
Chapter 2

Preliminaries

In this chapter, we will briefly review some concepts and some results of Semi-

group Theory.

2.1 Elementary Concepts

Definition 2.1.1. Let S be a semigroup, then a non-empty subset T of S is called

a subsemigroup of S, that is, if

xy ∈ T for all x, y ∈ T.

Definition 2.1.2. Let S be a semigroup and for each non-empty subset A of S, we

set

〈A〉 = ∩ {T : T is a subsemigroup of S containing A}.

It is characterized that 〈A〉 is the smallest subsemigroup of S containing A, and

〈A〉 = {a1.a2 . . . an : ai ∈ A for all i = 1, 2, . . . n and n ∈ N}.

Definition 2.1.3. Let S be a semigroup. A proper subsemigroup M of S is called a

maximal subsemigroup of S if, whenever M ⊆ N  S and N is a subsemigroup

of S, then M = N .

From Definition 2.1.3, we can easily prove the following lemma.

Lemma 2.1.4. Let S be a semigroup. Then the following are equivalent.

(i) M is a maximal subsemigroup of S;

(ii) 〈M ∪ {a}〉 = S for all a ∈ S \M ;

(iii) for any a, b ∈ S \M , a can be written as a finite product of elements of

M ∪ {b}.
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Proof. Suppose that M is a maximal subsemigroup of S and a ∈ S \M . Then

M  〈M ∪ {a}〉 where 〈M ∪ {a}〉 is a subsemigroup of S. Hence 〈M ∪ {a}〉 = S

by the maximality of M , that is, (i) implies (ii).

Next, suppose that (ii) holds and let a, b ∈ S \M . Then a ∈ S = 〈M ∪ {b}〉

and thus a is a finite product of elements of M ∪{b} by Definition 2.1.2. Therefore

(ii) implies (iii).

Finally, to show that (iii) implies (i), we suppose that (iii) holds and M ⊆ N  

S where N is a subsemigroup of S. Then there exists a ∈ S \N ⊆ S \M . If there

exists b ∈ N \M , then b ∈ S \M . So, (iii) implies that a is a finite product of

elements of M ∪ {b}. Thus, a ∈ 〈M ∪ {b}〉 ⊆ N , a contradiction. Hence M = N

and therefore M is maximal in S.

Definition 2.1.5. Let S be a semigroup. A subsemigroup U of S is called a left

unitary subsemigroup if U satisfies the property:

for u ∈ U, s ∈ S if us ∈ U then s ∈ U.

A right unitary subsemigroup of S is defined dually, and U is an unitary subsemi-

group if it is both left and right unitary.

Definition 2.1.6. Let S be a semigroup.

(i) If there exists an element 1 of S such that

x1 = x = 1x for all x ∈ S,

then 1 is called an identity element of S and S is called a semigroup with identity.

(ii) If there exists an element 0 of S such that

x0 = 0 = 0x for all x ∈ S,

then 0 is called a zero element of S and S is called a semigroup with zero.

Definition 2.1.7. A semigroup S is called left cancellative (right cancellative) if,

for all a, b and c in S,

ca = cb implies a = b (ac = bc implies a = b).
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Definition 2.1.8. A semigroup S is called left reductive (right reductive) if, for any

a, b in S,

xa = xb for all x ∈ S implies a = b (ax = bx for all x ∈ S implies a = b).

From Definition 2.1.7 and Definition 2.1.8 we see that, a left cancellative (right

cancellative) semigroup is left reductive (right reductive).

Definition 2.1.9. An element e of a semigroup S is called an idempotent if e = e2.

The set of all idempotents in S is denoted by E(S). We call S an idempotent-free

semigroup if S has no idempotent element.

Definition 2.1.10. An element a of a semigroup S is called regular if there exists x

in S such that a = axa. A semigroup S is regular if all elements in S are regular.

Definition 2.1.11. A semigroup S is called an inverse semigroup if every a in S

possesses a unique inverse, i.e. if there exists a unique element a−1 in S such that

a = aa−1a and a−1 = a−1aa−1.

Theorem 2.1.12. [3] Let S be a semigroup. Then S is an inverse semigroup if

and only if S is regular and idempotent elements commute.

Definition 2.1.13. Let S and T be semigroups. A mapping ϕ from S into T is

called a homomorphism if

(xy)ϕ = (xϕ)(yϕ) for all x, y ∈ S.

An injective homomorphism is called a monomorphism. A surjective homomor-

phism is called an epimorphism, and if a homomorphism is bijective then we call

it an isomorphism. If there exists an isomorphism from S onto T then we say that

S and T are isomorphic and write S ∼= T . If ϕ is a homomorphism from S into

S then we call it an endomorphism of S. An isomorphism from S onto S will be

called an automorphism of S.
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2.2 Ideals and Green’s Relations

Definition 2.2.1. Let S be a semigroup.

(i) A non-empty subset A of S is called a left ideal if SA ⊆ A, a right ideal if

AS ⊆ A, and a (two-sided) ideal if it is both a left and a right ideal.

(ii) An ideal I of S is called a prime ideal if I 6= S and whenever ab ∈ I for

elements a and b of S, then either a ∈ I or b ∈ I.

From Definition 2.2.1, it is equivalent to say that, I is a prime ideal of S if and

only if S \ I is a subsemigroup of S. Also, if S has a zero element, then {0} and

S are ideals of S. We call an ideal I of S a proper ideal if {0} 6= I 6= S.

For any semigroup S, the notation S1 means S itself if S contains the identity

element, otherwise, we let S1 = S ∪ {1} and define the binary operation on S1 by

1 · s = s = s · 1 for all s ∈ S and 1 · 1 = 1.

Then S1 becomes a semigroup with the identity element 1.

For any element a in S,

the smallest left ideal of S containing a is Sa ∪ {a} = S1a,

the smallest right ideal of S containing a is aS ∪ {a} = aS1, and

the smallest ideal of S containing a is SaS ∪ aS ∪ Sa ∪ {a} = S1aS1,

which we call the principal left ideal, principal right ideal and principal ideal gen-

erated by a, respectively.

In 1951, Green defined the equivalence relations L, R and J on S by the rules

that, for a, b ∈ S,

a L b if and only if S1a = S1b,

a R b if and only if aS1 = bS1, and

a J b if and only if S1aS1 = S1bS1.

Then he defined the equivalence relations

H = L ∩R and D = L ◦ R,
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and obtained that the composition of L and R is commutative. This follows that

D is the join L ∨ R, that is, D is the smallest equivalence relation containing

L ∪ R. Moreover, H ⊆ L ⊆ D ⊆ J and H ⊆ R ⊆ D ⊆ J . But, in commutative

semigroups, we have H = L = R = D = J .

Definition 2.2.2. A semigroup S is called left simple (right simple, bi-simple) if,

L = S × S (R = S × S, D = S × S).

2.3 Transformation Semigroups

In this section, we give some useful results about transformation semigroups

which will be used in this thesis.

2.3.1 The semigroups P (X), T (X), I(X) and G(X)

Let X be a non-empty set. As usual, P (X) denotes the set of all partial

transformations of X, that is, all transformations α whose domain, domα, and

range,Xα (or ranα) are subsets of X. Then P (X) is a semigroup under the

composition of mappings, that is, if α, β ∈ P (X), then αβ ∈ P (X) is defined by

x(αβ) = (xα)β for all x ∈ domα.

We also have

domαβ = (ranα ∩ dom β)α−1 and ranαβ = (ranα ∩ dom β)β.

In the case that ranα∩ dom β = ∅, we define αβ to be the empty transformation,

which is a partial transformation of X with empty domain and it is denoted by ∅.

Let T (X), I(X) and G(X) be the following sets:

T (X) = {α ∈ P (X) : domα = X},

I(X) = {α ∈ P (X) : α is injective},

G(X) = {α ∈ P (X) : α is bijective}.
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Then T (X) and I(X) are subsemigroups of P (X), which are called the full

transformation semigroup and the symmetric inverse semigroup on X, respec-

tively. Also, we call G(X) the permutation group on X, which is a subgroup of

P (X), T (X) and I(X).

For a non-empty subset A of X, we let idA denote the identity mapping on A.

Then it is clear that idX is the identity element of P (X), T (X), I(X) and G(X).

It is well known that every group can be embedded up to isomorphism in a

permutation group G(X) for some set X (Cayley’s Theorem). Comparing with

this result, in semigroup theory we have the following well known theorems.

Theorem 2.3.1. [3] If S is a semigroup and X = S1, then there exists a monomor-

phism ρ : S → T (X).

Theorem 2.3.2. [3] (The Vagner-Preston Representation Theorem)

If S is an inverse semigroup, then there exists a set X and a monomorphism

φ : S → I(X).

2.3.2 Baer-Levi semigroup

For any α ∈ P (X), we write

G(α) = X \ domα and D(α) = X \ ranα.

We also let

g(α) = |G(α)|, d(α) = |D(α)|, r(α) = | ranα|,

and refer to these cardinals as the gap, the defect and the rank of α, respectively.

In 1932, R. Baer and F. Levi constructed a right cancellative right simple

semigroup which is not a group on an infinite set X with cardinal p. The semigroup

is defined by

BL(q) = {α ∈ I(X) : g(α) = 0, d(α) = q},

where ℵ0 ≤ q ≤ p. This semigroup is called a Baer-Levi semigroup of type (p, q)

on X. From [1] vol 2, Section 8.1, we have the following well known results on

BL(q).
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Theorem 2.3.3. [1] For any two infinite cardinals p, q such that p ≥ q, there exists

a Baer-Levi semigroup of type (p, q).

Theorem 2.3.4. [1] Let S be a Baer-Levi semigroup. Then S is a right cancellative,

right simple semigroup without idempotents.

Theorem 2.3.5. [1] Let S be a right cancellative, right simple semigroup without

idempotents. Then S can be embedded in a Baer-Levi semigroup of type (p, p),

where p = |S|.

In 1984, Levi and Wood determined a maximal subsemigroup of BL(q) by

letting

MA = {α ∈ BL(q) : A 6⊆ Xα or (Aα ⊆ A or |Xα\A| < q)}

where A is a non-empty subset of X with |X\A| ≥ q. That is, α in BL(q) belongs

to MA if and only if

(i) A * Xα, or

(ii) A ⊆ Xα and either Aα ⊆ A, or |Xα \ A| < q.

The authors showed that MA is a maximal subsemigroup of BL(q) ([9] Theorem

1). Later, Hotzel [2] studied maximal subsemigroups and maximal left unitary

subsemigroups of BL(q). He showed that there are many other maximal subsemi-

groups of BL(q) and they are very complicated to describe.

2.3.3 Partial Baer-Levi semigroup

Let X be an infinite set with cardinal p, and let q be a cardinal such that

p ≥ q ≥ ℵ0. In this thesis, we examine a related semigroup of BL(q): namely, the

partial Baer-Levi semigroup on X defined by

PS(q) = {α ∈ I(X) : d(α) = q}.

This semigroup was first defined in [13] p 82. In contrast with BL(q), PS(q) is

neither right simple nor right cancellative. Moreover, this semigroup always con-

tains idempotents. In [12], Pinto and Sullivan described some algebraic properties

of PS(q) as follows.
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Theorem 2.3.6. If p ≥ q ≥ ℵ0, then PS(q) is a right and left reductive semigroup

with idempotents. Moreover, PS(q) contains a zero precisely when p = q.

Theorem 2.3.7. If p ≥ q ≥ ℵ0 and α ∈ PS(q), then the following statements are

equivalent.

(i) α is regular,

(ii) g(α) = q,

(iii) α−1 ∈ PS(q).

They also studied the set of all regular elements in PS(q): namely,

R(q) = {α ∈ PS(q) : g(α) = q}.

They showed that R(q) is the largest regular subsemigroup of PS(q). Moreover,

they obtained the following result.

Theorem 2.3.8. If p ≥ q ≥ ℵ0, then R(q) is an inverse semigroup.

They characterized Green’s relations of PS(q) as follows.

Theorem 2.3.9. If α, β ∈ PS(q), then α = βµ for some µ ∈ PS(q) if and only if

domα ⊆ dom β. Hence αRβ in PS(q) if and only if domα = dom β.

Theorem 2.3.10. If α, β ∈ PS(q), then α = λβ for some λ ∈ PS(q) if and only

if Xα ⊆ Xβ and

q ≤ max(g(β), |Xβ \Xα|) ≤ max(g(α), q).

Hence, α L β in PS(q) if and only if

(Xα = Xβ and g(α) = g(β) ≥ q) or (α = β and g(α) < q).

Theorem 2.3.11. If α, β ∈ PS(q), then αHβ in PS(q) if and only if

(Xα = Xβ, domα = dom β and g(α) ≥ q) or (α = β and g(α) < q).
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Theorem 2.3.12. If α, β ∈ PS(q), then αDβ in PS(q) if and only if

(domα = dom β and g(α) < q) or (r(α) = r(β) and g(α) = g(β) ≥ q).

Theorem 2.3.13. If α, β ∈ PS(q), then αJ β in PS(q) if and only if

(max(g(α), g(β)) ≤ q and r(α) = r(β)) or (g(α) = g(β) > q).

Let u be a cardinal number. The successor of u, denoted by u′, is defined as

u′ = min{v : v > u}.

Note that u′ always exists since the cardinals are well-ordered, and when u is

finite we have u′ = u+ 1.

Consequently, Pinto and Sullivan described the ideals of PS(q) as follows.

Theorem 2.3.14. The proper ideals of PS(q) for p > q are precisely the sets:

Tr = {α ∈ PS(q) : g(α) ≥ r}

where q < r ≤ p. Moreover, each Tr is a principal ideal.

Theorem 2.3.15. If p = q, the ideals of PS(q) are precisely the sets:

Jr = {α ∈ PS(q) : r(α) < r}

where 1 ≤ r ≤ p′. Moreover, Jr is principal precisely when r = s′ where 0 ≤ s ≤ p.

For ℵ0 ≤ r ≤ p, Pinto and Sullivan [12] defined a subsemigroup

Sr = {α ∈ PS(q) : g(α) ≤ r}

of PS(q). Then they gave the following result

Corollary 2.3.16. If p ≥ r > q ≥ ℵ0, then Gr = Sr∩Tr is bi-simple and idempotent-

free.

Moreover, they showed that Sq is generated by BL(q) and R(q) in very specific

ways.
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Theorem 2.3.17. If p ≥ q ≥ ℵ0, then Sq = BL(q).R(q). In fact, Sq = α.R(q) for

each α ∈ BL(q).

Theorem 2.3.18. If p > q, then Sq = BL(q).µ.BL(q) for each µ ∈ R(q).

2.4 Automorphisms of Transformation Semigroups

Definition 2.4.1. LetX be an infinite set. A semigroup S of partial transformations

of X is said to be GX-normal if for every α ∈ G(X), αSα−1 ⊆ S.

Example 2.4.2. The semigroup of all partial transformations P (X), the full trans-

formation semigroup T (X), the symmetric inverse semigroup I(X) and all ideals

of P (X), T (X) and I(X) are GX-normal.

Example 2.4.3. The partial Baer-Levi semigroup PS(q) is GX-normal. To see this,

we let α ∈ G(X) and β ∈ PS(q). Since Xα = X, we have Xαβα−1 = Xβα−1.

Thus,

d(αβα−1) = |X \Xαβα−1| = |X \Xβα−1| = |(X \Xβ)α−1| = q

since d(β) = |X \ Xβ| = q. Clearly αβα−1 is injective, hence αβα−1 ∈ PS(q),

that is, α.PS(q).α−1 ⊆ PS(q).

Definition 2.4.4. Let X be an infinite set and S be a semigroup of total or partial

transformations of X. An automorphism ϕ of S is said to be inner if there exists

γ ∈ G(X) such that (β)ϕ = γβγ−1 for all β ∈ S.

In what follows, we let Aut S denote the set of all automorphisms of the

subsemigroup S of P (X). The following results are the characterization of Aut

PS(q).

Theorem 2.4.5. [13] If S is the partial Baer-Levi semigroup of type (p, p), then

every automorphism of S is inner and Aut S ∼= G(X).

Theorem 2.4.6. [12] If p > q, then Aut PS(q) is isomorphic to G(X).
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When necessary, we will use the notation PS(X, p, q) in place of PS(q) to

highlight the set X and its cardinal p. The following result is quoted from [12]

Theorem 3.

Theorem 2.4.7. [12] The semigroups PS(X, p, q) and PS(Y, r, s) are isomorphic

if and only if p = r and q = s. Moreover, for each isomorphism ϕ, there is a

bijection γ : X → Y such that αϕ = γ−1αγ for each α ∈ PS(X, p, q).

In [12], the authors let B(X, q) denote the family of all A ⊆ X such that

|X \A| = q where |X| = p ≥ q ≥ ℵ0. If Y is a set with |Y | = r ≥ s ≥ ℵ0, then we

call a mapping H : B(X, q) → B(Y, s) an order monomorphism if H is injective

and, for A,B ∈ B(X, q),

A ⊆ B if and only if AH ⊆ BH.

Moreover, when H is bijective we call H an order isomorphism.

In order to prove Theorem 2.4.7, the authors used the following lemma.

Lemma 2.4.8. [12] Suppose |X| = p ≥ q ≥ ℵ0 and |Y | = r ≥ s ≥ ℵ0. Every order

isomorphism H : B(X, q)→ B(Y, s) is induced by a bijection h : X → Y , that is,

for each A ∈ B(X, q), we have AH = Ah, the image of A under h.

2.5 Partial Orders on Semigroups

Definition 2.5.1. A binary relation ≤ on a set X is called a partial order if

(i) x ≤ x for all x ∈ X,

(ii) for all x, y ∈ X, if x ≤ y and y ≤ x, then x = y, and

(iii) for all x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z.

We shall refer to (X,≤), or just to X, as a partially ordered set and we some-

times write (x, y) ∈ ≤ instead of x ≤ y.

Definition 2.5.2. Let (X,≤) be a partially ordered set.

(i) an element a ∈ X is called maximal if a ≤ x and x ∈ X imply a = x; and

b ∈ X is called maximum if x ≤ b for all x ∈ X.
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(ii) an element a ∈ X is called minimal if x ≤ a and x ∈ X imply x = a; and

b ∈ X is called minimum if b ≤ x for all x ∈ X.

Definition 2.5.3. Let (X,≤) be a partially ordered set and Y a non-empty subset

of X.

(i) a lower bound of Y is an element c ∈ X such that c ≤ y for all y ∈ Y . A

lower bound c0 of Y is the greatest lower bound of Y if c ≤ c0 for any lower bound

c of Y . When Y = {a, b}, we let a ∧ b denote the greatest lower bound of Y and

call it the meet of a and b.

(ii) an upper bound of Y is an element d ∈ X such that y ≤ d for all y ∈ Y . An

upper bound d0 of Y is the least upper bound of Y if d0 ≤ d for any upper bound

d of Y . When Y = {a, b}, we let a∨ b denote the least upper bound of Y and call

it the join of a and b.

Definition 2.5.4. Let ρ be a relation on a semigroup S.

(i) an element c ∈ S is called left compatible with ρ if (ca, cb) ∈ ρ for all

(a, b) ∈ ρ.

(ii) an element c ∈ S is called right compatible with ρ if (ac, bc) ∈ ρ for all

(a, b) ∈ ρ.

It is well known that if S is a regular semigroup, then (S,≤) is a partially

ordered set under the relation ≤ defined on S by

a ≤ b if and only if a = eb = bf for some e, f ∈ E(S).

In [5] the authors investigated properties of this order for the regular semigroup

T (X). In particular, they characterised when α ≤ β for α, β ∈ T (X), and they

determined the maximal and minimal elements of (T (X),≤). Later, in 1986,

Mitsch [11] extended the above partial order to any semigroup S by defining ≤ on

S as follows:

a ≤ b if and only if a = xb = by and a = ay for some x, y ∈ S1,
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and we call ≤ the natural partial order on S. In 2003, Marques-Smith and

Sullivan [10] studied various properties of the natural partial order ≤ and the

containment order ⊆ on P (X), where ⊆ is defined by, for α, β ∈ P (X),

α ⊆ β if and only if domα ⊆ dom β and xα = xβ for all x ∈ domα.

They determined an upper bound Ω′ and the join Ω of ≤ and ⊆, which defined by

(α, β) ∈ Ω′ if and only if Xα ⊆ Xβ, domα ⊆ dom β and

αβ−1 ∩ (domα× domα) ⊆ αα−1,

(α, β) ∈ Ω if and only if (α, β) ∈ Ω′ and ββ−1 ∩ (domα× domα) ⊆ αα−1.

They gave the useful results for this thesis as follows:

Theorem 2.5.5. If α, β ∈ P (X) then α ≤ β if and only if Xα ⊆ Xβ,

domα ⊆ dom β, αβ−1 ⊆ αα−1 and ββ−1 ∩ (dom β × domα) ⊆ αα−1.

Theorem 2.5.6. If α, β ∈ P (X) then the following are equivalent.

(i) α ⊆ β,

(ii) Xα ⊆ Xβ and αβ−1 ⊆ ββ−1,

(iii) Xα ⊆ Xβ and αα−1 ⊆ αβ−1.

Theorem 2.5.7. Suppose g ∈ P (X) is non-zero and |X| ≥ 3, then the following

statements hold.

(i) g is left compatible with Ω on P (X) if and only if g is surjective,

(ii) g is right compatible with Ω on P (X) if and only if g ∈ T (X) and either g

is injective or g is constant.


