Chapter 3
Partial Orders on the Baer-Levi Semigroups
of Partial Transformations

Throughout this thesis, |[X| =p > ¢ > 8y. Also, Y = AU B means that Y is
a disjoint union of A and B. We modify the convention introduced in [1] vol 2, p

241: namely, if o € I(X) is non-zero then we write

a;

T
and take as understood that the subscript i belongs to some (unmentioned) in-
dex set I, that the abbreviation {z;} denotes {x; : i € I}, and that rana =

{x;}, z;a™ = {a;} and doma = {a; : i € I'}. For simplicity, we often write X

1 1

in place of ran «, in which case Xa™ =rana " = doma.
In this chapter, we consider the natural partial order <, the containment order

C and other partial orders defined on I(X) and PS(q).

3.1 Partial Orders

In order to characterise < on PS(q), we first define the relation L. on PS(q)
by
(o, ) € L if and only if PS(q)'a C PS(q)'s.
It is easy to see that L is reflexive and transitive. However, in general, it is

not anti-symmetric. For example, Let X = AUBU{c,d, e} where |A| = p and
|B| = ¢, and define o, 5, A\, u € PS(q) by

d e d e
a=1idy U ,0=1ids U ,A=1idy U Jp=1d s U
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Then o = A\F and 3 = pa, so (o, 3) € L and (5,«) € L, but a # .
Nonetheless, if p is any partial order on PS(q), then p N L is also a partial
order on PS(q). This idea leads to a simple description of < on PS(q).

Theorem 3.1.1. When restricted to PS(q), < equals C N L. Moreover, < is

properly contained in C.

Proof. Suppose that «, 3 € PS(q) are distinct and a« < 3 in PS(q). Then

a = \3 = [u and a = ap for some A\, u € PS(q), and so
PS(q)'a = PS(q)'\8 € PS(q)' 8,

that is, (o, ) € L. Also, a = Ag implies Xa C X and a = apu implies

Xa C dom u. Hence

aa™t = ap(Bu)t = alpup )BT = a7

and so a C # by Theorem 2.5.6. Therefore, < is a subset of C N L.
Conversely, suppose that (o, 3) € C NLand « # 3. Then PS(q)'a C PS(q)'3

and so a = A\f3 for some A € PS(q). Moreover, since a C 3, we can write

o | @ A a; a; . Z; |

T; Ti X T
where d(pu) = d(a) = q. Hence p € PS(q) and clearly @ = fu and o = apu.
Therefore, o < 3 in PS(q).

Now we deduce that < is a subset of C on PS(q) and we assert that this
containment is always proper on PS(q). To see this, we suppose X = AU B U {c}
where |A| = p and |B| = ¢, and let « : AU B — A be a bijection. Then
d(a) = |BU{c} = ¢ and so a € PS(q). Likewise, if § € T(X) equals a on
AU B and satisfies ¢ = ¢, then § € PS(q) and o C . But ¢g(f) = 0 < g and
| X3\ Xa| =1 < g, hence there is no A € PS(q) such that a = A3 by Theorem

2.3.10. This follows that (a, 3) ¢ L and so a £ . [

In [11] p 384 and Lemma 1(x), Mitsch observed that, if S is an inverse semi-
group, then the natural partial order on S equals the order < defined on S by

a = b if and only if a = eb for some idempotent e € S.
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Moreover, from [3] Proposition V.2.3, we know that < equals C on /(X ), and thus
< =Con I(X).

We recall from Chapter 2, Section 2.5 that €' and €2 are partial orders defined
on P(X) by

(a,8) €  if and only if Xa C X}, dom a C dom 3 and
af !N (doma x doma) C aa™,

(a, ) € Q if and only if (a,8) € and 367" N (doma x doma) C aa™.
In [10], the authors showed that Q' is an upper bound for < and C, and that

Q=<VC=Co <onP(X). Clearly Q C Q' and these are also partial orders

on I(X), a semigroup in which < = C. Therefore, we get the following result.

Theorem 3.1.2. Q = on I(X) and PS(q).

Proof. Suppose that a, 8 € I(X) and (o, 5) € . Then doma C dom 3 and
Bﬁ_l = iddom,37 S0

BB N (doma x dom @) = idgema = aa™.

Hence (a, #) € €2, and thus ' C Q on I(X) as required. When «, 3 € PS(q), we
can use the same proof for «, 3 € I(X) to obtain ' C Q on PS(q). n

Since < = C and 2 = Q' on I(X), it is natural to ask whether all four orders
are equal on 7(X). In [10], the authors showed that C is contained in Q' in P(X).
The next result shows that this also holds in I(X) and PS(g). We first note that
0 = Con I(X) when | X]| = 1.

Theorem 3.1.3. If | X| > 1, then C is properly contained in Q on I(X).

Proof. Assume that |X| > 1. If «, 3 are injective and a C 3, then a3~! =

aa™!. So Xa C X3, doma C dom 3 and

a1 N (doma x doma) = aa™ ' N (doma x doma) = aa™".
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That is, (o, 3) € Q' = Q. Since |X| > 1, we can choose distinct z,y € X and
define o, B € I(X) by

Then Xa C X3, doma C dom 3 and
aB ' N (doma x doma) = C aa™".

Hence (o, 3) € ' = Q but a € 3, so C is properly contained in Q on I(X). =

Theorem 3.1.4. C is properly contained in 2 on PS(q).

Proof. From the first part of the proof in Theorem 3.1.3, we see that C is also
contained in 2 on PS(q). Suppose that X = AUBU{z}U{y} where |A] = p
and |B| = ¢, and let § : AU B — A be a bijection. Define «, 5 € PS(q) by

AUB =z AUB z vy
A x A y T
where a|(AU B) = 0 = B|(AU B), we see that a 3. Since y ¢ dom «, we have

af~ N (doma x dom a) = idyup C idgoma = aa™

that is, («a, 3) € Q. Therefore C is always properly contained in €. [ ]

From [10], © is the join of C and < on P(X) and it equals C o <. But,
) # C o < on PS(q): otherwise, 2 is contained in C o C (since < is contained
in C), so 2 is contained in C, which is a contradiction.

From Theorem 3.1.1 and Theorem 3.1.4, on PS(q) we always have:

<=cnl ¢ € ¢ O

3.2 Compatible Partial Orders

We first note that C is left and right compatible on P(X). Therefore, it is
also left and right compatible on PS(q) since PS(q) is contained in P(X). In
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this section, since we know that Q = €' on PS(q), we will only characterize the

compatibility of < and © on PS(q).

Theorem 3.2.1. Suppose that v € PS(q).
(i) v is left compatible with < on PS(q) if and only if ¢ < g(7),
(i) < is right compatible on PS(q).

Proof. To prove (i), suppose that v is left compatible with <. If v = ) (in case
p=q), then g(y) = p =q. If v # 0, we choose v € X~y and let & = idx\ s} and
B =idx,. Then a C § and g(8) = d(8) =d(v) = q and g(a) =d(a) =q¢+1=g¢q
(since ¢ > Ng). Hence a, f € PS(q) and

q < max(g(8),|XB\ Xa|) = ¢ = max(g(a), q).

Then o = A3 for some A € PS(q) by Theorem 2.3.10 and so PS(q)'a C PS(q)'3,
that is, (o, ) € L. It follows that « < § by Theorem 3.1.1. Since 7 is left
compatible, we have va < 70 and so (ya,v06) € L (since < = C N L) where
vy # v = . Then Theorem 2.3.10 implies that

q < max(g(v8),|Xv8\ Xyal).

But, since | X8\ Xva| =1 < g, this implies ¢ < g(v8) = g(v).

Conversely, suppose that ¢ < g(v). If o, € PS(q) and o < 3, then o C 3
and («, 3) € L by Theorem 3.1.1. Since C is left compatible, we have ya C ~.
Also, dom 3 C dom+ implies ¢ < g(v) < g(y5). By the definition of <, we have
a = [y for some p € PS(q)!. If 4 =1, then a = 8 and so ya < 6. If u € PS(q),

then ya = (y8)u and hence g(v5) < g(ya). Moreover, since ya € PS(q),
X798\ Xya| = [Xy80 (X \ Xva)| <q
and so

q < g(vB) = max(g(v3), | X8\ X~ya|) < g(ya) = max(g(ya), q),

that is, (ya,v08) € L. Since < = C N L, we have ya < 7. In both cases we

deduce that v is left compatible with respect to < as required. Finally, note that
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C is right compatible, and PS(q)'a € PS(q)' implies PS(q)*ay C PS(q)'Sy
for any v € PS(q), that is, L is also right compatible on PS(q). Hence, (ii) follows

from Theorem 3.1.1. ]

Here, for simplicity, we write z, for the v € I(X) with domain {z} and range

{y}.

Theorem 3.2.2. Suppose that p = q and let v € PS(q). Then
(i) O is the only element of PS(q) which is left compatible with €,

(ii) 7 4s right compatible with Q) if and only if v =0 or dom~y = X.

Proof. Clearly () € PS(q) and it is left and right compatible with Q. Let v be

a non-zero element in PS(q). If we choose x € X, y € X \ X~ and define

then o, 3 € PS(q) (since p = ¢) and it is easy to check that («, 5) € Q. However,
since Xya = {z} Z {y} = X+, we have (ya,v5) € Q (by definition) and so 7 is
not left compatible with Q2. Therefore (i) holds.

Next, suppose that v € PS(q) is non-empty and right compatible with Q. If
a € dom~, x € X\ dom~ and Y = {a,z} then z,,idy € PS(q) and (z,,idy) € Q
(note that z,.idy" N{(z,z)} = 0). Hence (z,.7,idy y) € Q and so dom(z,.7) =
{z} C dom(idy .v) = {a}, a contradiction. Thus, we have shown that dom~y = X.
Therefore, to prove (ii), it remains to show that, if dom~y = X, then  is right
compatible with Q. To do this, let o, 3 € PS(q) and (o, 3) € Q. Then, since

Q =€, we have Xao C X3, doma C dom 3 and
1

aB ' N (doma x doma) C aa™".

Clearly Xavy C X (v and, since domy = X, dom ay = dom o C dom 3 = dom 3.
Also vy~ = idx (but note that idx ¢ PS(q)), and hence

ay(By)"' N (domay x domay) = af~ ' N (doma x doma) C aa ™ = ay(ay) ™,

from which it follows that (ay, 87v) € €. u
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Theorem 3.2.3. Suppose that p > q and let v € PS(q). Then
(i) no element of PS(q) is left compatible with €,

(ii) v is right compatible with Q2 if and only if dom~y = X.
Proof. To prove (i), let § € PS(q), choose x € X6, y € X \ X0 and define

o i g X0\ {z} = vy |
X0\ {z} y =z

where z3 = z for all z € X0\ {z}. Then «, € PS(q) and («,3) € Q. Since
r € XfOa \ X003, we have (0a,03) ¢ Q (by definition). That is, 6 is not left
compatible with €. The proof of (ii) is the same as that for Theorem 3.2.2(ii),
except that now ) ¢ PS(q). n

For completeness, we note the following result for Q2 on 7(X).

Theorem 3.2.4. If v € I(X) is non-zero, then
(i) v is left compatible with Q on I[(X) if and only if Xv = X,
(ii) v 4s right compatible with Q on I(X) if and only if dom~y = X.

Proof. Suppose that X~ # X. Then, as in the proof of Theorem 3.2.3(i), there
exists (o, 5) € Q on I(X) but (ya,v5) € Q. Therefore 7 is not left compatible
with €. For the converse of (i), if v € PS(q) is surjective, then Theorem 2.5.7
(i) implies that it is left compatible with Q on P(X), and so the same is true
for 1(X). To see (ii), suppose that v € I(X) is non-empty and right compatible
with Q. If a« € dom~, x € X \ dom~ and Y = {a,z} then z,,idy € I(X) and
(24,idy) € Q (note that z,.idy" N{(z,z)} = 0). Hence (x,.7,idy .y) € Q and so
dom(z,.y) = {z} C dom(idy .7) = {a}, a contradiction. Thus, we have shown
that dom~ = X. It remains to show that, if dom v = X, then ~ is right compatible
with Q. To do this, let a, 8 € I(X) and («, 5) € Q. Then, since Q2 = ', we have
Xa C X3, doma C dom ( and

af ' N (doma x doma) C aa™t.
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Clearly Xavy C X (v and, since domy = X, dom ay = dom o C dom 3 = dom (3.
Also yy~! = idx, and hence

ay(8y)"' N (dom ay x dom ay) = aB~' N (doma x doma) C aa™" = ay(ay) ™.

Therefore (ay, 57) € Q. n

3.3 Minimal and Maximal Elements

In this section, we consider the existence of minimal (maximal) elements in
PS(q) with respect to each of the orders <, C and 2.

First, recall that, if < is any partial order on a set T, and if x € S C T is
minimal (maximal) in 7', then « is minimal (maximal) in S. Similarly, suppose <;
and <, are partial orders on a set S such that <, contains <;. Clearly, if z € S is
minimal (maximal) with respect to <o, then x is minimal (maximal) with respect
to <;. Consequently, under the same supposition, if = is a minimum (maximum)

with respect to <j, then z is a minimum (maximum) with respect to <.

Theorem 3.3.1. PS(q) has no mazimum element with respect to <, C or €.

Proof. Write X = AUBUC where |A| = p and |B] = ¢ = |C|. Clearly,
if @ = idaup and § = idaye, then o, 5 € PS(q). If v € PS(q) is a maximum
with respect to €2, then (o, ) € Q and (5,7) € . Consequently Xa C X~ and
X3 C X, hence XaU X C X~ and so Xy = X, which contradicts d(v) = gq.
Therefore PS(g) has no maximum element with respect to €. Next recall that
< is properly contained in C which is properly contained in  on PS(q). So, if
« is a maximum under C, then it is also a maximum under €2, a contradiction.

Likewise, there is no maximum under <. [ ]

Theorem 3.3.2. The following are equivalent for o € PS(q).
(i) « is mazimal with respect to Q,

(ii) « is mazimal with respect to C,

(ili) doma = X.
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Proof. (i) implies (ii) since C is contained in €2. To show (ii) implies (iii),
suppose that (i) holds and assume doma & X. Choose z € X \ doma and
y € X \ Xa (recall that d(a) = ¢q) and let § be the mapping such that dom g =
doma U {z}, f|doma = « and x3 = y. Then 5 € PS(q) and o C 3 with « # 3,
contradicting our supposition.

Finally, to show (iii) implies (i), suppose that doma = X and let 5 € PS(q)
satisfy (a, ) € Q. Then by Theorem 3.1.2, we have

doma C dom B3, Xa C XB and a8~ N (doma x doma) C aa™*.

So dom 3 = X. For each x € X, if za = yf3 for some y € X, then xza3~! = y and
thus

(z,y) € af ' N (doma x doma) C aa™ ' =idy.

This follows that # = y, that is, za = 8 and hence a = . This shows that (i)
holds. .

The corresponding result for < is substantially different.

Theorem 3.3.3. Let o € PS(q). Then « is maximal with respect to < if and only
if g(a) <q.

Proof. Suppose that g(a) > ¢. Then X \ doma # (). Choose z € X \ dom «
and y € X \ Xa (recall that d(a) = ¢) and let 5 be the mapping such that
dom 8 = doma U {z}, f|doma = o and 28 = y. Then § € PS(q) and o C 3
with a # 3, X3 = XaU{y} and g(a) = g(8). So |X5\ Xa| =1 and hence the
inequation in Theorem 2.3.10 is satisfied, that is, & = A§ for some A € PS(q).
Then (a, () € L and it follows that a < § by Theorem 3.1.1, but a # 3, so « is
not maximal. Conversely, suppose that g(a) < ¢ and assume that o < 3 for some

B € PS(q). Thus, by Theorem 3.1.1, we have o & 3 and, by Theorem 2.3.10

¢ < max(g(0), [ X5\ Xaf) < max(g(e),q) = ¢

Therefore, g(3) < g(a) < g and so | X3\ Xa| = ¢. Consequently, since Xa C X3,
then
q=|(XB\ Xa)B | =|dom 3\ domal < g(a) < g,
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a contradiction. This shows that « is maximal. |
As in many algebraic settings, it is interesting to know when a € PS(q) lies

below some maximal element of PS(q).

Theorem 3.3.4. The following are equivalent for o € PS(q).
(i) g(a) <q,
(ii) o < B for some B € PS(q) mazimal with respect to <,
(i) « C G for some B € PS(q) mazimal with respect to C,
(iv) (o, B) € Q for some [ € PS(q) mazimal with respect to €2.

Proof. Suppose that (i) holds. If g(a) < ¢, then a < « and « is maximal
under < by Theorem 3.3.3. Therefore, suppose that g(a) = ¢. Since d(«) = g,
we can write X \ Xa = AUB where |A] = |B] = ¢q. Let 6 : X \ doma — A
be any bijection and define § € PS(q) by letting dom = X, 8| doma = « and
B)(X \ doma) = 6. Then g(3) =0 and X3 = XaUA, so

q = |A] = max(g(B), | X3\ Xa) = max(g(a), q).

That is, (o, 3) € L and clearly & (3. Hence o < 3 where [ is maximal with
respect to < since g(f3) =0 < q.

Now suppose that (ii) holds: namely, suppose o < [ where g(() = r < q.
Then o C (3 and d(8) = ¢, so we can write X \ X3 = AU B where |A| = r and
|B| = q. Let 6 : X\ dom 3 — A be any bijection and define 5 € PS(q) by letting
dom " = X, f|dom 3 = (§ and f1|(X \ dom 3) = 6. Then o C 3 C S* where
(47 is maximal with respect to C: that is, (iii) holds by Theorem 3.3.2.

Next, suppose that (iii) holds. Then « C 3 for some € PS(q) maximal with
respect to C. By Theorem 3.3.2, § is maximal with respect to ). Since C is
contained in €, we deduce that (iv) also holds.

Finally, suppose that (iv) holds: that is, suppose («, 3) € Q where dom = X

and write

A = {re€doma:zrapf ! =1},

= {z€doma:raf ! ¢ doma}l.
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By the definition of Q, if x € dom a and za = y[ (possible since Xa C X 3) then
either y € doma (soy =z and z € A) or y ¢ doma (so x € B). It follows that
doma = AUB, Ao = Af and Ba = Cf3 for some C' C dom 3\ dom a.. Note that
Xa=(AuC)p and (AUC)N B = 0. Therefore (AU C)B3N BB = ( (since 3
is injective). This follows that Xa N BS = (), that is, B C X \ Xa. So, since
dompf = X,
|Bl = |Ba| = |Bf| < [X \ Xa| = ¢

Next let D = X \ (AU BUC) and observe that DN Xa = DN (AUC)E = 0.

Therefore

|IDB| < |X \ Xa| =q.

Now X = ABUBBUCAUDS and thus
(X \doma)3 = (X\(AUB))f=XB\(AUB)g=CBUDS.
Consequently
gla) = |X \ doma| = [(X \ dom )| = |CH| + |Df| < |Ba| + ¢ =g,

and so (i) holds. u

Observe that, if p = ¢, then g(a) < ¢ for all @ € PS(q). Hence, in this case,

every o € PS(q) is contained in some maximal element.

Theorem 3.3.5. If p > q, then PS(q) has no minimal element with respect to

<,C orQ, and hence also no minimum element.

Proof. Suppose that p > ¢ and let « € PS(q). Since |X \ Xa| = ¢ < p,
we have p = |Xa| = |doma| and we can write doma = AU B where |[A| = p
and |B| = ¢q. If v = a|A, then d(y) = |Ba| + d(a) = q, thus v € PS(q) and
clearly v & a. Also, let C = X \ doma and A = idy¢, then d(N\) = |B| = g,
so A € PS(q) and v = Aa. Consequently, (v,a) € L and so v < a by Theorem
3.1.1. Therefore, there is no minimal element under <, and hence none for C and
Q2 (due to them containing <). Hence, there is also no minimum element under

each of these orders. n
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When p = ¢, it is easy to see that ) is the minimum under <, C and €. In this
case, we say « € PS(q) is non-zero minimal with respect to an order < on PS(q)

if v is minimal among the non-zero elements of PS(q) under <.

Theorem 3.3.6. If p = q, then the following are equivalent for a € PS(q).
(i) « is non-zero minimal with respect to €2,
(ii) « is non-zero minimal with respect to C,
(iii) « is non-zero minimal with respect to <,
(

iv) [doma| = 1.

Proof. Since 2 contains C, and C contains <, we have (i) implies (ii), and
(ii) implies (iii). To show that (iii) implies (iv), suppose that (iii) holds and
assume that |dom «| > 1. Now, as in the proof of Theorem 3.3.5, if | dom a| = p,
then we can write doma = AUB where |A4] = p and |B| = ¢. If v = oA,
then d(y) = |Ba| + d(o) = ¢, thus v € PS(q) and clearly v & a. Also, if
X = AUBUC and X = idgc, then d(\) = |B| = ¢, so A € PS(q) and v = \a
(since C'= X \ dom «). Consequently, (v,«) € L and so ) < v < « by Theorem
3.1.1, contradicting (iii). On the other hand, if |dom«a| < p then g(a) = p. In
this case, choose a € doma and write C' = dom« \ {a} (which is non-empty by
assumption). If 3 = «|C and A = id¢ then 5, A € PS(q) and = Aa. Therefore,
(8,a) € L and clearly § & a. That is, ) < § < «, contradicting (iii) again.

Finally, to show (iv) implies (i), suppose that |dom | = 1, say dom a = {x}.
Since 2 = Q' and by the definition of V', if there exists § # () such that (3, a) € Q,
then dom 8 = {z} and X = {za}. Hence a« = (3 and so « is non-zero minimal

under ). -

Recall that < is properly contained in C, and C is properly contained in €2
on PS(q). Thus, it is interesting to consider the following problems: Are there
other partial orders lie between < and C, and between C and € on PS(q)? The

following two theorems answer this question.

Theorem 3.3.7. Let o, 3 € PS(q). For any («,3) in C\ <,

pap = < U {(a,0)}
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is a minimal partial order on PS(q) containing <.

Proof. It is clear that a pair (a, ) in C \ < always exists since < is properly
contained in C on PS(g). Since < is a partial order contained in p, g, we have
Pap is reflexive. To see that p, s is anti-symmetric, we let (7, ), (A, Y) € pas. We
consider only the case that v < A, (A, ) = (o, ), otherwise, it is easy to see that
~v = A. In this case we have A\ = a,y7 = (3, and so # < a. It follows that § C «
(since C contains <), and hence a@ =  (since o C 3). Therefore A = 7. To see
that pa g is transitive, let (7, A), (A, 1) € pag. It is clear that (v, u) € pos when
v < MA <, and if (4, A), (A, 1) € {(a, B)}, then v = p and thus (v, 1) € pags

since p, 3 is reflexive. For the rest, we have either
Y<SMNA=a, p=0F o A<pu y=a, A=[

In the first case, we have v < a. If g() < ¢, then 7 is maximal under <, and
hence a = . This implies that (v, u) = (o, ) € pag. Otherwise, ¢ < g(y) where

v C a C [ (since C contains <). Consequently, since
X\ dom~y = (X \ dom ) U (dom 3\ dom ),
we have
¢ < [X\domp|=g(B) or g¢<|[domp\domy|=I[X3\ XAl

that is, ¢ < max(g(3), X3\ Xv]). Also, since g(8) < g(y) and [ X3\ Xv| <

d(y) = q, we have

q < max(g(3),[XB\ Xv|) <max(g(7),q),

that is (v, 8) € L, and so v < § = p. Therefore (v, u) € pag. For the latter, we
have § < p and hence o C § C pu. Like in the first case, if g() < ¢, then § = p
and so (v, 1) = (a, 8) € pa,p. Otherwise, we have ¢ < g(5) < g(«). Consequently,
since

X \doma = (X \ domp)U(dom i\ dom o),
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we have
g < |X\dompu|=g(u) or g¢<|domp\domal=|Xpu\Xa,

that is, ¢ < max(g(u),|Xp \ Xal). Also, since g(p) < g(a) and |[Xpu \ Xa| <

d(«) = q, we have

q < max(g(p), |[Xp\ Xaf) < max(g(a), q),

that is (a, p) € L, and so a < p. Therefore (7, 1) = (o, p) € pa,p as required. By
the definition of p, g, it is clear that

< % pPep &S

and obviously, there is no other partial orders lie between < and p, 3. Therefore

Pa,p is @ minimal partial order containing <. ]

For the following result, we sometimes write o ~¢ [ instead of (a, 3) € Q for

convenience.

Theorem 3.3.8. For distinct x,y € X, there is a partial order 6., on PS(q) lies

strictly between C and ().
Proof. For distinct z,y in X, we write X = AUBU{z}U{y} where |A| =p

and |B| = q. Let # : AU B — A be a bijection and define a, 3 € PS(q) by

AUB =« 5 AUB z vy
A x A y T
where a|(AU B) = 6§ = B|(AU B). Since y ¢ dom «, we have
af ' N (doma x doma) = idsup C idgema = aa™ .
That is, (o, 8) € ©, but a € 3 since xa # x3. Let
Tpy=4(,0):7€ PS(q) and y Ca} and 6,, = CUT,,.

Since (a, ) € T,,\ C, we have T,, # 0 and C is properly contained in d,,,.

Moreover, for each pair (v,0) in T,,, v € «. It follows that v ~q a ~q
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(since €2 contains C), that is, 2 contains T, ,. For v/ € X,z # ¢/ # y, we write
X =AUB U{z}U{y'} where |A’| = p and |B'| = q. Then define o/, 5’ € PS(q)
in the same way as a and 3. We have (o/, §') € Q\ C and also, (¢, ') ¢ T}, since
B # §. It follows that C U T, ,, & €, that is d,, is properly contained in Q. To
see that ¢, , is a partial order, we observe that ¢, , contains a partial order C, then
it is reflexive. To show that 4, is anti-symmetric, let (A, p), (i, A) € 5. If both
of these pairs belong to T, ,, then § C «, a contradiction since dom € dom a.
Also, if A C p and (pu,\) € Ty, then 8 C p C a and we get a contradiction
again and, similarly, this also happen when p C X and (A, i) € T,,. It follows
that both (A, p), (1, A) belong to C, and hence A = p. To show 4, is transitive,
let (A, p), (11, 0) € d,,. Like before, if (A, u), (1,0) € T, then 5 C «, that is,
we get a contradiction again. So we consider only the following three cases. If
both (A, i), (1, 8) belong to C, then A C 6 and so (\,0) € 6,,. If A C p and
(n,0) € Ty, then A C p C « and f = 6. Thus (A, 0) € T,, C 6., Finally,
if # €60 and (A, p) € Ty, then A C v and f = p C 0. Since dom 5 = X, we
have ( is maximal under C, so § = ¢ and this implies that (X,0) € T;,,, C 6, as

required. [ ]

3.4 Meets and Joins

In this section, we study the existence of a meet a A # and a join « V (3 for

a, # in the semigroups I(X), PS(q) and R(q) for each of the orders < and C. To
do this, we first define the equaliser of o, 5 € I(X) (compare [14] p 416 for linear

transformations) as follows:
E(a, ) = {z € domandomf: za = x[}.

The next result may be well-known, but we do not know a reference in the litera-

ture (recall that C equals < on I(X)).

Theorem 3.4.1. Let o, € I[(X) and E = E(a,3). Then, under C, a A =
alE = [lE.
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Proof. Clearly alF = B|E C «,(. If v C a, 3, then for each z € dom~,
xa = xy = xf and this follows that dom~y C E. Also, v C a|E, then we have
aNf=alE. u

Theorem 3.4.2. Let o, € PS(q) and E = E(a,3). Then v C «, for some
non-empty v € PS(q) if and only if

(i) E #0, and

(ii) max(|Xa\ Eaf, | X5\ Ef|) < q.

Moreover, when this occurs, o|E (equals B|E) is the non-empty meet of a, 3

under C.

Proof. Suppose that ) # v C a, fin PS(q). Then () # dom~y C dom aNdom 3
and zao = 2y = zf for all z € dom~. That is, ) # dom~y C E and this implies
X~ = FEv. Now Ey = (ENdom~)y C Fa C Xa and so

Xa\ Eal < |Xa\ Eq| = |Xa\ X7] < |X \ X7| = ¢

Similarly, | X3\ EfB| < ¢ and hence the conditions hold. Conversely, if the con-
ditions hold then v = a|F = §|FE is a non-empty element of I(X) with domain
E = E(a, () and v C «, 3. Moreover, since Xy = Ey = Fa C Xa, we have

X\ Xy=(X\Xao)U(Xa\ Ea)

and it follows that d(y) = ¢ since d(«a) = g and | Xa\ Fa| < ¢q. That is, v € PS(q).

Finally, as shown in the proof of Theorem 3.4.1, we have a A § = «|E. [

Remark 3.4.3. Suppose S is any inverse subsemigroup of [(X). If « < §in S,
then a = v for some v € E(S). That is, a = id4 o for some A C X and we
deduce that o« C 3. On the other hand, if &« C /3 in the inverse semigroup R(q) =
{a € PS(q) : g(a) = q}, then @ = idgomaq 05, where idgom o is an idempotent in
R(q), and so o < #in R(q). That is, < = C on R(q).

Of course, when we turn to R(q), we expect a further condition to be needed

in order to characterise meets in R(q) under C.
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Theorem 3.4.4. Let o, € R(q) and E = FE(«a,3). Then v C «,f3 for some
non-empty v € R(q) if and only if

(i) E#0,
(il) max(| Xa \ Fal,| X6\ EB|) < q, and
(ili) max(|doma \ E|,|dom 3\ E|) < q.

Moreover, when this occurs, o|FE (equals B|E) is the non-empty meet of a, 3

under C.

Proof. Suppose that ) # v C «,3 € R(q). Since R(q) € PS(q), Theorem
3.4.2 implies that (i) and (ii) hold. Since dom~y C F C dom «, we have

|doma \ F| < |doma \ domy| < |X \ dom~y| = gq.

Similarly, | dom 8\ E| < ¢ and hence (iii) holds. Conversely, suppose the conditions
hold. By Theorem 3.4.2 again, (i) and (ii) imply that v = «|E = §|E is a non-
empty element of PS(q) and it is also the meet of a, 3 in PS(q) under C. Also,

since dom~y = E C dom « and g(a) = g, we have
X \dom~y = (X \doma) U (doma \ E).

Then (iii) implies that g() = ¢, hence v € R(q). [

From Theorem 3.1.1, we have that < equals € N L on PS(q), where L is the
relation defined on PS(q) by

(o, ) € L if and only if PS(q)'a C PS(q)'S.
It is equivalent to say that
(o, 3) € L if and only if a = A3 for some X € PS(q)".

Hence, by using Theorem 2.3.10, we can simplify the relation L by (a, 3) € L if
and only if

a=8 or XaCXB and q<max(g(8),|X8\ Xaf) < max(g(a).q).
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Note that if « A f = 0 in PS(q) under <, then p = ¢. In this case, if
r € F=FE(o,f) and za = 25 = y then z, € PS(q) and z, C «, 3. Also, since

Xa\ {y}| = [doma\ {z}| and g(a) = |X \ domal|
we have

q =p = max(g(a), | Xa\ {y}|) < max(g(z,),q) =p = ¢.
Similarly,
¢ = max(g(f3), | X3\ {y}]) < max(g(z,), q) = ¢-
That is, z, < «, 3, so z, < a A = 0, a contradiction. In other words, if a A3 = ()

then £ = () and so o|E = G|E = 0.

As usual, if < is a partial order on a set S, we say a,b € S are non-comparable

ifa Aband b A a.

Theorem 3.4.5. Suppose that o, 5 € PS(q) are non-comparable under < and let
E = FE(a,B). Then v < «, 3 for some non-empty v € PS(q) if and only if there
exists a non-empty Y C E such that

(i) max(|Xa\ Yal|, | XB\YS]) <q, and

(ii) ¢ < max(g(a),|Xa\ Yal) and ¢ < max(g(3), [ X5\ YJ]).

In this event, v = oY = B|Y.

Proof. Suppose that ) # v < «, 3 and let Y = dom~. Then v C «, 3 and so
xa=zy=zxfforallz €Y. Thatis, ) #Y C E and Xy =Y~y =Ya =Y.
Since d(y) = ¢, we see that

[Xa\Ya| < [X\Ya| <[X\ Xq[=q

and likewise | X3\ Y| < ¢, so (i) holds. Also, since < equals C N L, we have

(7,a) € L and (v, 8) € L and these imply
¢ < max(g(@),[Xa\Ya|) and ¢ <max(g(f), |X5\Y5]),

that is (ii) holds.
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Conversely, suppose the conditions hold. We write Y = {y;} and E =Y U{e;}

(possibly J = (). We also write

Yi €; Unpm Yi €5 Up Yi
o = 5 6: y N (1)

a; a; Gy a; a; by a;

Clearly, v C «, 8 and thus g(a) < g(v) and ¢g(5) < g(7). By condition (i),
[(Xa\ Xy| = [J] +[M]| = [Xa\Ya| <q,
thus d(v) = |J| 4+ |M| + d(a) = ¢ and so v € PS(q). These also imply

max(g(a), [Xa \ Xv|) < max(g(v), 9).

Hence, the above and condition (ii) imply that (v, «) € L and similarly (v, 8) € L.
Thus, we have shown that v < «, 3 and, we also see that v = a|Y = g|Y. [ ]

Corollary 3.4.6. Suppose that a, 3 € PS(q) are non-comparable under < and let
E = E(a,3). Then aAf exists in PS(q) under < and it is non-empty if and only
if ' is non-empty and o, 3 satisfy conditions

(i) max(|Xa\ Eal, | X3\ ES|) < q, and

(i) ¢ < max(g(a), |Xa \ Eal) and ¢ < max(g(8),| X5\ ES)).

In this case a A\ = a|E = [|E.

Proof. Suppose that a A 5 =~ € PS(q) and it is non-empty. Then v < «, 3.
Thus, Theorem 3.4.5 implies that there exists a non-empty ¥ = dom~y C E and
a and  satisfy (i) and (ii) in Theorem 3.4.5. So we can write «, § as in (1) in
Theorem 3.4.5. If g() < ¢, then Theorem 3.3.3 implies that 7 is maximal under
< and so 7 = a = [, contradicting the supposition. Hence g(y) > ¢. If there
exists eg € £\ Y for some 0 € J, we can define 7' € PS(q) by

, Yi €o
r}/ —
a; Qg

Then v C 4 C o, 5 and | X7\ Xv| = 1, and we see that
9(v) = |J[+ M|+ g(a) (and this implies |J| + [M| > q or g(a) = q),

9(v) = [I\A{0} + M|+ g(a).
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Thus, if |J|+|M| > Ry then g(v) = g(7') > g(a); and if |J|+|M| < Xg then v < «
implies ¢ < max(g(a),[J| + [M]), so g(a) > ¢ and hence g(v) = g(v) = g(a).
Since ¢ < g(y) , we have g(v') = g(7) > ¢ in both cases. Therefore,

q < g(v'") = max(g(7'),1) < max(g(7),q),

that is, (7,7') € L. Next, since v < «, we have (v,a) € L and so
q < max(g(a),[J] + [M]).

This implies
¢ < max(g(a), |J\ {0}] + [M]).

We also recall that [Xa \ Xv/| < |X \ X+v/| = q and g(a) < g(7) (since 7' C «).

Then we have

q < max(g(a), |J\ {0} + [M]) = max(g(a), | Xa\ X7|) < max(g(7), q),

that is, (7/, @) € L and likewise we can show (7', 3) € L. In other words, we have
shown that v < o/ < «, 3, and this contradicts to v = a A 3. Hence, it follows
that Y = FE, that is, a and  satisfy (i) and (ii).

Conversely, suppose E is non-empty and « and g satisfy (i) and (ii). Then,
by Theorem 3.4.5, v < «,f where v = «|E = B|E € PS(q). Moreover, if
v <9 < a,f for some v € PS(q) then, v C ' C «, f and thus zv = za = zf3
for all x € dom~/, so F = dom~ C dom~' C FE, and it follows that v = ~/. That
is, vy =aAp. (]

In effect, by Theorem 3.3.3, the next result determines when two elements of

PS(q), which are maximal under <, possess a meet under <.

Corollary 3.4.7. Suppose that a, 3 € PS(q) are non-comparable under < and let
E = E(a, (). If g(a) < q and g(8) < q, then a A\ B exists in PS(q) under < if
and only if | Xa\ Ea| =q=|X3\ EfS|.

Proof. Suppose that g(«),g(f) < q. If a A B exists under <, then Theorem
3.4.5 (ii) implies that ¢ < |Xa \ Ea| which is at most ¢ by Theorem 3.4.5 (i).
Thus | Xa \ Fa| = q and likewise g(3) < ¢ implies | X3\ EB| = q.
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Conversely, if | Xa \ Fa| = ¢ = | X\ Ef| then both (i) and (ii) in Theorem
3.4.5 hold for E = E(«, 3), so o A (3 exists. [ |

Example 3.4.8. Suppose that X = M UN U {b, ¢}, where |M| = p,|N| = q and

MUN b MUN ¢
M b M c

where F = E(a,3) = M UN. Then d(a) = q = d(B), so o, € PS(q) and
alE = B|E € PS(q). But, | Xa\ Fa| =1=|Xg\ Ef| and g(a) = 1 = g(f), so
E satisfies condition (i) in Theorem 3.4.5 but not condition (ii), and hence a A 3
does not exist in (PS(q),<). That is, although «|F may be the greatest lower

bound under C, that may not be true for < since < # C on PS(q).

Theorem 3.4.9. Let o, 3 € I(X) under C. Then «, 8 C v for some v € I(X) if
and only if

(i) domaNdom g C E(a, 3) and

(ii) (doma \ dom B)a N (dom 8\ dom «) 3 = 0.

Moreover, in this case, aV ( exists and equals o U (3.

Proof. Suppose that o, 8 C v € I(X). If z € doma Ndom 3 then zav = z7y =
xf3, and so x € F(«, ). On the other hand, if there exist y € dom « \ dom 3 and
z € dom 8\ dom« such that ya = 23, then yy = zv. Since 7 is injective, this
implies that y = 2, a contradiction.

Conversely, suppose that the conditions hold and let v = a U (as sets). Then
(i) says that v is a mapping and (ii) says it is injective, so v € I(X) and clearly it
is an upper bound of {a, 3}. Moreover, if (i) and (ii) hold, then v = a V 3, since
a,f C A€ I(X) implies o, § C o U C A (as sets) where a U 5 € I(X). n

Like before, the result for joins in PS(g) under C involves an extra condition.

Theorem 3.4.10. Let o, 3 € PS(q) under C. Then «, 3 C v for some v € PS(q)

if and only if the following conditions hold.
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(i) domanNdom 3 C E(a, (),
(i) (doma \ dom B)a N (dom 3\ dom )3 = 0, and
(iii) [ X\ (Xa U XB)| =q.

Moreover, in this case, aV (3 exists and equals o U (3.

Proof. Suppose that a, 3 C v in PS(q). Then, conditions (i) and (ii) hold
since PS(q) C I(X). Since Xa U X3 C X+, we also have

¢ =X\ Xy <[X\ (XaUXP)| < |X\ Xaf =q.
Hence (iii) holds. Conversely, suppose (i), (ii) and (iii) hold and let v = a U S.
Then (i) and (ii) imply that v € I(X), and (iii) implies that
d(7) = [X\ Xq] = [X\ (XaUXP)| = ¢,

that is, v € PS(q). Since v = a U 3, it follows that «, 5 C . Finally, as in
Theorem 3.4.9, we can show that oV 3 = 7. [ ]

Theorem 3.4.11. Let o, 3 € R(q). Then a, 3 C v for some v € R(q) if and only
if the following conditions hold.

(i) dom o N dom § C E(a, B),

(ii) (doma \ dom B)a N (dom 5\ dom «v) 3 = 0,

(iii) | X \ (XaUXpG)| =q, and

(iv) [X '\ (doma U dom §)| = .

Moreover, when this occurs, aU 3 is the join of o, 3 under C.

Proof. Suppose that «, 5 C v in R(q). Since R(q) € PS(q), Theorem 3.4.10
implies that (i), (ii) and (iii) hold. Since dom o U dom  C dom+y, we have

¢=|X\dom~y| <|X\ (domaUdomf)| <|X \ doma|=gq.

Hence (iv) holds. Conversely, suppose that the conditions hold. By Theorem
3.4.10 again, (i), (ii) and (iii) imply that v = o U § is an element of PS(q) and it

is also a join of a, B under C. Also, (iv) implies that

g(y) = X \ domy| = |X \ (doma U dom §)| = .
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so v € R(q). [

To characterize joins in PS(q) under <, we need two lemmas. In effect, the
first provides a description of < in terms of C which differs from that in Theorem

3.1.1.

Lemma 3.4.12. Suppose that o, 5 € PS(q) and o # 3. Then o < G if and only if
a G B and g(a) > q.

Proof. If a < (3, then a &  and (o, 3) € L. Therefore, doma & dom 3 and
Xa C X3, and hence

X\ doma = (X \ dom 8)U (dom 8\ doma), and 2)
X = [(dom 3\ dom a) 3] U [(dom ev) 5.
Now, (dom a)8 = (doma)a = Xa (since a G §) and so
[ X6\ Xa| = [(dom 3\ dom )] = | dom §\ dom a]. (3)
By Theorem 2.3.10, we also know that
g <max(g(0), | X3\ Xaf) < max(g(a),q).

Hence, if max(g(3), | X5\ Xa|) = g(3), then g < g(8) < g(a) by (2); and if
max(g(3), | X6\ Xa|) = |XF\ Xaf, then

g <|Xp\ Xa|l=|domg\doma| <|X\ doma|=g(a)

by (3). That is, the conditions hold.

Conversely, suppose that the conditions hold. Then (2) and (3) hold (since
o G B), max(g(a), ) = g(a) > g(8) and [XB\ Xa| < |X\ Xa] = d(a) = ¢. Since
g(a) > g, (2) implies that | X \ dom 3| > g or |dom 3\ dom a| > ¢. By this result
together with (3), we deduce that

g(B) =|X\domp| >¢q or | XG\ Xa|=|domfg\doma| > gq.
Consequently,

q < max(g(5),[X G\ Xaf) < max(g(a), q),

and so («, #) € L. By Theorem 3.1.1, it follows that a < f3. [
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Lemma 3.4.13. Suppose that o, 5 € PS(q) are non-comparable under <. Then
a, < for some v € PS(q) if and only if
(i) o, B C @ for some 0 € PS(q), and

(ii) g(a) > q and g(B) > q.

Proof. If o, < v € PS(q), then a,3 C =, so (i) holds. In addition, if
g(a) < g, then « is maximal under < (by Theorem 3.3.3). Hence o < =y implies
a = v and so § < a, contradicting the supposition. Therefore, g(a) > ¢ and
likewise g(3) > ¢q. That is, (ii) holds.

Conversely, suppose that (i) and (ii) hold. Then (i) and Theorem 3.4.10 imply
that m = a U B € PS(q) is the join of {«, f} under C. So, if & = 7, then f & «
(since they are non-comparable). Thus, (ii) and Lemma 3.4.12 imply # < «, which
contradicts the supposition. Therefore, « & 7 and g(a) > ¢, so @ < 7 by Lemma
3.4.12 again. Similarly, 6 < 7 and so «a,  have an upper bound in PS(g) under

<. |

Example 3.4.14. Surprisingly, (i) and (ii) in Lemma 3.4.13 do not ensure that aU/
equals aVf in PS(q) under <. For example, write X = AUBUC U DU {a} where
|Al = p = |X| and |B| = |C| = |D| = ¢. Let
a= —_— Uideg, B = - Uidp
A A

where za = (3 for all x € AUB. Then «, 5 € PS(q) and they are non-comparable
under < (since o € fand € a). If 6 = aU S, then o, 5 C 0 € PS(q) (since
d(0) = |B| = q), hence « and § satisfy (i). Also, g(a) = |D| = q = |C| = g(p),
and hence o and (3 satisfy (ii). By Lemma 3.4.12, o, 3 < ¢ = 0 Uidg,y € PS(q),
but 6 £ 0’ since g(f) =1 % ¢, and thus o U 5 does not equal a V S3.

Theorem 3.4.15. Suppose that o, 3 € PS(q) are non-comparable under <. Then
a V(B exists if and only if
(i) a, B < 0 for some 8 € PS(q), and
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(i) either X = doma Udom f or | X \ (doma U dom 3)| > q.

Moreover, when this occurs, a'V 3 equals o U (3.

Proof. Suppose that oV g exists under < and write v = aV 3. Then o, 3 < 7y
(since a and 3 are non-comparable), so (i) holds. Consequently, «, 5 & v and so
Theorem 3.4.10 implies that 7 = a U € PS(q) is the join of {«, 5} under C and
this follows that © C . Now, to prove (ii), suppose dom o Udom 3 & X. Choose
a€ X\ (domaUdomf) =X\ domn and, for any z € X\ X7 (non-empty since
d(m) = q), we let

domm a

Xt =z

Mo =

where pu,|domm = 7. Then p, € PS(q) since d(u,) = |X \ X7| = d(7) = q.
Clearly, @ C p, and a # p, (since a € dom p, \ dom«). Therefore, using the
fact that o < v, Lemma 3.4.12 implies that g(«) > ¢ and thus « < p, by Lemma
3.4.12 again. Similarly, 5 < p,. It follows that v < p, for all z € X \ X since
v=aV B under <. If v = p, for all z € X \ X, then p, = p, for all z # y in
X \ X7, a contradiction. Hence, v < p, for some z € X \ X7, and so 7 is not

maximal. Therefore, by Theorem 3.3.3,
q < g(y) < g(r) = |X\ (doma U dom )|

since ™ C ~, and so we have proved (ii).

Conversely, suppose the conditions hold. Then (i) implies that a, 3 C € since
C contains <. Therefore, Lemma 3.4.13 (i) and Theorem 3.4.10 imply (say) m =
aU g € PS(q) is the join of {a, 8} under C and we claim that it is also the join
under <. In addition, (i) and Lemma 3.4.12 imply that g(«), g(3) > ¢. Now,
if 7 = «, then § & « (since they are non-comparable) and so § < « by Lemma
3.4.12, which contradicts the supposition. Thus, a & 7 and this follows that o < 7
by Lemma 3.4.12 again. Likewise, we have § < 7. Finally, if o, 8 < p for some
w € PS(q), then a, 8 C v and so m C p. Since (ii) holds, if X = dom a U dom f,
then X = domn and so 7 = u. Otherwise, if | X \ (dom«a U dom )| > ¢, then



43

g(m) > q and so ™ < pu by Lemma 3.4.12. In other words, 7 is the join of o and 3
in PS(q) under <. n



