Chapter 4
Equilibrium Problems and Fixed Point
Problems of Quasi-nonexpansive Mappings

4.1 A Strong Convergence Theorem of Hybrid Meth-
ods for Generalized Mixed Equilibrium Problems
and Fixed Point Problems of an Infinite Family
of Lipschitzian Quasi-nonexpansive Mappings in
Hilbert Spaces

In this section, motivated by the result in Section 2.5/ , we prove a strong
convergent theorem of a hybrid projection iterative method defined by (4.1.1)
for finding a common element of the set of fixed points of an infinite family of
Lipschitzian quasi-nonexpansive mappings, the set of solutions of the general sys-
tem of the variational inequality and the set of solutions of the generalized mixed
equilibrium problem in the framework of real Hilbert spaces. Our main result
can be deduced for nonexpansive mappings applied for strict pseudo-contraction
mappings. It is clear that our result generalizes the work by [14].

Theorem 4.1.1. Let C be a closed convex subset of a real Hilbert space H, [ :
C x C — R be a bifunction satisfying (A1)-(A4) and ¢ : C — RU {+o0} be a
proper lower semicontinuous and convex function. Let A be an a-inverse-strongly
monotone mapping of C' into H and B be a B-inverse-strongly monotone mapping
of C into H, respectively. Let {S,} and S be families of Lipschitzian quasi-
nonexpansiwve mappings of C into itself such that lim, . ||Snz— Syl < Ly|lz—y||
for all x,y € C, sup, L,, = L, (,—, F'(S,) = F(S) and F = F(S)NVI(C,B) N
GMEP(f,p,A) # 0. Suppose that {S,} satisfies the NST-condition with S.
Assume that either (B1) or (B2) holds. Let {x,} be a sequence generated by the
algorithm:

( xr1 € O,
C,=C,
f(unv y) + (10(3/) + <Al’n, Yy — un> + ,«%L<y — Up, Up — mn> 2 Qp(un>7vy € C,
zn = Po(u, — \yBuy,), (4.1.1)

Yn = QpTp + (]- - an)Snzn7
Crnt1 ={w € Oyt [lyn — w| < lzn — ||},
\ Tnt+1 = £Cpy1T1, n > 1;
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where {ay,} C [0,1),{\.} € (0,20), {rn} C (0,2a),

0<a,<a<l 0<b< )\, <c<28, and 0<d<r,<e<2a,

for some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (4.1.1)
converges strongly to a point T = Prxi, where Pr is the metric projection of H

onto F.

Proof. We divide our proof into 5 steps.

Step 1: We show that F' C C), and C,, is closed and convex for all n > 1.

From the assumption, C; = C'is closed and convex. Suppose that C,, is closed
and convex for some m > 1. Next, we show that C,,,; is closed and convex. For
any w € C,,, we see that

is equivalent to

[Ym = wll < [em —w]

ml* = ymll* — 2(w, 2 — ym) > 0.

Therefore, C,,+1 is closed and convex.

Since A is a-inverse-strongly monotone and B is [-inverse-strongly monotone,
by Lemma 2.3.14, we get that I — r, A and I — )\, B are nonexpansive.

By nonexpansiveness of T, and I — r, A, we have

lun = plI* =

IN

IN

VAN

T, (2n — 1nAxy) =15, (p — rnAp)Hz

[(zn, — rnAx,) — (p — TnAp)HZ

[(zn = p) = ra(Az, — Ap)|?

20 = plI* = 2rn (2 — p, Axy — Ap) + r2|| Az, — Ap|®

[z = pl* = 2ral| Az, — Ap||? + ri|| Az, — Apl|?

| _PH2 + 1 — 20) || Az, — ApH2

[y (4.1.2)

We are now ready to show that F' C C,, for each n > 1. From the assumption,
we have that F' € C' = (. Suppose F' C C,, for some m > 1. For any w € F' C
Cyn, by nonexpansiveness of I — \,, B, we have

[Ym = wl =

IN

IAIA

That is w € Chyy1.

each n > 1.

|lotm®m + (1 — ) Simzm — w||

|2 — wl| + (1 = am)||zm — w]]

|| — w|| + (1 — o) || Pe(I — A\ B, — Po(I — A\, B)w||
||z — w|| + (1 — ) |[um — wl]

W [T — | + (1 — am) |2m — wl]

[ — wl].

By mathematical induction, we conclude that F C C,, for
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Step 2: We show that {z,} is bounded.

Since x,, = P, v1 and 2,1 = Pg,, 71 € Chqy C Oy, we get
0 < (@1 —Tp,Tp — Tpy1) (4.1.3)
= (T1— Tp,Tp — T+ T1 — Tpy1)
< —fley = 2l + 2 = zallllzr = 2ol

Thus

|21 — 2ol < |21 — zppa . (4.1.4)
Since z,, = P, 1, for any w € F C C),, we have

o1 =l < a1 — ]l (4.1.5)
In particular, we obtain

|1 — x| < ||x1 — Prx]|- (4.1.6)

By (4.1.4) and (4.1.0), we get that lim,, .o ||z, — z1]| exists. It implies that {x,}
is bounded.

Step 3: We show that lim,,_ ||z, — Sz,|| =0 for all S € S.

By using (4.1.3), we obtain that
|20 — xn+1||2 = |lzn — 21 + 21 — Tpga ||
= |lzn — 21>+ 2(xp — 21,71 — Tpy1) + |71 — Tpga|]?
= |lan = 21l* = 2llzn — 21l* + 2{wn — 21,20 — Tp1)
ot = zpga |)?
< o = zpa ) = llan — 2
and so

lim ||z, — p4a]] = 0. (4.1.7)

n—oo

Since x,11 = Pg,, ,x1 € C,41, we have

n+1
[Yn — Tng1ll < |20 — Tna ]
and then
19 = @nll < yn = Togall + l2n = T || < 2[wn = T |-
By (4.1.7), we get
lim ||z, — yn|| = 0. (4.1.8)
On the other hand, we have

|Zn = Ynll = |20 — an@n — (1 = @) Spznll = (1 — an)l|2n — Snzal.
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It follows from (4.1.8) and the assumption 0 < a,, < a < 1 that
lim ||z, — Spz.|| = 0. (4.1.9)
For any w € F', we have
[y —wl* = llanzn + (1 = o) Spze — wl
< ey = w|]? 4 (1 = )| Spzn — wlf?
< apllzn, — wl? + (1= ) ||zn — vl (4.1.10)
From (4.1.2), we obtain

lyn = wl* < anllzn = w]* + (1 = @) [[Po(I = Xy B)uy, — wi®
< |z — w|)? 4 (1= a)||(I — M\ B)un — (I — N\ B)w||?
= apllzn —wl* + (1 = an)(lun — wl* + A7l| Buy — Buw|®
-2\, (u, — w, Bu,, — Bw))
< agllr, - w||2 + (1 = an)(flun — wH2 + An(An = 26) || Bu,, — Bw||2)
< agllen —w|® + (1 = an)([len = wl|* + Xa(Xa = 268) || Bu, — Buwlf)
< lan = w]? + (1= ) Aa(An = 28)]| Bu, — Bwlf.

We then have
(1-a)b(28 = o)||Bun — Bw|® < [lan — w|® = |y — wl|?
= (lzn =0l = [lyn — wl)([lzn — wl|| + [[yn —wl])
< len = wnll (lzn = wll + llyn — wl]).
By (4.1.8), we obtain that
lim ||Bu, — Bw|| = 0. (4.1.11)
On the other hand, since Pg is firmly nonexpansive and I — \,, B is nonex-
pansive, we have
| Pe(I — A B)uy, — Po(I — X\, B)w||?
(I = \oB)up, — (I = \pyB)w, z, — w)
1
= U= AB)un = (I = MuB)wl® + [|2n — wll”
=T = AB)uy — (I = A B)w — (2, — w)||2}

120 — wl*

IN

1

5 {llun = wl* + |20 — w]?

—|Jtn — 20 — An(Bu, — Bw)|]*} (4.1.12)
1

= Stllun = vl + llzn = wl* = [lun = 2]

+2\, (U, — 2, Bu,, — Bw) — \2||Bu,, — Bw||*}.
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From (4.1.2), it implies that

lzn — wH2 < Ju, — w||2 — ||un — zn||2 + 2\, (u, — 2z, Bu,, — Bw)

—\2||Bu,, — Bw|?
<l = wl? = llun — 20
+2\:||un — znl||| Bun, — Bw||.
By (4.1.10) and (4.1.13), we get
(1 —an)llun = zal* < flww = wl® = |y — wlf?
+2(1 — an) Anlltn — zo| | Bu, — Bu|
< len = ynll(lzn — wll + [yn — wl])
+2(1 — an) A ||wn — z0|||| Buy, — Bwl|.
By (4.1.8), (4.1.11) and the assumption 0 < «,, < a < 1, we get

lim ||u, — z,|| = 0.

n—oo

Also, by (4.1.10) and (4.1.12), we obtain that

(4.1.13)

(4.1.14)

(4.1.15)

I

lyn —wl? < apllz, —w|? + (1 — ap)lJup, — w|?
= O‘onn - wH2 + (1 - O‘n)”TTn<xn - TnAxn) — TTn(w - rnAw)Hz
< ag||lrn — w||2 + (1 = ap)||(z, — rpAzy) — (W — 1 Aw)
< ol —w|® 4+ (1 = an)(|2zn — wl* = 2r, (2, — w, Az, — Aw)
+roll Az, — Aw)|?)
< agllzn —wl? + (1= o) ([|zn — w|)?

+70 (10 — 2a)|| Az, — Aw||?)
|z, — wH2 + (1 = ap)rp(rn, — 2a)|| Az, — AwHQ.

From the assumptions 0 < o, <a<land 0 <d <r, <e < 2a, we have

(1 —a)d(2a — €)||Az,, — Aw||2

<l —wl* = llyn — wl®
<

By (4.1.8), we obtain

lim ||Az, — Aw| = 0.

[ = Ynll (20 = wl[ + [lyn — wl])-

(4.1.16)

On the other hand, by using Lemma 2.6.3, we have T, is firmly nonexpansive.
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Then we get
lun —wl* = [T, (I —r0A)zy —T), (I — 7 A)w]?
< AI =r,Az, — (I —rAw,u, —w)
1
= ST =rnd)an = (I = rp AJwl* + [|un — w]?
—I = raA)zy — (I = rnA)w — (un — w)||*)
1
< Sz = wl® + llun = w]® = (@ = un) = rn(Azn — Aw)|[?)
1
= Sllzn—wl® + flun = wl® = [lzn — wn]
+2r,(Tp — Up, Az, — Aw) — 72 || Az, — Aw]]?)
and so

lun —w|* < g —w|* = |20 — un|® + 2rn(zn — upn, Az, — Aw)
—r2||Az, — Aw|?
< zw — wl* = llon — uall®
+2r,||Tn — un|||| Az, — Aw||. (4.1.17)
By (4.1.15) and (4.1.17), we get
lyn —wl® < o —wl* = (1 = o) |20 — un®
+2(1 — an)rn||zn — un|||| Az, — Aw]],
which implies that
120 — wl* = llyn — wll* + 2rullzn — wallll Az, — Awl|
20 = ynll([2n = wl| + [lyn — wl)
+2r, || xn — un||||Azn, — Aw||.

From the assumptions 0 < o, <a<1,0<d <1, <e <2, (4.1.8) and (4.1.10),
we obtain

lim ||z, — u,|| = 0. (4.1.18)

n—oo

On the other hand, we have

(1 - O‘n)Hxn - un||2 <
<

|z — Snal| 1Sn@n = Snznll + [[Snzn — |

L||zn = znll 4 || Snzn — 2|

Ll = unll + Lllun = 2ol + [[Snzn — @all.
Using (4.1.9), (4.1.14) and (4.1.18), we conclude that

lim ||z, — Spz,|| = 0. (4.1.19)

IAIAIA

From the assumption {S,} satisfies the NST-condition with S, we have
lim ||z, — Sz,| =0, VSeS. (4.1.20)
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Since {z,} is bounded, we assume that a subsequence {x,,} of {z,} converges
weakly to &.

Step 4: We show that £ € F = F(S)NVI(C,B)NGMEP(f,p,A).

First, we show that £ € F(S). Suppose that £ # S¢ for some S € §. From
Opial’s condition and (4.1.20), we obtain

liminf ||z, — || < liminf |z,, — S¢||

= liminf||x,, — Sz,, + Sz,, — S¢||

1—00

< liminf ||z, —¢|,
71— 00

which give us a contradiction. Hence, £ € F(S).
Now, we prove that £ € VI(C, B). Let T be the maximal monotone mapping
defined by (2.3.11):
Tw:{Bx+ch ifxeC
0 if v ¢ C.
For any given (z,y) € G(T), we get y — Bx € Ngx. By z, € C and the definition
of N¢, we have

(x — zn,y — Bz) > 0. (4.1.21)
On the other hand, since z, = Po(I — A\, B)u,, we obtain
(x — zp, 2n — (I — A\yB)uy) >0

and then
Zp — Up
(x — zp, — + Bu,) > 0. (4.1.22)
Since u,, — z, — 0 as n — oo, we have that
Bu,, — Bz, — 0 as n — oc. (4.1.23)

From (4.1.21), (4.1.22) and the S-inverse monotonicity of B, we obtain

22))
(x — zn;,y) > (x— 2y, Bx)
> Zn; — Un,
(

T — 2ny Br) — (T — 20, . + Buy,)
= (r—z,,Bx — Bz,,) + (v — 2’1:“ Bz,, — Buy,)
Zn: — Uns
—(x — zp,, ZTzl>
> (0 = 2 B, = Bun) — {o = 2, 2
= (x,Bz,, — Buy,) — (2n,, Bzn, — Buy,) — (x — zp,, Zni/\— um)
> (2, Bz, — Bun.) — | 2|l Bzn. — Bun, "
_A%“f” 212, = tn, (4.1.24)
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By (4.1.14) and (4.1.18)), we get

lim ||z, — z,|| = 0.

n—oo

Since x,, — &, we obtain z,, — £. From (4.1.14), (4.1.23) and (4.1.24)), we obtain
<LC _£7y> = hm <SL’ C Zmay> > 0.

Since T is maximal monotone, we obtain that 0 € T¢. It follows that & €
VI(C,B).
Next, we show that £ € GMEP(f,p, A). For any y € C,
1

n

From the condition (A2), we get that

gp(y) + <Axn’ Y= un> + %(y — Up, Up — xn) > f(y>un) 2} @(un)

Replacing n by n;, we obtain
Up, — T,

ng

o(y) + (Azp,, y — Un,) + (Y — Un,,

For any ¢t with 0 < ¢t < 1 and y € C, put p, = ty + (1 — t)§. Since y € C and
¢ € C, we obtain p; € C. It follows from (4.1.25) and the monotonicity of A that

U’?’L,‘ — xni
<Pt — Unp,, Apt> > <Pt - unmA:Ot> 7 <A$nmpt - um> - <Pt — Un,,s —>

+ (pry un;) + o (un,) — (pr)
N <Pt = Un,, A:Ot - Aum> + <,0t = Un,, Aunz‘ 7 4 Awm>

Up; — Tp,
o=t I )+ plu) — 0(00)
Up,; — T,
> <pt - unmAum' | Axm) - <pt = Un;;s —>
+(pt, un;) + p(n;) — (). (4.1.26)

Since A is Lipschitzian, by (4.1.18), we get Au,, — Ax,, — 0 as i — oo. From
(A3) and (4.1.26), we arrive at

(pe = & Ape) > fp &) + (&) — w(pe)- (4.1.27)
From (A1), (A3), (4.1.27) and convexity of ¢, we have that

0 f(pe, pe) < tf(pe,y) + (1 =) f(pe, €)
< tflpey) + (1 —8) ((pe — & Ape) + 0(pe) — 0(€))
< tf(pe,y) + (1= )t({y — & Ape) + @(y) — ©(€)),

which implies that

Flony) + (=6 (ly — & Ape) + ¢(y) — ¢(€)) > 0.
Letting t — 0, by (A4), we arrive at

F&y) +(y—E& AL +w(y) —w(&) >0,
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This shows that £ € GMEP(f, ¢, A).
Step 5: We show that x,, — Ppx;.

Let T = PFZL‘1 Since T = PF:EI C OTH—I and T e PC

11, We get

21 = Zppa|| < flzy — 7|

On the other hand, we have

oy =zl <l = £
< liminf ||z — 2,,]|
1—00
< limsup ||z1 — z,,||
1—00
< o =7l
Therefore, we get
1 = &l = lim [lzy — 2 || = [l21 — 7|
71— 00

This implies that T = £. Since H has the Kadec-Klee property and z; — z,,, —
xy — T, it follows that x,, — Z. Since {x,,} is an arbitrary subsequence of {z,},
we conclude that x, — T as n — oco. The proof is now complete. O]

4.2 Deduced Strong Convergence Theorems and Ap-
plications of Hybrid Methods in Hilbert Spaces

Theorem 4.1.1/ can be reduced to many different results. By putting S,, = S for
all n > 1 in Theorem [4.1.1, we obtain the following theorem:

Theorem 4.2.1. Let C be a closed convex subset of a real Hilbert space H, f :
C x C — R be a bifunction satisfying (A1)-(A4) and ¢ : C — RU {400} be a
proper lower semicontinuous and convex function. Let A be an a-inverse-strongly
monotone mapping of C' into H and B be a 3-inverse-strongly monotone mapping
of C into H, respectively. Let S : C'— C' be a L-Lipschitzian quasi-nonexpansive
mapping such that F = F(S)NVI(C,B)NGMEP(f,p,A) # 0. Assume that
either (B1) or (B2) holds. Let {x,} be a sequence generated by the following
algorithm:

[ LY C,
C, =C,
f(una y) + Qo(y) + <Axn7 Yy— un> + %<y = Up, Up — xn> Z SD(Un)7Vy € Ca
zn = Po(u, — A\ Buy,), (4.2.1)

Yn = QpTp + (1 - Oén)SZn,
Cor1 ={w € Oyt [lyn — | < [lzn — wl[},
\ Tp41 = Cn+1m15 vn Z ]-7

where {a,} C [0,1),{\.} € (0,20), {r,} C (0,20),

0<a,<a<l 0<b< )\, <c<28, and 0<d<r,<e<2a,
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for some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (4.2.1)
converges strongly to a point T = Prxi, where Pr is the metric projection of H
onto F'.

When {S,,} and S are families of nonexpansive mappings, we get the fol-
lowing theorem:

Theorem 4.2.2. Let C' be a closed conver subset of a real Hilbert space H,
f:C xC — R be a bifunction satisfying (A1)-(Ad) and ¢ : C — R U {400}
be a proper lower semicontinuous and convexr function. Let A be an a-inverse-
strongly monotone mapping of C into H and B be a [(-inverse-strongly mono-
tone mapping of C into H, respectively. Let {S,} and S be families of non-
expansive mappings of C into itself such that (\,—, F(S,) = F(S) and F =
FS)NVIC,ByNGMEP(f, ¢, A) # 0. Suppose that {S,} satisfies the NST-
condition with S. Assume that either (B1) or (B2) holds. Let {z,} be a se-
quence generated by the algorithm (4.1.1), where {a,} C [0,1),{\.} C (0,20),
{rn} € (0,20),

0<a,<a<l, 0<b< )\, <c<208, and 0<d<r,<e<2a,

for some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (4.1.1)
converges strongly to a point T = Prxi, where Pr is the metric projection of H
onto F'.

Now we show how to apply Theorem 4.2.2 for families of strict pseudo-
contraction mappings.

Theorem 4.2.3. Let C' be a closed conver subset of a real Hilbert space H,
f:CxC — R be a bifunction satisfying (A1)-(Ad) and ¢ : C — RU {400}
be a proper lower semicontinuous and convexr function. Let A be an a-inverse-
strongly monotone mapping of C into H and B be a B-inverse-strongly mono-
tone mapping of C into H, respectively. Let {R,} and R be families of k—strict
pseudo-contraction mappings of C into itself such that (\,—, F'(R,) = F(R) and
F=FR)NVI(C,B)yNGMEP(f,p,A) # 0. Define a mapping S, : C — C
by Spx = kx + (1 — k)R,x for all x € C. Suppose that {R,} satisfies the NST-
condition with R. Assume that either (B1) or (B2) holds. Let {x,} be a se-
quence generated by the algorithm (4.1.1), where {a,} C [0,1),{\.} C (0,20),
{rn} € (0,20),

0<a,<a<l, 0<b< A, <c<28, and 0<d<r,<e<2aq,

for some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (4.1.1)
converges strongly to a point T = Prxi, where Pr is the metric projection of H
onto F'.

Proof. By Lemma 2.6.4, we obtain that .S,, is nonexpansive for all positive integer
n. We also get that {S,,} satisfies the NST-condition with S = {kI + (1 — k)T :
T € R}. The proof is now complete because of the direct result of Theorem
4.2.2. [
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By putting S,, = S for all n > 1 in Theorem 4.2.3, we obtain the following
corallary.

Corollary 4.2.4. Let C be a closed convex subset of a real Hilbert space H, f :
C x C — R be a bifunction satisfying (A1)-(A4) and ¢ : C — RU {+o0} be a
proper lower semicontinuous and convex function. Let A be an a-inverse-strongly
monotone mapping of C' into H and B be a B-inverse-strongly monotone mapping
of C' into H, respectively. Let R : C' — C' be a k—strict pseudo-contraction such
that F = F(R)NVI(C,B)NGMEP(f,p,A) # 0. Define a mapping S : C — C
by Sz = kx + (1 — k)Rx for all x € C. Assume that either (B1) or (B2) holds.
Let {z,,} be a sequence generated by the following algorithm (4.2.1), where {a,} C

[0,1), {An} C (0,28), {ra} C (0,20),
0<a,<a<l, 0<b< )\, <c<28, and 0<d<r,<e<2aq,

for some a,b,c,d,e € R. Then the sequence {x,} defined by the algorithm (4.2.1)
converges strongly to a point T = Prxy, where Pr is the metric projection of H
onto F'.

Remark 4.2.5. By letting ¢ = 0 in Corollary [4.2.4, we obtain Theorem 2.1 of [14].

Remark 4.2.6. Since Theorems 4.1.1, 14.2.1 14.2.2 14.2.3] and Corollary 4.2.4' are
for finding a common element of the set of fixed points, the set of solutions of
the general system of the variational inequality and the set of solutions of the
generalized mixed equilibrium problem, we can reduce each theorem or corollary

by letting B=0, A=0, p =0 or f(x,y) =0.





