
Chapter 3
Common Fixed Points of Asymptotically

Quasi-nonexpansive Mappings

3.1 A New Approximation Method for Common Fixed

Points of a Finite Family of Asymptotically Quasi-

nonexpansive Mappings in Banach Spaces

In 2008, Khan et al. [28] introduced an iterative process for a finite family of
mappings as follows:

Let C be a convex subset of a Banach space X and let {Ti : i = 1, 2, . . . , k}
be a family of selfmappings of C. Suppose that αin ∈ [0, 1], for all n = 1, 2, 3, . . .
and i = 1, 2, . . . , k.

For x1 ∈ C, let {xn} be the sequence generated by the following algorithm:

xn+1 = (1− αkn)xn + αknT n
k y(k−1)n,

y(k−1)n = (1− α(k−1)n)xn + α(k−1)nT
n
k−1y(k−2)n,

y(k−2)n = (1− α(k−2)n)xn + α(k−2)nT
n
k−2y(k−3)n,

... (3.1.1)

y2n = (1− α2n)xn + α2nT
n
2 y1n,

y1n = (1− α1n)xn + α1nT
n
1 y0n,

where y0n = xn for all n. The iterative process (3.1.1) is the generalized form of
the modified Mann (one-step) iterative process by Schu [45], the modified Ishikawa
(two-step) iterative process by Tan and Xu [57], and the three-step iterative pro-
cess by Xu and Noor [59].

In 2007, Thianwan and Suantai [58] introduced the following implicit iteration
for a finite family of nonexpansive self-mappings of C {Ti : i ∈ J} with αn and βn

are two real sequences in [0,1] and an initial point x0 ∈ C:

xn = αnxn−1 + βnTnxn−1 + (1− αn − βn)Tnxn, ∀n ≥ 1,

where Tn = Tn(mod N) (here the mod N function takes values in J). We notice that
xn is calculated from xn−1 for each n ∈ N .

Goebel and Kirk [24], in 1972, introduced the new concept of asymptotically
nonexpansive and proved that every asymptotically nonexpansive self-mapping
of a nonempty closed bounded and convex subset of a uniformly convex Banach
space has a fixed point. In 1978, Bose [4] studied an iterative scheme for fixed
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points of asymptotically nonexpansive mappings. In 2001, Khan and Takahashi
[29] used the modified Ishikawa process to approximate common fixed points of
two asymptotically nonexpansive mappings.

Common fixed points of nonlinear mappings play an important role in solv-
ing systems of equations and inequalities. Many researchers ([31, 65, 66]) are
interested in studying approximation method for finding common fixed points
of nonlinear mapping. Also, approximation methods for finding fixed points for
nonexpansive mappings can be seen in [8, 9, 10, 11, 41, 62, 64].

In 2003, Sun [50] studied an implicit iterative scheme initiated by Xu and Ori
[61] for a finite family of asymptotically quasi-nonexpansive mappings. Zhou et
al. [68] introduced a new concept of generalized asymptotially nonexpansive map-
pings and provided a sufficient and necessary condition for the modified Ishikawa
and Mann iterative process to fixed points for the class of mappings. Shahzand
and Udomene [47], in 2006, proved some convergence theorems for the modified
Ishikawa iterative process of two asymptotically quasi-nonexpence mappings to
a common fixed point. Nammanee et al. [36] introduced a three-step iteration
scheme for asymptotically nonexpansive mappings and proved weak and strong
convergence theorems of that iteration scheme under some control conditions. In
2007, Fukhar-ud-din and Khan [22] studied a new three-step iteration scheme for
approximating a common fixed point of asymptotically nonexpansive mappings
in uniformly convex Banach spaces. Recently, Khan et al. [28] introduced the
iterative sequence (3.1.1) for a finite family of asymptotically quasi-nonexpansive
mappings in Banach spaces.

Motivated by Khan et al. [28] and [58], we introduce a new iterative scheme for
finding a common fixed point of a finite family of asymptotically quasi-nonexpansive
mappings as follow:

For x1 ∈ C, let {xn} be the sequence generated by

xn+1 = (1− αkn)y(k−1)n + αknT n
k y(k−1)n,

y(k−1)n = (1− α(k−1)n)y(k−2)n + α(k−1)nT
n
k−1y(k−2)n,

... (3.1.2)

y2n = (1− α2n)y1n + α2nT
n
2 y1n,

y1n = (1− α1n)xn + α1nT
n
1 y0n,

where y0n = xn for all n.
The aim of this chapter is to obtain some strong and weak convergence re-

sults for the iterative process (3.1.2) of a finite family of asymptotically quasi-
nonexpansive mappings in Banach spaces.
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3.2 Strong Convergence Theorems for a Finite Family

of Asymptotically Quasi-nonexpansive Mappings

in Banach Spaces

The aim of this section is to establish the strong convergence of the it-
erative scheme (3.1.2) to converge to a common fixed point of a finite family
of asymptotically quasi-nonexpansive mappings in a Banach space under some
appropriate conditions.

Lemma 3.2.1. Let C be a nonempty closed convex subset of a real Banach space
X, and {Ti : i = 1, 2, . . . , k} be a family of asymtotically quasi-nonexpansive
self-mappings of C, i.e., ‖T n

i x − pi‖ ≤ (1 + rin)‖x − pi‖, for all x ∈ C and
pi ∈ F (Ti), i = 1, 2, . . . , k. Suppose that F =

⋂k
i=1 F (Ti) 6= ∅, x1 ∈ C, and the

iterative sequence {xn}, are defined by (3.1.2). For p ∈ F , we get

(1) ‖xn − T n
i xn‖ ≤ (2 + rn)‖xn − p‖, for all i = 1, 2, . . . , k;

(2) ‖y(i−1)n − T n
i y(i−1)n‖ ≤ (2 + rn)‖y(i−1)n − p‖, for all i = 1, 2, . . . , k;

(3) ‖T n
i y(i−1)n − p‖ ≤ (1 + rn)‖y(i−1)n − p‖, for all i = 1, 2, . . . , k;

(4) ‖yin − p‖ ≤ (1 + rn)i‖xn − p‖, for i = 1, 2, . . . , k − 1;

(5) ‖xn+1 − p‖ ≤ (1 + δn)‖xn − p‖;
(6) if

∑∞
n=1 rn < ∞, limn→∞ ‖xn − p‖ exists,

where rn = max1≤i≤k{rin} and δn =
(

k
1

)
rn +

(
k
2

)
r2
n + . . . +

(
k
k

)
rk
n.

Proof. Let p ∈ F.
(1) For i = 1, 2, 3, . . . , k, we have

‖xn − T n
i xn‖ ≤ ‖xn − p||+ ‖T n

i xn − p‖
≤ ‖xn − p||+ (1 + rn)‖xn − p‖
= (2 + rn)‖xn − p‖. (3.2.1)

(2) Similarly to part (1), we have

‖y(i−1)n − T n
i y(i−1)n‖ ≤ (2 + rn)‖y(i−1)n − p‖, for all i = 1, 2, . . . , k.

(3) For i = 1, 2, . . . , k, we have

‖T n
i y(i−1)n − p‖ ≤ (1 + rin)‖y(i−1)n − p‖

≤ (1 + rn)‖y(i−1)n − p‖.
(4) By part (1) and α1n ≤ 1, we obtain

‖y1n − p‖ = ‖(1− α1n)(xn − p) + α1n(T n
1 xn − p)‖

≤ (1− α1n)‖xn − p‖+ α1n‖T n
1 xn − p‖

≤ (1− α1n)‖xn − p‖+ α1n(1 + rn)‖xn − p‖
≤ (1 + rn)‖xn − p‖.
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We assume that ‖yjn − p‖ ≤ (1 + rn)j‖xn − p‖ holds for some 1 ≤ j ≤ k − 2.
From part (3) and α(j+1)n ≤ 1, we then have

‖y(j+1)n − p‖ = ‖(1− α(j+1)n)(yjn − p) + α(j+1)n(T n
j+1yjn − p)‖

≤ (1− α(j+1)n)‖yjn − p‖+ α(j+1)n‖T n
j+1yjn − p‖

≤ (1− α(j+1)n)‖yjn − p‖+ α(j+1)n(1 + rn)‖yjn − p‖
≤ (1 + rn)‖yjn − p‖
≤ (1 + rn)(1 + rn)j‖xn − p‖
= (1 + rn)j+1‖xn − p‖.

Therefore, by mathematical induction, we obtain

‖yin − p‖ ≤ (1 + rn)i‖xn − p‖, for i = 1, 2, . . . , k − 1.

(5) By part (2), part (4), and αkn ≤ 1, we get

‖xn+1 − p‖ = ‖(1− αkn)(y(k−1)n − p) + αkn(T n
k y(k−1)n − p)‖

≤ (1− αkn)‖y(k−1)n − p‖+ αkn‖T n
k y(k−1)n − p‖

≤ (1− αkn)‖y(k−1)n − p‖+ αkn(1 + rn)‖y(k−1)n − p‖
≤ (1 + rn)‖y(k−1)n − p‖
≤ (1 + rn)(1 + rn)k−1‖xn − p‖
= (1 + rn)k‖xn − p‖
≤ (1 + δn)‖xn − p‖,

where δn =
(

k
1

)
rn +

(
k
2

)
r2
n + . . . +

(
k
k

)
rk
n.

(6) By (5), we have ‖xn+1 − p‖ ≤ (1 + δn)‖xn − p‖ for all n ∈ N. From
Σ∞

n=1rn < ∞, we also have Σ∞
n=1r

i
n < ∞ for i = 1, 2, 3, . . . , k. It follows that

Σ∞
n=1δn < ∞. By Lemma 2.6.1, we get limn→∞ ‖xn − p‖ exists.

Theorem 3.2.2. Let C be a nonempty closed convex subset of a real Banach space
X, and {Ti : i = 1, 2, . . . , k} be a family of asymtotically quasi-nonexpansive
selfmappings of C, i.e., ‖T n

i x − pi‖ ≤ (1 + rin)‖x − pi‖, for all x ∈ C and
pi ∈ F (Ti), i = 1, 2, . . . , k. Suppose that F =

⋂k
i=1 F (Ti) 6= ∅, x1 ∈ C and the

iterative sequence {xn} is defined by (3.1.2). Assume that
∑∞

n=1 rn < ∞, where
rn = max1≤i≤k{rin}. Then {xn} converges strongly to a common fixed point of
the family of mappings if and only if lim infn→∞ d(xn, F ) = 0, where d(x, F ) =
infp∈F ‖x− p‖.
Proof. The necessity is obvious and then we prove only the sufficiency. Let p ∈ F.
By Lemma 3.2.1(6), limn→∞ ‖xn−p‖ exists and hence {‖xn−p‖} is bounded. We
let M = supn≥1{‖xn − p‖}. From Lemma 3.2.1(5), we get

‖xn+1 − p‖ ≤ ‖xn − p‖+ Mδn, n ≥ 1,
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where δn =
(

k
1

)
rn +

(
k
2

)
r2
n + . . . +

(
k
k

)
rk
n. Thus, for positive integers m and n, we

have

‖xn+m − p‖ ≤ ‖xn+m−1 − p‖+ Mδn+m−1

≤ ‖xn+m−2 − p‖+ M(δn+m−1 + δn+m−2)
...

≤ ‖xn − p‖+ M

n+m−1∑
i=n

δi (3.2.2)

By Lemma 3.2.1(5), we obtain

d(xn+1, F ) ≤ (1 + δn) d(xn, F ).

From the given condition lim infn→∞ d(xn, F ) = 0 and Lemma 2.6.1, we get

lim
n→∞

d(xn, F ) = 0. (3.2.3)

Next, we show that {xn} is a Cauchy sequence in C. By (3.2.3) and
∑∞

n=1 δn <
∞, we get that for any ε > 0, there exists a positive integer n0 such that, for all
n ≥ n0,

d(xn, F ) <
ε

8
and

∞∑
n=n0

δn <
ε

2M
. (3.2.4)

From the first inequality of (3.2.4), there exists p0 ∈ F such that

‖xn0 − p0‖ <
ε

4
. (3.2.5)

For any positive integer m, by (3.2.2), (3.2.4) and (3.2.5), we obtain

‖xn0+m − xn0‖ ≤ ‖xn0+m − p0‖+ ‖xn0 − p0‖

≤ 2‖xn0 − p0‖+ M

n0+m−1∑
i=n0

δi

< 2
( ε

4

)
+ M

( ε

2M

)
= ε. (3.2.6)

Thus, {xn} is a Cauchy sequence in X. Since X is complete, {xn} → q ∈ X.
Actually, q ∈ C because {xn} ⊂ C and C is a closed subset of X. Next we
show that q ∈ F . Since F (Ti) is a closed subset in C for all i = 1, 2, . . . , k, so is
F =

⋂k
i=1 F (Ti). From the continuity of d(x, F ) with d(xn, F ) → 0 and xn → q

as n →∞, we get d(q, F ) = 0 and then q ∈ F . Therefore, the proof is complete.
¤

Since any quasi-nonexpansive mapping is asymptotically quasi-nonexpansive,
the next corollary is obtained immediately from Theorem 3.2.2.
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Corollary 3.2.3. Let C be a nonempty closed convex subset of a real Banach space
X, and {Ti : i = 1, 2, . . . , k} be a family of quasi-nonexpansive selfmappings of C,
i.e., ‖T n

i x− pi‖ ≤ ‖x− pi‖, for all x ∈ C and pi ∈ F (Ti), i = 1, 2, . . . , k. Suppose
that F =

⋂k
i=1 F (Ti) 6= ∅, x1 ∈ C and the iterative sequence {xn} is defined by

(3.1.2). Then {xn} converges strongly to a common fixed point of the family of
mappings if and only if lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infp∈F ‖x− p‖.
Remark 3.2.4. Since any quasi-nonexpansive mapping is asymptotically quasi-
nonexpansive, Theorem 3.2.2 can be applied for all quasi-nonexpansive mappings.

3.3 Weak and Strong Convergence Theorems for a Fi-

nite Family of Asymptotically Quasi-nonexpansive

Mappings in Uniformly Convex Banach Spaces

In this section, we prove some strong and weak convergence results for the
iterative process (3.1.2) on uniformly convex Banach spaces without using the
condition lim infn→∞ d(xn, F ) = 0 appearing in Section 3.2. Instead, we consider
(L − γ) uniform Lipschitz mappings, condition (A′′), semi-compact mappings,
Opial property and demiclosed mappings at 0.

Theorem 3.3.1. Let C be a nonempty closed convex subset of an uniformly convex
real Banach space X. Let {Ti : i = 1, 2, . . . , k} be a family of uniformly (L −
γi)-Lipschitzian and asymptotically quasi-nonexpansive selfmappings of C, i.e.,
‖T n

i x−T n
i y‖ ≤ L‖x− y‖γi and ‖T n

i x−pi‖ ≤ (1+rin)‖x−pi‖, for all x, y ∈ C and
pi ∈ F (Ti), i = 1, 2, . . . , k. Suppose that {Ti : i = 1, 2, . . . , k} satisfies condition
(A′′) and F =

⋂k
i=1 F (Ti) 6= ∅. Let x1 ∈ C and the iterative sequence {xn} be

defined by (3.1.2). Assume that
∑∞

n=1 rn < ∞, where rn = max1≤i≤k{rin}. Then
{xn} converges strongly to a common fixed point of the family of mappings.

Proof. Let p ∈ F. By Lemma 3.2.1(6), we get that limn→∞ ‖xn − p‖ exists. Then
there is a real number c ≥ 0 such that

lim
n→∞

‖xn − p‖ = c. (3.3.1)

By Lemma 3.2.1(4), we have

‖yin − p‖ ≤ (1 + rn)i‖xn − p‖, for i = 1, 2, . . . , k − 1.

By taking lim sup on both sides of the above inequality, we get

lim sup
n→∞

‖yin − p‖ ≤ c, for i = 1, 2, . . . , k − 1. (3.3.2)

Therefore, by Lemma 3.2.1(3) and (3.3.1), we obtain

lim sup
n→∞

‖T n
i y(i−1)n − p‖ ≤ c, for i = 1, 2, . . . , k. (3.3.3)

Since limn→∞ ‖xn+1 − p‖ = c, we have

lim
n→∞

‖(1− αkn)(y(k−1)n − p) + αkn(T n
k y(k−1)n − p)‖ = c.
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Using (3.3.2), (3.3.3) and Lemma 2.6.2, we conclude that

lim
n→∞

‖y(k−1)n − T n
k y(k−1)n‖ = 0.

We assume that

lim
n→∞

‖y(j−1)n − T n
j y(j−1)n‖ = 0, for some 2 ≤ j ≤ k. (3.3.4)

By (3.1.2) and Lemma 3.2.1 (3), we have

‖xn+1 − p‖ ≤ (1 + rn)k−i‖yin − p‖, for all i = 1, 2, . . . , k − 1.

This together with (3.3.4) and rn → 0 as n →∞, we obtain

c ≤ lim inf
n→∞

‖y(j−1)n − p‖. (3.3.5)

By Lemma 3.2.1 (4), (3.1.2), and (3.3.5), we get

lim
n→∞

‖(1− α(j−1)n)(y(j−2)n − p) + α(j−1)n(T n
j−1y(j−2)n − p)‖
= lim

n→∞
‖y(j−1)n − p‖ = c.

Using (3.3.1), (3.3.3), Lemma 3.2.1(3) and Lemma 2.6.2, we conclude that

lim
n→∞

‖y(j−2)n − T n
j−1y(j−2)n‖ = 0.

Therefore, by mathematical induction, we obtain

lim
n→∞

‖y(i−1)n − T n
i y(i−1)n‖ = 0, for i = 1, 2, . . . , k. (3.3.6)

From (3.1.2), we have

‖yin − y(i−1)n‖ = αin‖T n
i y(i−1)n − y(i−1)n‖, for i = 1, 2, . . . , k − 1.

By (3.3.6), we obtain that

‖yin − y(i−1)n‖ → 0 as n →∞, for i = 1, 2, . . . , k − 1. (3.3.7)

From

‖xn − yin‖ ≤ ‖xn − y1n‖+ ‖y1n − y2n‖+ . . . + ‖y(i−1)n − yin‖,
for i = 1, 2, . . . , k − 1. It follows by (3.3.7) that

‖xn − yin‖ → 0 as n →∞, for i = 1, 2, . . . , k − 1. (3.3.8)

From (3.3.6), when i = 1 we get limn→∞ ‖xn−T n
1 xn‖ = 0. For 2 ≤ i ≤ k, we have

‖xn − T n
i xn‖ ≤ ‖xn − y(i−1)n‖+ ‖y(i−1)n − T n

i y(i−1)n‖+ ‖T n
i y(i−1)n − T n

i xn‖
≤ ‖xn − y(i−1)n‖+ ‖y(i−1)n − T n

i y(i−1)n‖+ L‖y(i−1)n − xn‖γi .

From (3.3.6) and (3.3.8), we conclude that

lim
n→∞

γin = lim
n→∞

‖xn − T n
i xn‖ = 0, for i = 1, 2, . . . , k. (3.3.9)
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where γin = ‖xn − T n
i xn‖. From (3.1.2), we have

‖xn+1 − xn‖ ≤ (1− αkn)‖y(k−1)n − xn‖+ αkn‖T n
k y(k−1)n − xn‖

≤ (1− αkn)‖y(k−1)n − xn‖
+αkn(‖T n

k y(k−1)n − y(k−1)n‖+ ‖y(k−1)n − xn‖)
= ‖y(k−1)n − xn‖+ αkn‖T n

k y(k−1)n − y(k−1)n‖.
From (3.3.6) and (3.3.8),

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3.10)

For i = 1, 2, . . . , k, we have

‖xn+1 − Tixn+1‖ ≤ ‖xn+1 − T n+1
i xn+1‖+ ‖Tixn+1 − T n+1

i xn+1‖
≤ γi(n+1) + L‖xn+1 − T n

i xn+1‖γi

≤ γi(n+1) + L(‖xn+1 − xn‖+ ‖xn − T n
i xn‖

+ ‖T n
i xn − T n

i xn+1‖)γi

≤ γi(n+1) + L(‖xn+1 − xn‖+ γin + L‖xn − xn+1‖γi)γi .

Using (3.3.9) and (3.3.10), we obtain

lim
n→∞

‖xn+1 − Tixn+1‖ = 0, for i = 1, 2, . . . , k.

Therefore, by using condition (A′′), there exists a nondecreasing function f :
[0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

‖xn − Tjxn‖ = 0,

for some 1 ≤ j ≤ k. That is

lim
n→∞

d(xn, F ) = 0.

By Theorem 3.2.2, we conclude that {xn} converges strongly to a point p ∈ F .

Lemma 3.3.2. Let C be a nonempty closed convex subset of an uniformly convex
real Banach space X, and {Ti : i = 1, 2, . . . , k} be a family of (L − γi) uniform
Lipschitz and asymtotically quasi-nonexpansive selfmappings of C, i.e., ‖T n

i x −
T n

i y‖ ≤ L‖x− y‖γi and ‖T n
i x − pi‖ ≤ (1 + rin)‖x − pi‖, for all x, y ∈ C and

pi ∈ F (Ti), i = 1, 2, . . . , k. Suppose that F =
⋂k

i=1 F (Ti) 6= ∅, x1 ∈ C and the
iterative sequence {xn} is defined by (3.1.2) with αin ∈ [δ, 1−δ] for some δ ∈ (0, 1

2
).

Assume that
∑∞

n=1 rn < ∞, where rn = max1≤i≤k{rin}. Then,

(1) limn→∞ ‖xn − T n
i y(i−1)n‖ = 0, for all i = 1, 2, , . . . , k;

(2) limn→∞ ‖xn − Tixn‖ = 0, for all i = 1, 2, , . . . , k.
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Proof. (i) Let p ∈ F . By Lemma 3.2.1(6), we obtain that limn→∞ ‖xn − p‖ exits
and we then suppose that

lim
n→∞

‖xn − p‖ = c. (3.3.11)

By (3.3.11) and Lemma 3.2.1(4), we have

lim sup
n→∞

‖yin − p‖ ≤ c, for i = 1, 2, . . . , k − 1 (3.3.12)

By (3.1.2), we have

‖xn+1 − p‖ ≤ (1− αkn)‖y(k−1)n − p‖+ αkn‖T n
k y(k−1)n − p‖

≤ (1− αkn)‖y(k−1)n − p‖+ αkn(1 + rn)‖y(k−1)n − p‖
≤ (1 + rn)‖y(k−1)n − p‖
= (1 + rn)‖(1− α(k−1)n)(y(k−2)n − p) + α(k−1)n(T n

k−1y(k−2)n − p)‖
≤ (1 + rn)

(
(1− α(k−1)n)‖y(k−2)n − p‖

+α(k−1)n(1 + rn)‖y(k−2)n − p‖
)

≤ (1 + rn)2‖y(k−2)n − p‖
...

≤ (1 + rn)k−i‖yin − p‖,
for some i = 1, 2, . . . , k − 1. It follows that

c ≤ lim inf
n→∞

‖yin − p‖, for i = 1, 2, . . . , k − 1. (3.3.13)

From (3.3.12) and (3.3.13), we obtain

lim
n→∞

‖yin − p‖ = c, (3.3.14)

and then

lim
n→∞

‖(1− αin)(y(i−1)n − p) + αin(T n
i y(i−1)n − p)‖ = c, (3.3.15)

for i = 1, 2, . . . , k − 1.
By Lemma 3.2.1(3) and (3.3.14), we get

lim sup
n→∞

‖T n
i y(i−1)n − p‖ ≤ c, for i = 1, 2, . . . , k − 1. (3.3.16)

From (3.3.11), (3.3.12), (3.3.15), (3.3.16) and Lemma 2.6.2, we obtain

lim
n→∞

‖T n
i y(i−1)n − y(i−1)n‖ = 0, for i = 1, 2, . . . , k − 1. (3.3.17)

Now we want to show that (3.3.17) is also true for i = k. By Lemma 3.2.1 (4),
we have

‖T n
k y(k−1)n − p‖ ≤ (1 + rn)‖y(k−1)n − p‖

≤ (1 + rn)(1 + rn)k−1‖xn − p‖
= (1 + rn)k‖xn − p‖.
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This implies by (3.3.11) that

lim sup
n→∞

‖T n
k y(k−1)n − p‖ ≤ c. (3.3.18)

We also have

lim
n→∞

‖(1− αkn)(y(k−1)n − p) + αkn(T n
k y(k−1)n − p)‖ = lim

n→∞
‖xn+1 − p‖ = c.

Hence, by (3.3.12), (3.3.18) and Lemma 2.6.2, we obtain

lim
n→∞

‖y(k−1)n − T n
k y(k−1)n‖ = 0. (3.3.19)

Then, (3.3.17) and (3.3.19) give us

lim
n→∞

‖T n
i y(i−1)n − y(i−1)n‖ = 0, for i = 1, 2, . . . , k. (3.3.20)

From

‖xn − T n
i y(i−1)n‖ ≤ ‖xn − y(i−1)n‖+ ‖y(i−1)n − T n

i y(i−1)n‖,
It implies by (3.3.8) and (3.3.20) that

lim
n→∞

‖xn − T n
i y(i−1)n‖ = 0, (3.3.21)

for some i = 1, 2, 3, . . . , k.
(ii) From part (i), for i = 1, we have

lim
n→∞

‖T n
1 xn − xn‖ = 0. (3.3.22)

For i = 2, 3, 4, . . . , k, we get

‖T n
i xn − xn‖ ≤ ‖T n

i xn − T n
i y(i−1)n‖+ ‖T n

i y(i−1)n − xn‖
≤ L‖xn − y(i−1)n‖γi + ‖T n

i y(i−1)n − xn‖
By part (1) and (3.3.8), we conclude that

lim
n→∞

‖T n
i xn − xn‖ = 0, for i = 1, 2, . . . , k. (3.3.23)

For 1 ≤ i ≤ k, we obtain

‖xn − Tixn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T n+1
i xn+1‖

+ ‖T n+1
i xn+1 − T n+1

i xn‖+ ‖T n+1
i xn − Tixn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − T n+1
i xn+1‖

+ L‖xn+1 − xn‖γi + L‖T n
i xn − xn‖γi .

From (3.3.23), we then have

lim
n→∞

‖xn − Tixn‖ = 0, for i = 1, 2, . . . , k.
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Theorem 3.3.3. Under the hypotheses of Lemma 3.3.2, assume that Tm
j is semi-

compact for some positive integers m and 1 ≤ j ≤ k. Then {xn} converges
strongly to a common fixed point of the family {Ti : i = 1, 2, . . . , k}.
Proof. Suppose that Tm

j is semi-compact for some positive integers m ≥ 1 and
1 ≤ j ≤ k. We have

‖Tm
j xn − xn‖ ≤ ‖Tm

j xn − Tm−1
j xn‖+ ‖Tm−1

j xn − Tm−2
j xn‖+ . . .

+‖T 2
j xn − Tjxn‖+ ‖Tjxn − xn‖

≤ (m− 1)L‖Tjxn − xn‖γj + ‖Tjxn − xn‖.
Then, by Lemma 3.3.2(2), we get ‖Tm

j xn − xn‖ → 0 as n → ∞. Since {xn} is
bounded and Tm

j is semi-compact, there exists a subsequence {xnl
} of {xn} such

that xnl
→ q ∈ C as l →∞.

By continuity of Ti and Lemma 3.3.2(2), we obtain

‖q − Tjq‖ = lim
l→∞

‖xnl
− Tj xnl

‖ = 0, for all i = 1, 2, . . . , k.

Therefore, q ∈ F and then Theorem 3.2.2 implies that {xn} converges strongly to
a common fixed point q of the family {Ti : i = 1, 2, . . . , k}.

We note that in practical Theorem 3.3.3 is very useful in the case that one of
Ti, i = 1, 2, 3, . . . , k, is semi-compact.

Theorem 3.3.4. Let C be a nonempty closed convex subset of an uniformly convex
real Banach space X satisfying the Opial property, and {Ti : i = 1, 2, . . . , k}
be a family of (L − γi) uniform Lipschitz and asymtotically quasi-nonexpansive
selfmappings of C, i.e., ‖T n

i x − T n
i y‖ ≤ L‖x− y‖γi and ‖T n

i x − pi‖ ≤ (1 +
rin)‖x − pi‖, for all x, y ∈ C and pi ∈ F (Ti), i = 1, 2, . . . , k. Suppose that F =⋂k

i=1 F (Ti) 6= ∅, x1 ∈ C and the iterative sequence {xn} is defined by (3.1.2)
with αin ∈ [δ, 1 − δ]. Assume that

∑∞
n=1 rn < ∞, where rn = max1≤i≤k{rin}. If

I−Ti, i = 1, 2, · · · , k, is demiclosed at 0, then {xn} converges weakly to a common
fixed point of the family of mappings.

Proof. Let p ∈ F . As proved in Theorem 3.2.2, we get limn→∞ ‖xn − p‖ exits
and then {xn} is bounded. Since an uniformly convex Banach space is reflexive,
there exists a subsequence {xnj

} of {xn} converging weakly to a point z1 ∈ C. By
Lemma 3.3.2, we have limn→∞ ‖xn − Tixn‖ = 0. From I − Ti is demiclosed at 0
for i = 1, 2, . . . , k, we obtain Tiz1 = z1. Therefore, z1 ∈ F .

Let {xnk
} be another subsequence of {xn} converging weakly to a point z2 ∈ C.

We want to show that z1 = z2 in order to conclude that {xn} converges weakly to
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z1. Assume z1 6= z2. By Opial property,

lim
n→∞

‖xn − z1‖ = lim
j→∞

‖xnj
− z1‖

< lim
j→∞

‖xnj
− z2‖

= lim
n→∞

‖xn − z2‖
= lim

k→∞
‖xnk

− z2‖
< lim

k→∞
‖xnk

− z1‖
= lim

n→∞
‖xn − z1‖.

We get a contradiction. Hence, {xn} converges weakly to a common fixed point
p ∈ F .

The following remarks are obtained directly from the results in Section 3.2
and Section 3.3.

Remark 3.3.5. It is not hard to show that Theorems 3.3.1, 3.3.3 and 3.3.4 can
be extended to a finite family of generalized asymptotically quasi-nonexpansive
mappings as we can see in [63].

Remark 3.3.6. It is clear that Theorems 3.3.1, 3.3.3 and 3.3.4 can be used for any
quasi-nonexpansive mapping.




