Chapter 2
Preliminaries

In this chapter, we will briefly review some concepts and some results of Semi-

group Theory.

2.1 Elementary Concepts

Definition 2.1.1. Let S be a semigroup, then a non-empty subset T" of .S is called

a subsemigroup of S, that is, if
xy el forall z,yeT.

Definition 2.1.2. Let S be a semigroup and for each non-empty subset A of S, we
set

(A) =N {T : T is a subsemigroup of S containing A}.
It is characterized that (A) is the smallest subsemigroup of S containing A, and
(A) ={ar.a2...ap:a;, € Aforalli=1,2,...n and n € N}.

Definition 2.1.3. Let S be a semigroup. A proper subsemigroup M of S is called a
maximal subsemigroup of S if, whenever M C N ¢ S and N is a subsemigroup

of S, then M = N.

From Definition 2.1.3, we can easily prove the following lemma.

Lemma 2.1.4. Let S be a semigroup. Then the following are equivalent.

(i) M is a maximal subsemigroup of S;
(il) (MU{a}) = S forallae S\ M;

(iii) for any a,b € S\ M, a can be written as a finite product of elements of
M U {b}.



Proof. Suppose that M is a maximal subsemigroup of S and a € S\ M. Then
M & (M U{a}) where (M U{a}) is a subsemigroup of S. Hence (M U{a}) = S
by the maximality of M, that is, (i) implies (ii).

Next, suppose that (ii) holds and let a,b € S\ M. Then a € S = (M U {b})
and thus a is a finite product of elements of M U{b} by Definition 2.1.2. Therefore
(ii) implies (iii).

Finally, to show that (iii) implies (i), we suppose that (iii) holds and M C N ¢
S where N is a subsemigroup of S. Then there exists a € S\ N C S\ M. If there
exists b € N\ M, then b € S\ M. So, (iii) implies that a is a finite product of
elements of M U {b}. Thus, a € (M U{b}) C N, a contradiction. Hence M = N

and therefore M is maximal in S. ]

Definition 2.1.5. Let S be a semigroup. A subsemigroup U of S is called a left

unitary subsemigroup if U satisfies the property:
for ueU,seS if use U then seU.

A right unitary subsemigroup of S is defined dually, and U is an unitary subsemi-

group if it is both left and right unitary.

Definition 2.1.6. Let S be a semigroup.

(1) If there exists an element 1 of S such that
rl=x=1x forallz € S,

then 1 is called an identity element of S and S is called a semigroup with identity.

(ii) If there exists an element 0 of S such that
20 =0=0zx forall z € S,

then 0 is called a zero element of S and S is called a semigroup with zero.

Definition 2.1.7. A semigroup S is called left cancellative (right cancellative) if,

for all a,b and ¢ in S,

ca = cb implies a =b (ac = bc implies a = b).



Definition 2.1.8. A semigroup S is called left reductive (right reductive) if, for any
a,bin S,

za =xb for all z € S implies a =0 (ax = bx for all x € S implies a = b).

From Definition 2.1.7 and Definition 2.1.8 we see that, a left cancellative (right

cancellative) semigroup is left reductive (right reductive).

Definition 2.1.9. An element e of a semigroup S is called an idempotent if e = €.

The set of all idempotents in S is denoted by E(S). We call S an idempotent-free

semigroup if S has no idempotent element.

Definition 2.1.10. An element a of a semigroup S is called regular if there exists z

in S such that a = axa. A semigroup S is reqular if all elements in S are regular.

Definition 2.1.11. A semigroup S is called an inverse semigroup if every a in S

possesses a unique inverse, i.e. if there exists a unique element a=! in S such that
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a=aata and a'=ataa" .

Theorem 2.1.12. [3] Let S be a semigroup. Then S is an inverse semigroup if

and only if S is regular and idempotent elements commute.

Definition 2.1.13. Let S and T' be semigroups. A mapping ¢ from S into T is

called a homomorphism if

(zy)e = (zp)(yp) forall z,y€Ss.

An injective homomorphism is called a monomorphism. A surjective homomor-
phism is called an epimorphism, and if a homomorphism is bijective then we call
it an isomorphism. If there exists an isomorphism from S onto T then we say that
S and T are isomorphic and write S = T. If ¢ is a homomorphism from S into
S then we call it an endomorphism of S. An isomorphism from S onto S will be

called an automorphism of S.



2.2 Ideals and Green’s Relations

Definition 2.2.1. Let S be a semigroup.

(i) A non-empty subset A of S is called a left ideal it SA C A, a right ideal if
AS C A, and a (two-sided) ideal if it is both a left and a right ideal.

(ii) An ideal I of S is called a prime ideal if I # S and whenever ab € I for

elements a and b of S, then either a € I or b € I.

From Definition 2.2.1, it is equivalent to say that, I is a prime ideal of S if and
only if S'\ I is a subsemigroup of S. Also, if S has a zero element, then {0} and
S are ideals of S. We call an ideal I of S a proper ideal if {0} # I # S.

For any semigroup S, the notation S! means S itself if S contains the identity

element, otherwise, we let S = S U {1} and define the binary operation on S* by
l-s=s=s-1 forall s€S and 1-1=1.

Then S! becomes a semigroup with the identity element 1.
For any element a in S,
the smallest left ideal of S containing a is Sa U {a} = S*a,

the smallest right ideal of .S containing @ is aS U {a} = aS*, and

the smallest ideal of S containing a is SaS UaS U SaU {a} = S'aS*,

which we call the principal left ideal, principal right ideal and principal ideal gen-
erated by a, respectively.
In 1951, Green defined the equivalence relations £, R and J on S by the rules
that, for a,b € S,
a £Lb if and only if S'a =S,
a R b if and only if aS' =bS', and
a J b ifand only if S'aS'= S'bS.

Then he defined the equivalence relations

H=LNR and D=LoR,



and obtained that the composition of £ and R is commutative. This follows that
D is the join LV R, that is, D is the smallest equivalence relation containing
LUR. Moreover, HC LCDC J and HC R CD C J. But, in commutative

semigroups, we have H =L =R =D = 7.
Definition 2.2.2. A semigroup S is called left simple (right simple, bi-simple) if,

L=SxS5S (R=SxS8, D=5x58).

2.3 Transformation Semigroups

In this section, we give some useful results about transformation semigroups

which will be used in this thesis.

2.3.1 The semigroups P(X),T(X),I(X) and G(X)

Let X be a non-empty set. As usual, P(X) denotes the set of all partial
transformations of X, that is, all transformations a whose domain,dom «, and
range, Xa (or ran«) are subsets of X. Then P(X) is a semigroup under the

composition of mappings, that is, if a, 8 € P(X), then af € P(X) is defined by
z(af) = (za)f for all x € dom av.
We also have
domaf = (ranaNdomB)a~" and ranaf = (rana Ndom 3)3.

In the case that ran aNdom 3 = (), we define a3 to be the empty transformation,

which is a partial transformation of X with empty domain and it is denoted by 0.

Let T(X),I(X) and G(X) be the following sets:
T(X) = {a€P(X):doma =X},
I(X) = {ae€ P(X): «ais injective},

G(X) = {ae€ P(X): «ais bijective}.
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Then T'(X) and I(X) are subsemigroups of P(X), which are called the full
transformation semigroup and the symmetric inverse semigroup on X, respec-
tively. Also, we call G(X) the permutation group on X, which is a subgroup of
P(X), T(X) and I(X).

For a non-empty subset A of X, we let id 4 denote the identity mapping on A.
Then it is clear that idx is the identity element of P(X),T(X), 1(X) and G(X).

It is well known that every group can be embedded up to isomorphism in a
permutation group G(X) for some set X (Cayley’s Theorem). Comparing with

this result, in semigroup theory we have the following well known theorems.

Theorem 2.3.1. [3] If S is a semigroup and X = S*, then there exists a monomor-

phism p : S — T(X).

Theorem 2.3.2. (3| (The Vagner-Preston Representation Theorem)
If S is an inverse semigroup, then there exists a set X and a monomorphism

¢S —I1(X).

2.3.2 Baer-Levi semigroup

For any a € P(X), we write
G(o) = X \doma and D(a) =X \rana.

We also let
g(a) = |G(a)], d(a)=|D(a)|, r(a)=|ranal,

and refer to these cardinals as the gap, the defect and the rank of «, respectively.
In 1932, R. Baer and F. Levi constructed a right cancellative right simple
semigroup which is not a group on an infinite set X with cardinal p. The semigroup
is defined by
BL(q) = {a € I(X) : g(a) = 0,d(a) = q},

where Xy < ¢ < p. This semigroup is called a Baer-Levi semigroup of type (p,q)
on X. From [1] vol 2, Section 8.1, we have the following well known results on

BL(q).
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Theorem 2.3.3. [1] For any two infinite cardinals p, q such that p > q, there ezists
a Baer-Levi semigroup of type (p,q).

Theorem 2.3.4. [1] Let S be a Baer-Levi semigroup. Then S is a right cancellative,

right simple semigroup without idempotents.

Theorem 2.3.5. [1] Let S be a right cancellative, right simple semigroup without
idempotents. Then S can be embedded in a Baer-Levi semigroup of type (p,p),
where p = |S|.

In 1984, Levi and Wood determined a maximal subsemigroup of BL(q) by
letting

My={a€BL(g): AZ Xa or (Aa C A or | Xa\A| < ¢)}

where A is a non-empty subset of X with | X\ A| > ¢. That is, a in BL(q) belongs
to M, if and only if

(i) AZ Xa, or

(i) A € Xa and either Ao C A, or | Xa '\ 4| < ¢q.
The authors showed that My is a maximal subsemigroup of BL(q) ([9] Theorem
1). Later, Hotzel [2] studied maximal subsemigroups and maximal left unitary
subsemigroups of BL(q). He showed that there are many other maximal subsemi-

groups of BL(q) and they are very complicated to describe.

2.3.3 Partial Baer-Levi semigroup

Let X be an infinite set with cardinal p, and let ¢ be a cardinal such that
p > q > Ng. In this thesis, we examine a related semigroup of BL(g): namely, the

partial Baer-Levi semigroup on X defined by
PS(q) ={a € I(X) : d(a) = ¢}.

This semigroup was first defined in [13] p 82. In contrast with BL(q), PS(q) is
neither right simple nor right cancellative. Moreover, this semigroup always con-

tains idempotents. In [12], Pinto and Sullivan described some algebraic properties

of PS(q) as follows.
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Theorem 2.3.6. Ifp > q > N, then PS(q) is a right and left reductive semigroup

with idempotents. Moreover, PS(q) contains a zero precisely when p = q.

Theorem 2.3.7. If p > q > Rg and a € PS(q), then the following statements are

equivalent.
(i) « is reqular,
(i) g(@) =g,
(iii) =t € PS(q).

They also studied the set of all regular elements in PS(q): namely,

R(q) = {a € PS(q) : g(a) = q}.

They showed that R(q) is the largest regular subsemigroup of PS(q). Moreover,
they obtained the following result.

Theorem 2.3.8. If p > q > Wy, then R(q) is an inverse semigroup.

They characterized Green’s relations of PS(q) as follows.

Theorem 2.3.9. If o, 5 € PS(q), then a = Bu for some p € PS(q) if and only if
doma C dom 3. Hence aRS in PS(q) if and only if dom o = dom (5.

Theorem 2.3.10. If o, 5 € PS(q), then a = A for some X\ € PS(q) if and only
iof Xa C X3 and

q < max(g(f),| X3\ Xaf) < max(g(a),q).
Hence, o £ (3 in PS(q) if and only if
(Xa=Xp and g(a) = g(B) > q) or (= and g(a) < q).
Theorem 2.3.11. If o, 3 € PS(q), then oHB in PS(q) if and only if

(Xa=Xp,doma =domf and g(a) > q) or (a = and g(a) < q).
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Theorem 2.3.12. If o, 5 € PS(q), then oD in PS(q) if and only if

(doma = dom 3 and g(a) < q) or (r(a) = r(f) and g(a) = g(B) = q).

Theorem 2.3.13. If o, 5 € PS(q), then aJ B in PS(q) if and only if

(max(g(a), 9(8)) < q and r(a) =r(8)) or (g(a) = g(B) > q).

Let u be a cardinal number. The successor of u, denoted by v/, is defined as

u' = min{v:v > u}.

Note that u' always exists since the cardinals are well-ordered, and when wu is

finite we have v’/ = u + 1.

Consequently, Pinto and Sullivan described the ideals of PS(q) as follows.
Theorem 2.3.14. The proper ideals of PS(q) for p > q are precisely the sets:
T, ={a € PS(q): g(a) = 1}
where ¢ < r < p. Moreover, each T, is a principal ideal.
Theorem 2.3.15. If p = q, the ideals of PS(q) are precisely the sets:
J.={a € PS(q) :r(a) <r}

where 1 < r < p'. Moreover, J, is principal precisely when r = s" where 0 < s < p.

For 8y < r < p, Pinto and Sullivan [12] defined a subsemigroup
Sr={a e PS(q) : g(a) <7}
of PS(q). Then they gave the following result

Corollary 2.3.16. Ifp > r > q > N, then G, = S,.NT, is bi-simple and idempotent-

free.

Moreover, they showed that S, is generated by BL(q) and R(g) in very specific

ways.
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Theorem 2.3.17. Ifp > q > N, then S, = BL(q).R(q). In fact, S, = a.R(q) for
each o € BL(q).

Theorem 2.3.18. Ifp > q, then S, = BL(q).u.BL(q) for each 1 € R(q).

2.4 Automorphisms of Transformation Semigroups

Definition 2.4.1. Let X be an infinite set. A semigroup S of partial transformations

of X is said to be Gx-normal if for every a € G(X), aSa™' C S.

Example 2.4.2. The semigroup of all partial transformations P(X), the full trans-
formation semigroup 7'(X), the symmetric inverse semigroup /(X ) and all ideals

of P(X), T(X) and I(X) are Gx-normal.

Example 2.4.3. The partial Baer-Levi semigroup PS(q) is G x-normal. To see this,
we let @ € G(X) and 3 € PS(q). Since Xa = X, we have Xafa™! = X3a™!.
Thus,

d(afBa™) = | X\ XaBa™ | = | X\ XBa | = |(X\ XB)a | =¢q

since d(3) = |X \ X8| = ¢q. Clearly afa~! is injective, hence aBa™t € PS(q),
that is, a.PS(q).a™* C PS(q).

Definition 2.4.4. Let X be an infinite set and S be a semigroup of total or partial
transformations of X. An automorphism ¢ of S is said to be inner if there exists

v € G(X) such that (8)p =By~ forall g € S.

In what follows, we let Aut S denote the set of all automorphisms of the
subsemigroup S of P(X). The following results are the characterization of Aut

PS(q).

Theorem 2.4.5. [13] If S is the partial Baer-Levi semigroup of type (p,p), then

every automorphism of S is inner and Aut S = G(X).

Theorem 2.4.6. [12] If p > q, then Aut PS(q) is isomorphic to G(X).
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When necessary, we will use the notation PS(X,p,q) in place of PS(q) to
highlight the set X and its cardinal p. The following result is quoted from [12]

Theorem 3.

Theorem 2.4.7. [12] The semigroups PS(X,p,q) and PS(Y,r,s) are isomorphic
if and only if p = r and q = s. Moreover, for each isomorphism @, there is a

bijection v : X — Y such that awp = vy~ ary for each a € PS(X,p, q).

In [12], the authors let B(X,¢q) denote the family of all A C X such that
| X\ A| = g where | X| =p > q > No. If Y is a set with |Y| =7 > s > N, then we
call a mapping H : B(X,q) — B(Y,s) an order monomorphism if H is injective
and, for A, B € B(X,q),

A C B ifand only if AH C BH.

Moreover, when H is bijective we call H an order isomorphism.

In order to prove Theorem 2.4.7, the authors used the following lemma.

Lemma 2.4.8. [12] Suppose | X| =p > ¢ > Ny and |Y| =r > s > Rg. Every order
isomorphism H : B(X,q) — B(Y,s) is induced by a bijection h : X — Y, that is,
for each A € B(X,q), we have AH = Ah, the image of A under h.

2.5 Partial Orders on Semigroups

Definition 2.5.1. A binary relation < on a set X is called a partial order if
(i) x <z forall z € X,
(ii) for all z,y € X, if x <y and y < z, then z = y, and
(iii) for all z,y,z € X, if x <y and y < z, then z < z.
We shall refer to (X, <), or just to X, as a partially ordered set and we some-

times write (z,y) € < instead of x < y.

Definition 2.5.2. Let (X, <) be a partially ordered set.
(i) an element a € X is called maximal if a < z and = € X imply a = z; and

b € X is called mazimum if x <b for all z € X.
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(ii) an element a € X is called minimal if z < a and x € X imply = = a; and

b € X is called minimum if b < z for all z € X.

Definition 2.5.3. Let (X, <) be a partially ordered set and Y a non-empty subset
of X.

(i) a lower bound of Y is an element ¢ € X such that c <y forally € Y. A
lower bound ¢y of Y is the greatest lower bound of Y if ¢ < ¢y for any lower bound
cof Y. When Y = {a, b}, we let a A b denote the greatest lower bound of Y and
call it the meet of a and 0.

(ii) an upper bound of Y is an element d € X such that y < dforally € Y. An
upper bound dy of Y is the least upper bound of Y if dy < d for any upper bound
dof Y. When Y = {a, b}, we let a Vb denote the least upper bound of ¥ and call
it the join of a and b.

Definition 2.5.4. Let p be a relation on a semigroup S.

(i) an element ¢ € S is called left compatible with p if (ca,cb) € p for all
(a,b) € p.

(ii) an element ¢ € S is called right compatible with p if (ac,bc) € p for all

(a,b) € p.

It is well known that if S is a regular semigroup, then (5, <) is a partially

ordered set under the relation < defined on S by
a <b if and only if a=eb=">bf for some e, [ € E(S).

In [5] the authors investigated properties of this order for the regular semigroup
T(X). In particular, they characterised when o < 3 for o, 5 € T'(X), and they
determined the maximal and minimal elements of (7T(X),<). Later, in 1986,
Mitsch [11] extended the above partial order to any semigroup S by defining < on

S as follows:

a<b if and only if a =2b="by and a =ay for some z,y € S*,
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and we call < the natural partial order on S. In 2003, Marques-Smith and
Sullivan [10] studied various properties of the natural partial order < and the

containment order C on P(X), where C is defined by, for «, 5 € P(X),
a C 6 if and only if doma C dom( and za =z for all x € doma.

They determined an upper bound €’ and the join Q of < and C, which defined by

(a,8) € Q' if and only if Xa C X}, dom o € dom 3 and

af ' N (doma x doma) C aa™ !,

(a, ) € Q if and only if (a,3) € and #37' N (doma x doma) C aa™.
They gave the useful results for this thesis as follows:

Theorem 2.5.5. If a, 3 € P(X) then o < 3 if and only if Xa C X[,

doma C dom 3, af™! C aa™! and BB~ N (dom 3 x dom o) C aa™t.

Theorem 2.5.6. If a, 3 € P(X) then the following are equivalent.
(i) a C B,
(ii) X € X3 and o~ C 337,
(ili) Xa € X8 and aa™ C af™.

Theorem 2.5.7. Suppose g € P(X) is non-zero and | X| > 3, then the following
statements hold.

(i) g is left compatible with Q on P(X) if and only if g is surjective,

(ii) g is right compatible with Q on P(X) if and only if g € T(X) and either g

18 injective or g s constant.



