

‖T nx− p‖ ≤ (1 + rn)‖x− p‖+ sn, (2.3.6)

for all x ∈ C, p ∈ F (T ) and n = 1, 2, 3, . . .;

(7) uniformly L-Lipschitzian if there exists constant L > 0 such that

‖T nx− T ny‖ ≤ L‖x− y‖, (2.3.7)

for all x, y ∈ C and n = 1, 2, 3, . . .;

(8) (L− γ) uniform Lipschitz if there are constants L > 0 and γ > 0 such that

‖T nx− T ny‖ ≤ L‖x− y‖γ, (2.3.8)

for all x, y ∈ C and n = 1, 2, 3, . . .;

(9) semi-compact if for a sequence {xn} in C with limn→∞ ‖xn − Txn‖ = 0,
there exists a subsequence {xni

} of {xn} such that xni
→ p ∈ C.

Remark 2.3.5. It is easy to see that,

(1) a nonexpansive mapping is also quasi-nonexpansive and asymptotically non-
expansive;

(2) an asymptotically nonexpansive mapping is asymptotically quasi-nonexpansive;
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(3) a quasi-nonexpansive mapping is generalized quasi-nonexpansive;

(4) an asymptotically quasi-nonexpansive mapping is generalized asymptotically
quasi-nonexpansive;

(5) a quasi-nonexpansive mapping is asymptotically quasi-nonexpansive;

(6) a generalized quasi-nonexpansive mapping is generalized asymptotically quasi-
nonexpansive;

(7) a uniformly L-Lipschitzian mapping is (L− 1) uniform Lipschitz.

The following diagram shows the relationship between nonexpansive, quasi-
nonexpansive, asymptotically nonexpansive and asymptotically quasi-nonexpansive
mappings.

Quasi-nonexpansive Mappings

Nonexpansive Mappings

Asymp. Quasi-nonexpansive Mappings

Asymp. nonexpansive Mappings

¾

¾

6 6

Example 2.3.6. Let C = [1, 20] and T : C → C, Tx =
1

x
, for all x ∈ C. Then T

is nonexpansive, T has unique fixed point, F (T ) = {1}. ¤
Now we would like to show that the class of quasi-nonexpansive mappings

properly includes that of nonexpansive maps with fixed points.

Example 2.3.7. ([12]) Let X = l∞ and K := {x ∈ l∞ : ‖x‖ ≤ 1}. Define
f : K → K by f(x) = (0, x2

1, x
2
2, x

3
3, . . .) for x = (x1, x2, x3, . . .) in K. Then it is

clear that f is continuous and maps K into K. Moreover f(p) = p if and only if
p = 0. Furthermore,

‖f(x)− p‖∞ = ‖f(x)‖∞ = ‖(0, x2
1, x

2
2, x

2
3, . . .)‖∞

≤ ‖(0, x1, x2, x3, . . .)‖∞
= ‖x‖∞ = ‖x− p‖∞

for all x in K. Therefore, f is quasi-nonexpansive. However, f is not nonexpansive.
For x = (3

4
, 3

4
, . . .) and y = (1

2
, 1

2
, . . .), it is clear that x and y belong to K. Fur-

thermore, ‖x−y‖∞ = ‖(1
4
, 1

4
, . . .)‖ = 1

4
, and ‖f(x)−f(y)‖∞ = ‖(0, 5

16
, 5

16
, . . .)‖∞ =

5
16

> 1
4

= ‖x− y‖∞. ¤
The next example shows that there is an asymptotically quasi-nonexpansive

mapping which is not quasi-nonexpansive.

Example 2.3.8. ([26]) Let X = l2 with the norm ‖ · ‖ defined by

‖x‖ =

√√√√
∞∑
i=1

x2
i , for all x = (x1, x2, . . . , xn, ...) ∈ X,
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and a mapping T : X → X defined by

Tx = (0, 2x1, 0, 0, . . . , 0, . . .).

By letting Tx = x for any x = (x1, x2, . . . , xn, ...) ∈ X, we have

(0, 2x1, 0, 0, . . . , 0, . . .) = (x1, x2, . . . , xn, ...),

i.e., F (T ) = {0}. Moreover,

T nx = (0, 0, 0, . . . , 0, . . .)

for all n = 2, 3, 4, . . ..
For the sequence {rn} , where rn = 1

n
, and p ∈ F (T ), we have

‖Tx − p‖ = 2‖x1‖ ≤ (1 + r1)‖x− p‖ and ‖T nx− p‖ ≤ (1 + rn)‖x− p‖,
for all n = 2, 3, 4, . . .. This implies that T is an asymptotically quasi-nonexpansive
mapping. However, T is not a quasi-nonexpansive mapping since, for x0 =
(1, 0, 0, . . . , 0, . . .) in X,

‖Tx0 − p‖ = ‖(0, 2, 0, 0, . . . , 0, . . .)‖ = 2 > 1 = ‖x0 − p‖. ¤

Now we would like to show an example of Lipschitzian mappings which are
not nonexpansive.

Example 2.3.9. [24] Let B denote the unit ball in the Hilbert space l2 and let U
defined as follows:

U : (x1, x2, x3, . . .) → (0, x2
1, a2x2, a3x3, . . . ),

where {ai} is a sequence of numbers such that 0 < ai < 1 and
∏∞

i=2 ai = 1
2
. Then

U is Lipschitzian and ‖Ux− Uy‖ ≤ 2‖x− y‖, x, y ∈ B; moreover,

‖U ix− U iy‖ ≤ 2
i∏

j=2

aj‖x− y‖ ∀ i = 1, 2, . . . .

Thus limi→∞ ki = limi→∞ 2
∏i

j=2 aj = 1. Clearly, U is not nonexpansive. ¤

Example 2.3.10. ([48]) Let K = [−1
π

, 1
π
] and define Tx = x

2
sin( 1

x
) if x 6= 0 and

Tx = 0 if x = 0. Then T nx → 0 uniformly but T is not Lipschitz. Notice
that F (T ) = {0}. For each fixed n, define fn(x)=‖T nx‖ − ‖x‖ for x ∈ K. Set
cn = supx∈K fn(x) ∨ 0 = supx∈K(‖T nx‖ − ‖x‖) ∨ 0. Then limn→∞ cn = 0 and

‖T nx‖ ≤ ‖x‖+ cn.

This show that T is a generalized asymptotically quasi-nonexpansive but it is not
asymptotically quasi-nonexpansive and asymptotically nonexpansive because it is
not Lipschitz. ¤
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Definition 2.3.11. Let H be a real Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖ and let C be a nonempty closed convex subset of H. Let B : C → H be a
mapping.

(1) A mapping T : C → C is said to be κ−strictly pseudo-contrative [7] if there
exists κ ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(I − T )x− (I − T )y‖2, (2.3.9)

for all x, y ∈ C;

(2) B is said to be monotone if

〈Bx−By, x− y〉 ≥ 0, ∀x, y ∈ C.

(3) B is said to be α-strongly monotone if there exists a constant α > 0 such
that

〈Bx−By, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

(4) B is said to be α-inverse-strongly monotone if there exists a constant α > 0
such that

〈Bx−By, x− y〉 ≥ α‖Bx−By‖2, ∀x, y ∈ C.

Definition 2.3.12. Let H be a real Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖ and let C be a nonempty closed convex subset of H.

(1) A set-valued mapping T : H → 2H is said to be monotone if, for all x, y ∈
H, f ∈ Tx and g ∈ Ty imply 〈x− y, f − g〉 ≥ 0.

(2) A monotone mapping T : H → 2H is said to be maximal if the graph G(T )
of T is not properly contained in the graph of any other monotone mapping.

In the other words, a monotone mapping T is maximal if and only if, for
(x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ) implies f ∈ Tx.

We know that κ−strict pseudo-contraction includes class of nonexpansive map-
ping. If κ = 1, T is said to be a pseudo-contraction mapping. T is strong pseudo-
contraction if there exists a positive constant λ ∈ (0, 1) such that T + λI is
pseudo-contraction. In a real Hilbert space H, the inequality (2.3.9) is equivalent
to

〈Tx−Ty, x−y〉 ≤ ‖x−y‖2− 1− κ

2
‖(I−T )x−(I−T )y‖2 ∀ x, y ∈ D(T ). (2.3.10)

The class of κ−strict pseudo-contraction falls into the one between classes of
nonexpansive mappings and pseudo-contraction mappings. The class of strong
pseudo-contraction mappings is independent of the class of κ−strict pseudo-con-
traction.
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Example 2.3.13. [52] Let T be a nonexpansive mapping of C into itself and set
A = I − T . Then A is 1

2
-inverse strongly monotone.

The metric projection PC of H onto C is an important example of inverse
strongly monotone operators, see Problem 5.2.1 [52].

Lemma 2.3.14. [52] Let H be a Hilbert space and let C be a nonempty, closed
and convex subset of H. Let α > 0 and let A : C → H be α-inverse-strongly
monotone. If 0 < λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H.

Lemma 2.3.15. ([44]) Let B : C → H be a monotone mapping and Ncv be the
normal cone to C at υ ∈ C, i.e., Ncv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C}.
Define a mapping T on C by

Tv =

{
Bv + Ncv if v ∈ C
∅ if v /∈ C.

(2.3.11)

Then T is maximal monotone and 0 ∈ Tv if and only if 〈Bv, u − v〉 ≥ 0 for all
u ∈ C .

Let B be a β-inverse-strongly monotone mapping of C into H. It is easy to
show that B is 1

β
-Lipschitz.

Definition 2.3.16. ([35]) Let C be a nonempty closed subset of a Hilbert space H.
Let {Tn} and Γ be two families of nonlinear mappings of C into itself such that
F (Γ) =

⋂∞
n=1 F (Tn) 6= ∅, where F (Γ) =

⋂
T∈Γ F (T ). {Tn} is said to satisfy the

NST-condition with Γ if for each bounded sequence {zn} ⊂ C,

lim
n→∞

‖zn − Tnzn‖ = 0 =⇒ lim
n→∞

‖zn − Tzn‖ = 0, for all T ∈ Γ.

In the case Γ ∈ {T}, i.e., Γ consists of one mapping T , {Tn} is said to satisfy the
NST-condition with T .

We now define a new condition (A′′).

Definition 2.3.17. Let C be a subset of a normed space X.

(1) A selfmapping T of C is said to have condition (A) [56] if there exists a
nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0
for all r ∈ (0,∞) such that ‖x − Tx‖ ≥ f(d(x, F )) for all x ∈ C where
d(x, F ) = inf{‖x− p‖ : p ∈ F = F (T )}.

(2) A family of selfmappings {T1, T2} of C is said to have condition (A′) [23] if
there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r ∈ (0,∞) such that ‖x−Tix‖ ≥ f(d(x, F )) for some 1 ≤ i ≤
2 and for all x ∈ C where d(x, F ) = inf{‖x− p‖ : p ∈ F = F (T1)

⋂
F (T2)}.

(3) A family of selfmappings {Ti : i = 1, 2, . . . , k} of C is said to have condition
(A′′) [26] if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that ‖x − Tix‖ ≥ f(d(x, F ))
for some 1 ≤ i ≤ k and for all x ∈ C where d(x, F ) = inf{‖x− p‖ : p ∈ F =⋂k

i=1 F (T1)}.
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Lemma 2.3.18. ([1]) Let C be a nonempty closed bounded subset of a Banach
space X and T : C → C a mapping with F (T ) 6= ∅. If I −T maps closed bounded
subsets of C onto closed subsets of X, then T satisfies Condition (A) on C.

Definition 2.3.19. The map T : C → X is said to be demiclosed at 0 if for each
sequence {xn} in C converging weakly to x ∈ C and Txn converging strongly to
0, we get Tx = 0.

2.4 Fixed Point Theory of Nonexpansive Mappings

and κ−Strictly Pseudo-contractive Mappings

Let C be a closed bounded convex subset of a real Hilbert space H. In 1966
Petryshyn [42] studied the set of fixed points of T of the Krasnoselsij iteration
defined by

xn+1 = (1− λ)xn + λTxn, n = 1, 2, . . . (2.4.1)

in Hilbert space, where λ ∈ (0, 1) and T is a nonexpansive and demicompact
operator. It was found that the set of fixed points is nonempty and {xn} converges
strongly.

In 1974, Senter and Dotson [46] studied the convergence of the Mann iteration
scheme defined by x1 ∈ C,

xn+1 = αnTxn + (1− αn)xn, ∀n ≥ 1, (2.4.2)

in a uniformly convex Banach space, where {αn} is a sequence satisfying 0 < a ≤
αn ≤ b < 1 ∀n ≥ 1 and T is a nonexpansive (or a quasi-nonexpansive) mapping.

In 1993, Tan and Xu [56] proved weak convergence of the Ishikawa iteration
scheme defined by x1 ∈ C,

xn+1 = αnT
(
βnTxn + (1− βn)xn

)
+ (1− αn)xn, (2.4.3)

in uniformly convex Banach space which satisfies Opial,s condition, where {αn}
and {βn} are sequences satisfying 0 < a ≤ αn, βn ≤ b < 1 ∀n ≥ 1 and T is
nonexpansive mapping.

Lemma 2.4.1. ([52]) Let H be a real Hilbert space, C be a nonempty closed
convex subset of H and a mapping T of H into itself be nonexpansive. Then F (T )
is always closed convex and also nonempty provided T has a bounded trajectory.

Lemma 2.4.2. [15, Lemma 1.6] Let X be a uniformly convex Banach space, C
be a nonempty closed convex subset of X, and T : C → C be a nonexpansive
mapping. Then I − T is demiclosed at 0, i.e., if xn ⇀ x and xn − Txn → 0, then
x ∈ F (T ).

Lemma 2.4.3. ([32]) Let C be a nonempty closed convex subset of a real Hilbert
space H and S : C → C be a self-mapping of C. If S is a κ-strict pseudo-
contraction mapping, then S satisfies the Lipschitz condition

‖Sx− Sy‖ ≤ 1 + κ

1− κ
‖x− y‖, ∀x, y ∈ C.
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2.5 Equilibrium Problems and Generalized Mixed

Equilibrium Problems in Hilbert Spaces

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and
let C be a nonempty closed convex subset of H. Let B : C → H be a nonlinear
mapping, ϕ : C → R

⋃{+∞} be a function and f : C × C → R be a bifunction.
Peng and Yao [38] considered the following generalized mixed equilibrium problem:

Finding u ∈ C such that f(u, y)+ϕ(y)+〈Bu, y−u〉 ≥ ϕ(u), ∀y ∈ C. (2.5.1)

In this thesis, we denote the set of solutions of (2.5.1) by GMEP (f, ϕ,B). It
is obvious that if u is a solution of (2.5.1), it implies that u ∈ dom ϕ = {u ∈ C :
ϕ(u) < +∞}.

If B = 0 in (2.5.1), we obtain the following mixed equilibrium problem [13]:

Finding u ∈ C such that f(u, y) + ϕ(y) ≥ ϕ(u), ∀y ∈ C. (2.5.2)

We denote the set of solutions of (2.5.2) by MEP (f, ϕ).

If ϕ = 0 in (2.5.1), we obtain the following generalized equilibrium problem
[55]:

Finding u ∈ C such that f(u, y) + 〈Bu, y − u〉 ≥ 0, ∀y ∈ C. (2.5.3)

We denote the set of solutions of (2.5.3) by GEP (f,B).

If ϕ = 0 and B = 0 in (2.5.1), we obtain the following equilibrium problem [6]:

Finding u ∈ C such that f(u, y) ≥ 0, ∀y ∈ C. (2.5.4)

We denote the set of solutions of (2.5.4) by EP (f).

If f(x, y) = 0 for all x, y ∈ C in (2.5.1), we obtain the following generalized
variational inequality problem:

Finding u ∈ C such that ϕ(y) + 〈Bu, y − u〉 ≥ ϕ(u), ∀y ∈ C. (2.5.5)

We denote the set of solutions of (2.5.5) by GVI (C, ϕ,B).

If ϕ = 0 and f(x, y) = 0 for all x, y ∈ C in (2.5.1), we obtain the following
variational inequality problem (see also [3, 17]):

Finding u ∈ C such that 〈Bu, y − u〉 ≥ 0, ∀y ∈ C. (2.5.6)

We denote the set of solutions of (2.5.6) by VI (C,B).
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If B = 0 and f(x, y) = 0 for all x, y ∈ C in (2.5.1), we obtain the following
minimization problem:

Finding u ∈ C such that ϕ(y) ≥ ϕ(u), ∀y ∈ C. (2.5.7)

We denote the set of solutions of (2.5.7) by MP(C, ϕ).

Lemma 2.5.1. [52] Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let A be a mapping of C into H. Let u ∈ C. Then for
λ > 0,

u ∈ V I(C, A) ⇔ u = PC(I − λA)u,

where PC is the metric projection of H onto C.

Theorem 2.5.2. [52] Let H be a Hilbert space and let C be a nonempty, closed
and convex subset of H. Let α > 0 and let A : C → H be α-inverse-strongly
monotone. Then V I(C, A) 6= ∅.

In 1994, Blum and Oettli [3] showed that the formulation of (2.5.4) covered
monotone inclusive problems, saddle point problems, variational inequality prob-
lems, minimization problems, optimization problems, variational inequality prob-
lems, vector equilibrium problems and Nash equilibria in noncooperative games.
Several problems in physics, optimization and economics can be reduced to find a
solution of (2.5.4). The existence of equilibrium problems has been discovered by
many authors (see, for example, [3, 21, 34, 54] and the references therein). Also,
some solution methods have been studied by some authors (see, for example,
[21, 43, 54] and the references therein).

In 2003, Takahashi and Toyoda [55] introduced the method for finding an
element of F (S) ∩ V I(C,A) in real Hilbert spaces, where C ⊂ H is closed and
convex, S : C → H is a nonexpansive mapping and A : C → H is an inverse-
strongly monotone mapping. Their iteration is the following:

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn), n ≥ 0,

where x0 ∈ C, {αn} is a sequence in (0,1), {λn} is a sequence in (0, 2α) and PC is
the metric projection from H onto C. They proved that, if F (S)∩ V I(C,A) 6= ∅,
{xn} converges weakly to a point z ∈ F (S) ∩ V I(C, A), where
z = limn→∞ PF (S)∩V I(C,A)xn.

Later, Takahashi and Takahashi [54] studied the contraction method for finding
F (S)∩EP (f) in real Hilbert spaces, where C ⊂ H is closed and convex, S : C →
H is a nonexpansive mapping, f is a bifunction from C×C to R with some specific
conditions. Their algorithm is the following:

x1 ∈ H,

f(yn, u) +
1

rn

〈u− yn, yn − xn〉 ≥ 0, ∀u ∈ C,

xn+1 = αnf1(xn) + (1− αn)Syn ∀n ≥ 1,
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where {αn} ⊂ [0, 1], {rn} ⊂ (0,∞) and some appropriate conditions. They proved
that, if F (S) ∩ EP (f) 6= ∅, {xn} and {yn} converge strongly to a point z ∈
F (S) ∩ EP (f), where z = PF (S)∩EP (f)f(z).

Recently, Cho et al. [14] introduced a hybrid projection method for finding
F := F (S)∩V I(C,B)∩GEP (f, A) in real Hilbert spaces, where C ⊂ H is closed
and convex, S : C → C is a k-strict pseudo-contraction with a fixed point, f is
a bifunction from C × C to R with some specific conditions, A : C → H is an
α-inverse-strongly monotone mapping and B : C → H is an β-inverse-strongly
monotone mapping. Their iterative scheme is the following:

x1 ∈ C,

C1 = C,

f(un, y) + 〈Axn, y − un〉+
1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

zn = PC(un − λnBun),

yn = αnxn + (1− αn)Skzn,

Cn+1 = {w ∈ Cn : ‖yn − w‖ ≤ ‖xn − w‖},
xn+1 = PCn+1x1, ∀n ≥ 1,

where Skx = kx + (1 − k)Sx for all x ∈ C, {αn} ⊂ [0, 1), {λn} ⊂ (0, 2β) and
{rn} ⊂ (0, 2α) and some appropriate conditions. They proved that, if F 6= ∅,
{xn} converges strongly to a point x = PF x1, where PF is the metric projection
of H onto F.

For solving the generalized mixed equilibrium problem, we may assume the
following conditions for the bifunction f , the function ϕ and the set C:

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x ∈ C, y 7→ f(x, y) is convex and lower semi-continuous;
(A4) for each x ∈ C, y 7→ f(x, y) is weakly upper semicontinuous;
(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊆ C and
yx ∈ C

⋂
dom(ϕ) such that for any z ∈ C\Dx,

f(z, yx) + ϕ(yx) +
1

r
〈yx − z, z − x〉 < ϕ(z);

(B2) C is a bounded set.

2.6 Some Useful Lemmas

Lemma 2.6.1. (Cf. [50, Lemma 2.2].) Let the sequences {an} and {δn} of real
numbers satisfy:

an+1 ≤ (1 + δn)an, where an ≥ 0, δn ≥ 0, for all n = 1, 2, 3, . . .

and
∑∞

n=1 δn < ∞. Then
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(1) limn→∞ an exists;

(2) if lim infn→∞ an = 0, then limn→∞ an = 0.

Lemma 2.6.2. (See [45, Lemma 1.3].) Let X be a uniformly convex Banach space.
Assume that 0 < b ≤ tn ≤ c < 1, n = 1, 2, 3, . . . . Let the sequences {xn} and {yn}
in X be such that

limsupn→∞‖xn‖ ≤ a, limsupn→∞‖yn‖ ≤ a

and
limn→∞‖tnxn + (1− tn)yn‖ = a,

where a ≥ 0. Then limn→∞‖xn − yn‖ = 0.

Lemma 2.6.3. ([38, 39, 40]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f be a bifunction from C ×C to R satisfying (A1)-(A4) and
let ϕ : C → R

⋃{+∞} be a proper lower semicontinuous and convex function.
Assume that either (B1) or (B2) holds. For r > 0 and x ∈ H, define a mapping
Tr : H → C as follows:

Tr(x) = {z ∈ C : f(z, y) + ϕ(y) +
1

r
〈y − z, z − x〉 ≥ ϕ(z), ∀y ∈ C}

for all x ∈ H. Then the following conclusions hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Tr(x)− Tr(y)‖2 ≤ 〈Tr(x)− Tr(y), x− y〉;

(3) F(Tr) = MEP (F, ϕ);

(4) MEP (F, ϕ) is closed and convex.

Lemma 2.6.4. ([67]). Let C be a nonempty closed convex subset of a real Hilbert
space H and T : C → C be a k-strict pseudo-contraction. Define a mapping
S : C → C by Sx = αx + (1 − α)Tx for all x ∈ C and α ∈ [k, 1). Then S is a
nonexpansive mapping such that F (S) = F (T ).

We would like to mention the following remark since our result is very inter-
esting. It shows that a monotone mapping maps all points in a generalized mixed
equlibrium problem to the same point.

Remark 2.6.5. ([27]). Let C be a closed convex subset of a real Hilbert space H,
f : C × C → R be a bifunction satisfying (A2) and ϕ : C → R ∪ {+∞} be a
function. Let A be a monotone mapping of C into H. Then Au = Av for all
u, v ∈ GMEP (f, ϕ, A).
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Proof. Let u, v ∈ GMEP (f, ϕ, A). We then get

f(u, y) + ϕ(y) + 〈Au, y − u〉 ≥ ϕ(u), ∀y ∈ C (2.6.1)

and

f(v, y) + ϕ(y) + 〈Av, y − v〉 ≥ ϕ(v), ∀y ∈ C. (2.6.2)

By letting y = v in (2.6.1) and y = u in (2.6.2), we get

f(u, v) + ϕ(v) + 〈Au, v − u〉 ≥ ϕ(u) (2.6.3)

and

f(v, u) + ϕ(u) + 〈Av, u− v〉 ≥ ϕ(v). (2.6.4)

By (2.6.3), (2.6.4) and the condition (A2), we have

〈Av−Au, u− v〉 ≥ f(u, v) + f(v, u) + 〈Au, v − u〉+ 〈Av, u− v〉 ≥ 0. (2.6.5)

From A is a α-inverse-strongly monotone mapping,

0 ≤ α‖Au− Av‖2 ≤ 〈Au− Av, u− v〉 ≤ 0.

That is Au = Av.

By letting f = 0 and ϕ = 0 in Lemma 2.6.5, we obtain the following remark.

Remark 2.6.6. ([27]). Let C be a closed convex subset of a real Hilbert space H
and A be a monotone mapping of C into H. Then Au = Av for all u, v ∈ V I(C, A).




