
Chapter 3

Partial Orders on the Baer-Levi Semigroups

of Partial Transformations

Throughout this thesis, |X| = p ≥ q ≥ ℵ0. Also, Y = A ∪̇B means that Y is

a disjoint union of A and B. We modify the convention introduced in [1] vol 2, p

241: namely, if α ∈ I(X) is non-zero then we write

α =

 ai

xi


and take as understood that the subscript i belongs to some (unmentioned) in-

dex set I, that the abbreviation {xi} denotes {xi : i ∈ I}, and that ranα =

{xi}, xiα−1 = {ai} and domα = {ai : i ∈ I}. For simplicity, we often write Xα

in place of ranα, in which case Xα−1 = ranα−1 = domα.

In this chapter, we consider the natural partial order ≤, the containment order

⊆ and other partial orders defined on I(X) and PS(q).

3.1 Partial Orders

In order to characterise ≤ on PS(q), we first define the relation L on PS(q)

by

(α, β) ∈ L if and only if PS(q)1α ⊆ PS(q)1β.

It is easy to see that L is reflexive and transitive. However, in general, it is

not anti-symmetric. For example, Let X = A ∪̇B ∪̇ {c, d, e} where |A| = p and

|B| = q, and define α, β, λ, µ ∈ PS(q) by

α = idA ∪

d
c

 , β = idA ∪

e
c

 , λ = idA ∪

d
e

 , µ = idA ∪

e

d

 .
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Then α = λβ and β = µα, so (α, β) ∈ L and (β, α) ∈ L, but α 6= β.

Nonetheless, if ρ is any partial order on PS(q), then ρ ∩ L is also a partial

order on PS(q). This idea leads to a simple description of ≤ on PS(q).

Theorem 3.1.1. When restricted to PS(q), ≤ equals ⊆ ∩ L. Moreover, ≤ is

properly contained in ⊆.

Proof. Suppose that α, β ∈ PS(q) are distinct and α ≤ β in PS(q). Then

α = λβ = βµ and α = αµ for some λ, µ ∈ PS(q), and so

PS(q)1α = PS(q)1λβ ⊆ PS(q)1β,

that is, (α, β) ∈ L. Also, α = λβ implies Xα ⊆ Xβ and α = αµ implies

Xα ⊆ domµ. Hence

αα−1 = αµ(βµ)−1 = α(µµ−1)β−1 = αβ−1,

and so α ⊆ β by Theorem 2.5.6. Therefore, ≤ is a subset of ⊆ ∩ L.

Conversely, suppose that (α, β) ∈ ⊆ ∩ L and α 6= β. Then PS(q)1α ⊆ PS(q)1β

and so α = λβ for some λ ∈ PS(q). Moreover, since α ⊆ β, we can write

α =

 ai

xi

 , β =

 ai aj

xi xj

 , µ =

 xi

xi

 ,

where d(µ) = d(α) = q. Hence µ ∈ PS(q) and clearly α = βµ and α = αµ.

Therefore, α ≤ β in PS(q).

Now we deduce that ≤ is a subset of ⊆ on PS(q) and we assert that this

containment is always proper on PS(q). To see this, we suppose X = A ∪̇ B ∪̇ {c}

where |A| = p and |B| = q, and let α : A ∪ B → A be a bijection. Then

d(α) = |B ∪ {c}| = q and so α ∈ PS(q). Likewise, if β ∈ T (X) equals α on

A ∪ B and satisfies cβ = c, then β ∈ PS(q) and α ⊆ β. But g(β) = 0 < q and

|Xβ \Xα| = 1 < q, hence there is no λ ∈ PS(q) such that α = λβ by Theorem

2.3.10. This follows that (α, β) /∈ L and so α 6≤ β.

In [11] p 384 and Lemma 1(x), Mitsch observed that, if S is an inverse semi-

group, then the natural partial order on S equals the order � defined on S by

a � b if and only if a = eb for some idempotent e ∈ S.
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Moreover, from [3] Proposition V.2.3, we know that � equals ⊆ on I(X), and thus

≤ = ⊆ on I(X).

We recall from Chapter 2, Section 2.5 that Ω′ and Ω are partial orders defined

on P (X) by

(α, β) ∈ Ω′ if and only if Xα ⊆ Xβ, domα ⊆ dom β and

αβ−1 ∩ (domα× domα) ⊆ αα−1,

(α, β) ∈ Ω if and only if (α, β) ∈ Ω′ and ββ−1 ∩ (domα× domα) ⊆ αα−1.

In [10], the authors showed that Ω′ is an upper bound for ≤ and ⊆, and that

Ω = ≤ ∨ ⊆ = ⊆ ◦ ≤ on P (X). Clearly Ω ⊆ Ω′ and these are also partial orders

on I(X), a semigroup in which ≤ = ⊆. Therefore, we get the following result.

Theorem 3.1.2. Ω = Ω′ on I(X) and PS(q).

Proof. Suppose that α, β ∈ I(X) and (α, β) ∈ Ω′. Then domα ⊆ dom β and

ββ−1 = iddomβ, so

ββ−1 ∩ (domα× domα) = iddomα = αα−1.

Hence (α, β) ∈ Ω, and thus Ω′ ⊆ Ω on I(X) as required. When α, β ∈ PS(q), we

can use the same proof for α, β ∈ I(X) to obtain Ω′ ⊆ Ω on PS(q).

Since ≤ = ⊆ and Ω = Ω′ on I(X), it is natural to ask whether all four orders

are equal on I(X). In [10], the authors showed that ⊆ is contained in Ω′ in P (X).

The next result shows that this also holds in I(X) and PS(q). We first note that

Ω = ⊆ on I(X) when |X| = 1.

Theorem 3.1.3. If |X| > 1, then ⊆ is properly contained in Ω on I(X).

Proof. Assume that |X| > 1. If α, β are injective and α ⊆ β, then αβ−1 =

αα−1. So Xα ⊆ Xβ, domα ⊆ dom β and

αβ−1 ∩ (domα× domα) = αα−1 ∩ (domα× domα) = αα−1.
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That is, (α, β) ∈ Ω′ = Ω. Since |X| > 1, we can choose distinct x, y ∈ X and

define α, β ∈ I(X) by

α =

 x

x

 , β =

 x y

y x

 .

Then Xα ⊆ Xβ, domα ⊆ dom β and

αβ−1 ∩ (domα× domα) = ∅ ⊆ αα−1.

Hence (α, β) ∈ Ω′ = Ω but α 6⊆ β, so ⊆ is properly contained in Ω on I(X).

Theorem 3.1.4. ⊆ is properly contained in Ω on PS(q).

Proof. From the first part of the proof in Theorem 3.1.3, we see that ⊆ is also

contained in Ω on PS(q). Suppose that X = A ∪̇B ∪̇ {x} ∪̇ {y} where |A| = p

and |B| = q, and let θ : A ∪B → A be a bijection. Define α, β ∈ PS(q) by

α =

 A ∪B x

A x

 , β =

 A ∪B x y

A y x


where α|(A ∪B) = θ = β|(A ∪B), we see that α 6⊆ β. Since y /∈ domα, we have

αβ−1 ∩ (domα× domα) = idA∪B ⊆ iddomα = αα−1,

that is, (α, β) ∈ Ω. Therefore ⊆ is always properly contained in Ω.

From [10], Ω is the join of ⊆ and ≤ on P (X) and it equals ⊆ ◦ ≤. But,

Ω 6= ⊆ ◦ ≤ on PS(q): otherwise, Ω is contained in ⊆ ◦ ⊆ (since ≤ is contained

in ⊆), so Ω is contained in ⊆, which is a contradiction.

From Theorem 3.1.1 and Theorem 3.1.4, on PS(q) we always have:

≤ = ⊆ ∩ L  ⊆  Ω.

3.2 Compatible Partial Orders

We first note that ⊆ is left and right compatible on P (X). Therefore, it is

also left and right compatible on PS(q) since PS(q) is contained in P (X). In
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this section, since we know that Ω = Ω′ on PS(q), we will only characterize the

compatibility of ≤ and Ω on PS(q).

Theorem 3.2.1. Suppose that γ ∈ PS(q).

(i) γ is left compatible with ≤ on PS(q) if and only if q ≤ g(γ),

(ii) ≤ is right compatible on PS(q).

Proof. To prove (i), suppose that γ is left compatible with ≤. If γ = ∅ (in case

p = q), then g(γ) = p = q. If γ 6= ∅, we choose x ∈ Xγ and let α = idXγ\{x} and

β = idXγ. Then α ⊆ β and g(β) = d(β) = d(γ) = q and g(α) = d(α) = q + 1 = q

(since q ≥ ℵ0). Hence α, β ∈ PS(q) and

q ≤ max(g(β), |Xβ \Xα|) = q = max(g(α), q).

Then α = λβ for some λ ∈ PS(q) by Theorem 2.3.10 and so PS(q)1α ⊆ PS(q)1β,

that is, (α, β) ∈ L. It follows that α ≤ β by Theorem 3.1.1. Since γ is left

compatible, we have γα ≤ γβ and so (γα, γβ) ∈ L (since ≤ = ⊆ ∩ L) where

γα 6= γβ = γ. Then Theorem 2.3.10 implies that

q ≤ max(g(γβ), |Xγβ \Xγα|).

But, since |Xγβ \Xγα| = 1 < q, this implies q ≤ g(γβ) = g(γ).

Conversely, suppose that q ≤ g(γ). If α, β ∈ PS(q) and α ≤ β, then α ⊆ β

and (α, β) ∈ L by Theorem 3.1.1. Since ⊆ is left compatible, we have γα ⊆ γβ.

Also, dom γβ ⊆ dom γ implies q ≤ g(γ) ≤ g(γβ). By the definition of ≤, we have

α = βµ for some µ ∈ PS(q)1. If µ = 1, then α = β and so γα ≤ γβ. If µ ∈ PS(q),

then γα = (γβ)µ and hence g(γβ) ≤ g(γα). Moreover, since γα ∈ PS(q),

|Xγβ \Xγα| = |Xγβ ∩ (X \Xγα)| ≤ q

and so

q ≤ g(γβ) = max(g(γβ), |Xγβ \Xγα|) ≤ g(γα) = max(g(γα), q),

that is, (γα, γβ) ∈ L. Since ≤ = ⊆ ∩ L, we have γα ≤ γβ. In both cases we

deduce that γ is left compatible with respect to ≤ as required. Finally, note that
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⊆ is right compatible, and PS(q)1α ⊆ PS(q)1β implies PS(q)1αγ ⊆ PS(q)1βγ

for any γ ∈ PS(q), that is, L is also right compatible on PS(q). Hence, (ii) follows

from Theorem 3.1.1.

Here, for simplicity, we write xy for the α ∈ I(X) with domain {x} and range

{y}.

Theorem 3.2.2. Suppose that p = q and let γ ∈ PS(q). Then

(i) ∅ is the only element of PS(q) which is left compatible with Ω,

(ii) γ is right compatible with Ω if and only if γ = ∅ or dom γ = X.

Proof. Clearly ∅ ∈ PS(q) and it is left and right compatible with Ω. Let γ be

a non-zero element in PS(q). If we choose x ∈ Xγ, y ∈ X \Xγ and define

α =

 x

x

 , β =

 x y

y x

 ,

then α, β ∈ PS(q) (since p = q) and it is easy to check that (α, β) ∈ Ω. However,

since Xγα = {x} 6⊆ {y} = Xγβ, we have (γα, γβ) 6∈ Ω (by definition) and so γ is

not left compatible with Ω. Therefore (i) holds.

Next, suppose that γ ∈ PS(q) is non-empty and right compatible with Ω. If

a ∈ dom γ, x ∈ X \ dom γ and Y = {a, x} then xa, idY ∈ PS(q) and (xa, idY ) ∈ Ω

(note that xa. id
−1
Y ∩{(x, x)} = ∅). Hence (xa.γ, idY .γ) ∈ Ω and so dom(xa.γ) =

{x} ⊆ dom(idY .γ) = {a}, a contradiction. Thus, we have shown that dom γ = X.

Therefore, to prove (ii), it remains to show that, if dom γ = X, then γ is right

compatible with Ω. To do this, let α, β ∈ PS(q) and (α, β) ∈ Ω. Then, since

Ω = Ω′, we have Xα ⊆ Xβ, domα ⊆ dom β and

αβ−1 ∩ (domα× domα) ⊆ αα−1.

Clearly Xαγ ⊆ Xβγ and, since dom γ = X, domαγ = domα ⊆ dom β = dom βγ.

Also γγ−1 = idX (but note that idX /∈ PS(q)), and hence

αγ(βγ)−1 ∩ (domαγ × domαγ) = αβ−1 ∩ (domα× domα) ⊆ αα−1 = αγ(αγ)−1,

from which it follows that (αγ, βγ) ∈ Ω.
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Theorem 3.2.3. Suppose that p > q and let γ ∈ PS(q). Then

(i) no element of PS(q) is left compatible with Ω,

(ii) γ is right compatible with Ω if and only if dom γ = X.

Proof. To prove (i), let θ ∈ PS(q), choose x ∈ Xθ, y ∈ X \Xθ and define

α = idXθ, β =

 Xθ \ {x} x y

Xθ \ {x} y x

 ,

where zβ = z for all z ∈ Xθ \ {x}. Then α, β ∈ PS(q) and (α, β) ∈ Ω. Since

x ∈ Xθα \ Xθβ, we have (θα, θβ) 6∈ Ω (by definition). That is, θ is not left

compatible with Ω. The proof of (ii) is the same as that for Theorem 3.2.2(ii),

except that now ∅ /∈ PS(q).

For completeness, we note the following result for Ω on I(X).

Theorem 3.2.4. If γ ∈ I(X) is non-zero, then

(i) γ is left compatible with Ω on I(X) if and only if Xγ = X,

(ii) γ is right compatible with Ω on I(X) if and only if dom γ = X.

Proof. Suppose that Xγ 6= X. Then, as in the proof of Theorem 3.2.3(i), there

exists (α, β) ∈ Ω on I(X) but (γα, γβ) 6∈ Ω. Therefore γ is not left compatible

with Ω. For the converse of (i), if γ ∈ PS(q) is surjective, then Theorem 2.5.7

(i) implies that it is left compatible with Ω on P (X), and so the same is true

for I(X). To see (ii), suppose that γ ∈ I(X) is non-empty and right compatible

with Ω. If a ∈ dom γ, x ∈ X \ dom γ and Y = {a, x} then xa, idY ∈ I(X) and

(xa, idY ) ∈ Ω (note that xa. id
−1
Y ∩{(x, x)} = ∅). Hence (xa.γ, idY .γ) ∈ Ω and so

dom(xa.γ) = {x} ⊆ dom(idY .γ) = {a}, a contradiction. Thus, we have shown

that dom γ = X. It remains to show that, if dom γ = X, then γ is right compatible

with Ω. To do this, let α, β ∈ I(X) and (α, β) ∈ Ω. Then, since Ω = Ω′, we have

Xα ⊆ Xβ, domα ⊆ dom β and

αβ−1 ∩ (domα× domα) ⊆ αα−1.
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Clearly Xαγ ⊆ Xβγ and, since dom γ = X, domαγ = domα ⊆ dom β = dom βγ.

Also γγ−1 = idX , and hence

αγ(βγ)−1 ∩ (domαγ × domαγ) = αβ−1 ∩ (domα× domα) ⊆ αα−1 = αγ(αγ)−1.

Therefore (αγ, βγ) ∈ Ω.

3.3 Minimal and Maximal Elements

In this section, we consider the existence of minimal (maximal) elements in

PS(q) with respect to each of the orders ≤, ⊆ and Ω.

First, recall that, if � is any partial order on a set T , and if x ∈ S ⊆ T is

minimal (maximal) in T , then x is minimal (maximal) in S. Similarly, suppose <1

and <2 are partial orders on a set S such that <2 contains <1. Clearly, if x ∈ S is

minimal (maximal) with respect to <2, then x is minimal (maximal) with respect

to <1. Consequently, under the same supposition, if x is a minimum (maximum)

with respect to <1, then x is a minimum (maximum) with respect to <2.

Theorem 3.3.1. PS(q) has no maximum element with respect to ≤, ⊆ or Ω.

Proof. Write X = A ∪̇B ∪̇C where |A| = p and |B| = q = |C|. Clearly,

if α = idA∪B and β = idA∪C , then α, β ∈ PS(q). If γ ∈ PS(q) is a maximum

with respect to Ω, then (α, γ) ∈ Ω and (β, γ) ∈ Ω. Consequently Xα ⊆ Xγ and

Xβ ⊆ Xγ, hence Xα ∪ Xβ ⊆ Xγ and so Xγ = X, which contradicts d(γ) = q.

Therefore PS(q) has no maximum element with respect to Ω. Next recall that

≤ is properly contained in ⊆ which is properly contained in Ω on PS(q). So, if

α is a maximum under ⊆, then it is also a maximum under Ω, a contradiction.

Likewise, there is no maximum under ≤.

Theorem 3.3.2. The following are equivalent for α ∈ PS(q).

(i) α is maximal with respect to Ω,

(ii) α is maximal with respect to ⊆,

(iii) domα = X.
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Proof. (i) implies (ii) since ⊆ is contained in Ω. To show (ii) implies (iii),

suppose that (ii) holds and assume domα  X. Choose x ∈ X \ domα and

y ∈ X \Xα (recall that d(α) = q) and let β be the mapping such that dom β =

domα ∪ {x}, β| domα = α and xβ = y. Then β ∈ PS(q) and α ⊆ β with α 6= β,

contradicting our supposition.

Finally, to show (iii) implies (i), suppose that domα = X and let β ∈ PS(q)

satisfy (α, β) ∈ Ω. Then by Theorem 3.1.2, we have

domα ⊆ dom β, Xα ⊆ Xβ and αβ−1 ∩ (domα× domα) ⊆ αα−1.

So dom β = X. For each x ∈ X, if xα = yβ for some y ∈ X, then xαβ−1 = y and

thus

(x, y) ∈ αβ−1 ∩ (domα× domα) ⊆ αα−1 = idX .

This follows that x = y, that is, xα = xβ and hence α = β. This shows that (i)

holds.

The corresponding result for ≤ is substantially different.

Theorem 3.3.3. Let α ∈ PS(q). Then α is maximal with respect to ≤ if and only

if g(α) < q.

Proof. Suppose that g(α) ≥ q. Then X \ domα 6= ∅. Choose x ∈ X \ domα

and y ∈ X \ Xα (recall that d(α) = q) and let β be the mapping such that

dom β = domα ∪ {x}, β| domα = α and xβ = y. Then β ∈ PS(q) and α ⊆ β

with α 6= β, Xβ = Xα ∪̇ {y} and g(α) = g(β). So |Xβ \Xα| = 1 and hence the

inequation in Theorem 2.3.10 is satisfied, that is, α = λβ for some λ ∈ PS(q).

Then (α, β) ∈ L and it follows that α ≤ β by Theorem 3.1.1, but α 6= β, so α is

not maximal. Conversely, suppose that g(α) < q and assume that α < β for some

β ∈ PS(q). Thus, by Theorem 3.1.1, we have α  β and, by Theorem 2.3.10

q ≤ max(g(β), |Xβ \Xα|) ≤ max(g(α), q) = q.

Therefore, g(β) ≤ g(α) < q and so |Xβ \Xα| = q. Consequently, since Xα ⊆ Xβ,

then

q = |(Xβ \Xα)β−1| = | dom β \ domα| ≤ g(α) < q,
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a contradiction. This shows that α is maximal.

As in many algebraic settings, it is interesting to know when α ∈ PS(q) lies

below some maximal element of PS(q).

Theorem 3.3.4. The following are equivalent for α ∈ PS(q).

(i) g(α) ≤ q,

(ii) α ≤ β for some β ∈ PS(q) maximal with respect to ≤,

(iii) α ⊆ β for some β ∈ PS(q) maximal with respect to ⊆,

(iv) (α, β) ∈ Ω for some β ∈ PS(q) maximal with respect to Ω.

Proof. Suppose that (i) holds. If g(α) < q, then α ≤ α and α is maximal

under ≤ by Theorem 3.3.3. Therefore, suppose that g(α) = q. Since d(α) = q,

we can write X \ Xα = A ∪̇B where |A| = |B| = q. Let θ : X \ domα → A

be any bijection and define β ∈ PS(q) by letting dom β = X, β| domα = α and

β|(X \ domα) = θ. Then g(β) = 0 and Xβ = Xα ∪̇A, so

q = |A| = max(g(β), |Xβ \Xα|) = max(g(α), q).

That is, (α, β) ∈ L and clearly α  β. Hence α < β where β is maximal with

respect to ≤ since g(β) = 0 < q.

Now suppose that (ii) holds: namely, suppose α ≤ β where g(β) = r < q.

Then α ⊆ β and d(β) = q, so we can write X \ Xβ = A ∪̇B where |A| = r and

|B| = q. Let θ : X \dom β → A be any bijection and define β+ ∈ PS(q) by letting

dom β+ = X, β+| dom β = β and β+|(X \ dom β) = θ. Then α ⊆ β ⊆ β+ where

β+ is maximal with respect to ⊆: that is, (iii) holds by Theorem 3.3.2.

Next, suppose that (iii) holds. Then α ⊆ β for some β ∈ PS(q) maximal with

respect to ⊆. By Theorem 3.3.2, β is maximal with respect to Ω. Since ⊆ is

contained in Ω, we deduce that (iv) also holds.

Finally, suppose that (iv) holds: that is, suppose (α, β) ∈ Ω where dom β = X,

and write

A = {x ∈ domα : xαβ−1 = x},

B = {x ∈ domα : xαβ−1 /∈ domα}.
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By the definition of Ω, if x ∈ domα and xα = yβ (possible since Xα ⊆ Xβ) then

either y ∈ domα (so y = x and x ∈ A) or y /∈ domα (so x ∈ B). It follows that

domα = A ∪̇B, Aα = Aβ and Bα = Cβ for some C ⊆ dom β \ domα. Note that

Xα = (A ∪ C)β and (A ∪ C) ∩ B = ∅. Therefore (A ∪ C)β ∩ Bβ = ∅ (since β

is injective). This follows that Xα ∩ Bβ = ∅, that is, Bβ ⊆ X \ Xα. So, since

dom β = X,

|B| = |Bα| = |Bβ| ≤ |X \Xα| = q.

Next let D = X \ (A ∪B ∪C) and observe that Dβ ∩Xα = Dβ ∩ (A ∪C)β = ∅.

Therefore

|Dβ| ≤ |X \Xα| = q.

Now Xβ = Aβ ∪̇Bβ ∪̇Cβ ∪̇Dβ and thus

(X \ domα)β = (X \ (A ∪B))β = Xβ \ (A ∪B)β = Cβ ∪Dβ.

Consequently

g(α) = |X \ domα| = |(X \ domα)β| = |Cβ|+ |Dβ| ≤ |Bα|+ q = q,

and so (i) holds.

Observe that, if p = q, then g(α) ≤ q for all α ∈ PS(q). Hence, in this case,

every α ∈ PS(q) is contained in some maximal element.

Theorem 3.3.5. If p > q, then PS(q) has no minimal element with respect to

≤,⊆ or Ω, and hence also no minimum element.

Proof. Suppose that p > q and let α ∈ PS(q). Since |X \ Xα| = q < p,

we have p = |Xα| = | domα| and we can write domα = A ∪̇B where |A| = p

and |B| = q. If γ = α|A, then d(γ) = |Bα| + d(α) = q, thus γ ∈ PS(q) and

clearly γ  α. Also, let C = X \ domα and λ = idA∪C , then d(λ) = |B| = q,

so λ ∈ PS(q) and γ = λα. Consequently, (γ, α) ∈ L and so γ < α by Theorem

3.1.1. Therefore, there is no minimal element under ≤, and hence none for ⊆ and

Ω (due to them containing ≤). Hence, there is also no minimum element under

each of these orders.
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When p = q, it is easy to see that ∅ is the minimum under ≤,⊆ and Ω. In this

case, we say α ∈ PS(q) is non-zero minimal with respect to an order � on PS(q)

if α is minimal among the non-zero elements of PS(q) under �.

Theorem 3.3.6. If p = q, then the following are equivalent for α ∈ PS(q).

(i) α is non-zero minimal with respect to Ω,

(ii) α is non-zero minimal with respect to ⊆,

(iii) α is non-zero minimal with respect to ≤,

(iv) | domα| = 1.

Proof. Since Ω contains ⊆, and ⊆ contains ≤, we have (i) implies (ii), and

(ii) implies (iii). To show that (iii) implies (iv), suppose that (iii) holds and

assume that | domα| > 1. Now, as in the proof of Theorem 3.3.5, if | domα| = p,

then we can write domα = A ∪̇B where |A| = p and |B| = q. If γ = α|A,

then d(γ) = |Bα| + d(α) = q, thus γ ∈ PS(q) and clearly γ  α. Also, if

X = A ∪̇B ∪̇C and λ = idA∪C , then d(λ) = |B| = q, so λ ∈ PS(q) and γ = λα

(since C = X \ domα). Consequently, (γ, α) ∈ L and so ∅ < γ < α by Theorem

3.1.1, contradicting (iii). On the other hand, if | domα| < p then g(α) = p. In

this case, choose a ∈ domα and write C = domα \ {a} (which is non-empty by

assumption). If β = α|C and λ = idC then β, λ ∈ PS(q) and β = λα. Therefore,

(β, α) ∈ L and clearly β  α. That is, ∅ < β < α, contradicting (iii) again.

Finally, to show (iv) implies (i), suppose that | domα| = 1, say domα = {x}.

Since Ω = Ω′ and by the definition of Ω′, if there exists β 6= ∅ such that (β, α) ∈ Ω,

then dom β = {x} and Xβ = {xα}. Hence α = β and so α is non-zero minimal

under Ω.

Recall that ≤ is properly contained in ⊆, and ⊆ is properly contained in Ω

on PS(q). Thus, it is interesting to consider the following problems: Are there

other partial orders lie between ≤ and ⊆, and between ⊆ and Ω on PS(q)? The

following two theorems answer this question.

Theorem 3.3.7. Let α, β ∈ PS(q). For any (α, β) in ⊆ \ ≤,

ρα,β = ≤ ∪ {(α, β)}
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is a minimal partial order on PS(q) containing ≤.

Proof. It is clear that a pair (α, β) in ⊆ \ ≤ always exists since ≤ is properly

contained in ⊆ on PS(q). Since ≤ is a partial order contained in ρα,β, we have

ρα,β is reflexive. To see that ρα,β is anti-symmetric, we let (γ, λ), (λ, γ) ∈ ρα,β. We

consider only the case that γ ≤ λ, (λ, γ) = (α, β), otherwise, it is easy to see that

γ = λ. In this case we have λ = α, γ = β, and so β ≤ α. It follows that β ⊆ α

(since ⊆ contains ≤), and hence α = β (since α ⊆ β). Therefore λ = γ. To see

that ρα,β is transitive, let (γ, λ), (λ, µ) ∈ ρα,β. It is clear that (γ, µ) ∈ ρα,β when

γ ≤ λ, λ ≤ µ, and if (γ, λ), (λ, µ) ∈ {(α, β)}, then γ = µ and thus (γ, µ) ∈ ρα,β
since ρα,β is reflexive. For the rest, we have either

γ ≤ λ, λ = α, µ = β or λ ≤ µ, γ = α, λ = β.

In the first case, we have γ ≤ α. If g(γ) < q, then γ is maximal under ≤, and

hence α = γ. This implies that (γ, µ) = (α, β) ∈ ρα,β. Otherwise, q ≤ g(γ) where

γ ⊆ α ⊆ β (since ⊆ contains ≤). Consequently, since

X \ dom γ = (X \ dom β) ∪̇ (dom β \ dom γ),

we have

q ≤ |X \ dom β| = g(β) or q ≤ | dom β \ dom γ| = |Xβ \Xγ|,

that is, q ≤ max(g(β), |Xβ \ Xγ|). Also, since g(β) ≤ g(γ) and |Xβ \ Xγ| ≤

d(γ) = q, we have

q ≤ max(g(β), |Xβ \Xγ|) ≤ max(g(γ), q),

that is (γ, β) ∈ L, and so γ ≤ β = µ. Therefore (γ, µ) ∈ ρα,β. For the latter, we

have β ≤ µ and hence α ⊆ β ⊆ µ. Like in the first case, if g(β) < q, then β = µ

and so (γ, µ) = (α, β) ∈ ρα,β. Otherwise, we have q ≤ g(β) ≤ g(α). Consequently,

since

X \ domα = (X \ domµ) ∪̇ (domµ \ domα),
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we have

q ≤ |X \ domµ| = g(µ) or q ≤ | domµ \ domα| = |Xµ \Xα|,

that is, q ≤ max(g(µ), |Xµ \ Xα|). Also, since g(µ) ≤ g(α) and |Xµ \ Xα| ≤

d(α) = q, we have

q ≤ max(g(µ), |Xµ \Xα|) ≤ max(g(α), q),

that is (α, µ) ∈ L, and so α ≤ µ. Therefore (γ, µ) = (α, µ) ∈ ρα,β as required. By

the definition of ρα,β, it is clear that

≤  ρα,β  ⊆,

and obviously, there is no other partial orders lie between ≤ and ρα,β. Therefore

ρα,β is a minimal partial order containing ≤.

For the following result, we sometimes write α ∼Ω β instead of (α, β) ∈ Ω for

convenience.

Theorem 3.3.8. For distinct x, y ∈ X, there is a partial order δx,y on PS(q) lies

strictly between ⊆ and Ω.

Proof. For distinct x, y in X, we write X = A ∪̇B ∪̇ {x} ∪̇ {y} where |A| = p

and |B| = q. Let θ : A ∪B → A be a bijection and define α, β ∈ PS(q) by

α =

 A ∪B x

A x

 , β =

 A ∪B x y

A y x


where α|(A ∪B) = θ = β|(A ∪B). Since y /∈ domα, we have

αβ−1 ∩ (domα× domα) = idA∪B ⊆ iddomα = αα−1.

That is, (α, β) ∈ Ω, but α 6⊆ β since xα 6= xβ. Let

Tx,y = {(γ, β) : γ ∈ PS(q) and γ ⊆ α} and δx,y = ⊆ ∪ Tx,y.

Since (α, β) ∈ Tx,y\ ⊆, we have Tx,y 6= ∅ and ⊆ is properly contained in δx,y.

Moreover, for each pair (γ, β) in Tx,y, γ ⊆ α. It follows that γ ∼Ω α ∼Ω β
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(since Ω contains ⊆), that is, Ω contains Tx,y. For y′ ∈ X, x 6= y′ 6= y, we write

X = A′ ∪̇B′ ∪̇ {x} ∪̇ {y′} where |A′| = p and |B′| = q. Then define α′, β′ ∈ PS(q)

in the same way as α and β. We have (α′, β′) ∈ Ω\ ⊆ and also, (α′, β′) /∈ Tx,y since

β 6= β′. It follows that ⊆ ∪ Tx,y  Ω, that is δx,y is properly contained in Ω. To

see that δx,y is a partial order, we observe that δx,y contains a partial order ⊆, then

it is reflexive. To show that δx,y is anti-symmetric, let (λ, µ), (µ, λ) ∈ δx,y. If both

of these pairs belong to Tx,y, then β ⊆ α, a contradiction since dom β * domα.

Also, if λ ⊆ µ and (µ, λ) ∈ Tx,y, then β ⊆ µ ⊆ α and we get a contradiction

again and, similarly, this also happen when µ ⊆ λ and (λ, µ) ∈ Tx,y. It follows

that both (λ, µ), (µ, λ) belong to ⊆, and hence λ = µ. To show δx,y is transitive,

let (λ, µ), (µ, θ) ∈ δx,y. Like before, if (λ, µ), (µ, θ) ∈ Tx,y, then β ⊆ α, that is,

we get a contradiction again. So we consider only the following three cases. If

both (λ, µ), (µ, θ) belong to ⊆, then λ ⊆ θ and so (λ, θ) ∈ δx,y. If λ ⊆ µ and

(µ, θ) ∈ Tx,y, then λ ⊆ µ ⊆ α and β = θ. Thus (λ, θ) ∈ Tx,y ⊆ δx,y. Finally,

if µ ⊆ θ and (λ, µ) ∈ Tx,y, then λ ⊆ α and β = µ ⊆ θ. Since dom β = X, we

have β is maximal under ⊆, so β = θ and this implies that (λ, θ) ∈ Tx,y ⊆ δx,y as

required.

3.4 Meets and Joins

In this section, we study the existence of a meet α ∧ β and a join α ∨ β for

α, β in the semigroups I(X), PS(q) and R(q) for each of the orders ≤ and ⊆. To

do this, we first define the equaliser of α, β ∈ I(X) (compare [14] p 416 for linear

transformations) as follows:

E(α, β) = {x ∈ domα ∩ dom β : xα = xβ}.

The next result may be well-known, but we do not know a reference in the litera-

ture (recall that ⊆ equals ≤ on I(X)).

Theorem 3.4.1. Let α, β ∈ I(X) and E = E(α, β). Then, under ⊆, α ∧ β =

α|E = β|E.
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Proof. Clearly α|E = β|E ⊆ α, β. If γ ⊆ α, β, then for each x ∈ dom γ,

xα = xγ = xβ and this follows that dom γ ⊆ E. Also, γ ⊆ α|E, then we have

α ∧ β = α|E.

Theorem 3.4.2. Let α, β ∈ PS(q) and E = E(α, β). Then γ ⊆ α, β for some

non-empty γ ∈ PS(q) if and only if

(i) E 6= ∅, and

(ii) max(|Xα \ Eα|, |Xβ \ Eβ|) ≤ q.

Moreover, when this occurs, α|E (equals β|E) is the non-empty meet of α, β

under ⊆.

Proof. Suppose that ∅ 6= γ ⊆ α, β in PS(q). Then ∅ 6= dom γ ⊆ domα∩dom β

and xα = xγ = xβ for all x ∈ dom γ. That is, ∅ 6= dom γ ⊆ E and this implies

Xγ = Eγ. Now Eγ = (E ∩ dom γ)γ ⊆ Eα ⊆ Xα and so

|Xα \ Eα| ≤ |Xα \ Eγ| = |Xα \Xγ| ≤ |X \Xγ| = q.

Similarly, |Xβ \ Eβ| ≤ q and hence the conditions hold. Conversely, if the con-

ditions hold then γ = α|E = β|E is a non-empty element of I(X) with domain

E = E(α, β) and γ ⊆ α, β. Moreover, since Xγ = Eγ = Eα ⊆ Xα, we have

X \Xγ = (X \Xα) ∪̇ (Xα \ Eα)

and it follows that d(γ) = q since d(α) = q and |Xα\Eα| ≤ q. That is, γ ∈ PS(q).

Finally, as shown in the proof of Theorem 3.4.1, we have α ∧ β = α|E.

Remark 3.4.3. Suppose S is any inverse subsemigroup of I(X). If α ≤ β in S,

then α = γβ for some γ ∈ E(S). That is, α = idA ◦β for some A ⊆ X and we

deduce that α ⊆ β. On the other hand, if α ⊆ β in the inverse semigroup R(q) =

{α ∈ PS(q) : g(α) = q}, then α = iddomα ◦β, where iddomα is an idempotent in

R(q), and so α ≤ β in R(q). That is, ≤ = ⊆ on R(q).

Of course, when we turn to R(q), we expect a further condition to be needed

in order to characterise meets in R(q) under ⊆.
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Theorem 3.4.4. Let α, β ∈ R(q) and E = E(α, β). Then γ ⊆ α, β for some

non-empty γ ∈ R(q) if and only if

(i) E 6= ∅,

(ii) max(|Xα \ Eα|, |Xβ \ Eβ|) ≤ q, and

(iii) max(| domα \ E|, | dom β \ E|) ≤ q.

Moreover, when this occurs, α|E (equals β|E) is the non-empty meet of α, β

under ⊆.

Proof. Suppose that ∅ 6= γ ⊆ α, β ∈ R(q). Since R(q) ⊆ PS(q), Theorem

3.4.2 implies that (i) and (ii) hold. Since dom γ ⊆ E ⊆ domα, we have

| domα \ E| ≤ | domα \ dom γ| ≤ |X \ dom γ| = q.

Similarly, | dom β\E| ≤ q and hence (iii) holds. Conversely, suppose the conditions

hold. By Theorem 3.4.2 again, (i) and (ii) imply that γ = α|E = β|E is a non-

empty element of PS(q) and it is also the meet of α, β in PS(q) under ⊆. Also,

since dom γ = E ⊆ domα and g(α) = q, we have

X \ dom γ = (X \ domα) ∪̇ (domα \ E).

Then (iii) implies that g(γ) = q, hence γ ∈ R(q).

From Theorem 3.1.1, we have that ≤ equals ⊆ ∩ L on PS(q), where L is the

relation defined on PS(q) by

(α, β) ∈ L if and only if PS(q)1α ⊆ PS(q)1β.

It is equivalent to say that

(α, β) ∈ L if and only if α = λβ for some λ ∈ PS(q)1.

Hence, by using Theorem 2.3.10, we can simplify the relation L by (α, β) ∈ L if

and only if

α = β or Xα ⊆ Xβ and q ≤ max(g(β), |Xβ \Xα|) ≤ max(g(α), q).
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Note that if α ∧ β = ∅ in PS(q) under ≤, then p = q. In this case, if

x ∈ E = E(α, β) and xα = xβ = y then xy ∈ PS(q) and xy ⊆ α, β. Also, since

|Xα \ {y}| = | domα \ {x}| and g(α) = |X \ domα|,

we have

q = p = max(g(α), |Xα \ {y}|) ≤ max(g(xy), q) = p = q.

Similarly,

q = max(g(β), |Xβ \ {y}|) ≤ max(g(xy), q) = q.

That is, xy ≤ α, β, so xy ≤ α∧β = ∅, a contradiction. In other words, if α∧β = ∅

then E = ∅ and so α|E = β|E = ∅.

As usual, if � is a partial order on a set S, we say a, b ∈ S are non-comparable

if a 6� b and b 6� a.

Theorem 3.4.5. Suppose that α, β ∈ PS(q) are non-comparable under ≤ and let

E = E(α, β). Then γ ≤ α, β for some non-empty γ ∈ PS(q) if and only if there

exists a non-empty Y ⊆ E such that

(i) max(|Xα \ Y α|, |Xβ \ Y β|) ≤ q, and

(ii) q ≤ max(g(α), |Xα \ Y α|) and q ≤ max(g(β), |Xβ \ Y β|).

In this event, γ = α|Y = β|Y .

Proof. Suppose that ∅ 6= γ ≤ α, β and let Y = dom γ. Then γ ⊆ α, β and so

xα = xγ = xβ for all x ∈ Y . That is, ∅ 6= Y ⊆ E and Xγ = Y γ = Y α = Y β.

Since d(γ) = q, we see that

|Xα \ Y α| ≤ |X \ Y α| ≤ |X \Xγ| = q

and likewise |Xβ \ Y β| ≤ q, so (i) holds. Also, since ≤ equals ⊆ ∩ L, we have

(γ, α) ∈ L and (γ, β) ∈ L and these imply

q ≤ max(g(α), |Xα \ Y α|) and q ≤ max(g(β), |Xβ \ Y β|),

that is (ii) holds.
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Conversely, suppose the conditions hold. We write Y = {yi} and E = Y ∪̇ {ej}

(possibly J = ∅). We also write

α =

 yi ej um

ai aj am

 , β =

 yi ej vn

ai aj bn

 , γ =

 yi

ai

 (1)

Clearly, γ ⊆ α, β and thus g(α) ≤ g(γ) and g(β) ≤ g(γ). By condition (i),

|Xα \Xγ| = |J |+ |M | = |Xα \ Y α| ≤ q,

thus d(γ) = |J |+ |M |+ d(α) = q and so γ ∈ PS(q). These also imply

max(g(α), |Xα \Xγ|) ≤ max(g(γ), q).

Hence, the above and condition (ii) imply that (γ, α) ∈ L and similarly (γ, β) ∈ L.

Thus, we have shown that γ ≤ α, β and, we also see that γ = α|Y = β|Y .

Corollary 3.4.6. Suppose that α, β ∈ PS(q) are non-comparable under ≤ and let

E = E(α, β). Then α∧β exists in PS(q) under ≤ and it is non-empty if and only

if E is non-empty and α, β satisfy conditions

(i) max(|Xα \ Eα|, |Xβ \ Eβ|) ≤ q, and

(ii) q ≤ max(g(α), |Xα \ Eα|) and q ≤ max(g(β), |Xβ \ Eβ|).

In this case α ∧ β = α|E = β|E.

Proof. Suppose that α ∧ β = γ ∈ PS(q) and it is non-empty. Then γ ≤ α, β.

Thus, Theorem 3.4.5 implies that there exists a non-empty Y = dom γ ⊆ E and

α and β satisfy (i) and (ii) in Theorem 3.4.5. So we can write α, β as in (1) in

Theorem 3.4.5. If g(γ) < q, then Theorem 3.3.3 implies that γ is maximal under

≤ and so γ = α = β, contradicting the supposition. Hence g(γ) ≥ q. If there

exists e0 ∈ E \ Y for some 0 ∈ J , we can define γ′ ∈ PS(q) by

γ′ =

 yi e0

ai a0

 .

Then γ ⊆ γ′ ⊆ α, β and |Xγ′ \Xγ| = 1, and we see that

g(γ) = |J |+ |M |+ g(α) (and this implies |J |+ |M | ≥ q or g(α) ≥ q),

g(γ′) = |J \ {0}|+ |M |+ g(α).
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Thus, if |J |+ |M | ≥ ℵ0 then g(γ) = g(γ′) ≥ g(α); and if |J |+ |M | < ℵ0 then γ ≤ α

implies q ≤ max(g(α), |J | + |M |), so g(α) ≥ q and hence g(γ) = g(γ′) = g(α).

Since q ≤ g(γ) , we have g(γ′) = g(γ) ≥ q in both cases. Therefore,

q ≤ g(γ′) = max(g(γ′), 1) ≤ max(g(γ), q),

that is, (γ, γ′) ∈ L. Next, since γ ≤ α, we have (γ, α) ∈ L and so

q ≤ max(g(α), |J |+ |M |).

This implies

q ≤ max(g(α), |J \ {0}|+ |M |).

We also recall that |Xα \Xγ′| ≤ |X \Xγ′| = q and g(α) ≤ g(γ′) (since γ′ ⊆ α).

Then we have

q ≤ max(g(α), |J \ {0}|+ |M |) = max(g(α), |Xα \Xγ′|) ≤ max(g(γ′), q),

that is, (γ′, α) ∈ L and likewise we can show (γ′, β) ∈ L. In other words, we have

shown that γ < γ′ ≤ α, β, and this contradicts to γ = α ∧ β. Hence, it follows

that Y = E, that is, α and β satisfy (i) and (ii).

Conversely, suppose E is non-empty and α and β satisfy (i) and (ii). Then,

by Theorem 3.4.5, γ ≤ α, β where γ = α|E = β|E ∈ PS(q). Moreover, if

γ ≤ γ′ ≤ α, β for some γ′ ∈ PS(q) then, γ ⊆ γ′ ⊆ α, β and thus xγ′ = xα = xβ

for all x ∈ dom γ′, so E = dom γ ⊆ dom γ′ ⊆ E, and it follows that γ = γ′. That

is, γ = α ∧ β.

In effect, by Theorem 3.3.3, the next result determines when two elements of

PS(q), which are maximal under ≤, possess a meet under ≤.

Corollary 3.4.7. Suppose that α, β ∈ PS(q) are non-comparable under ≤ and let

E = E(α, β). If g(α) < q and g(β) < q, then α ∧ β exists in PS(q) under ≤ if

and only if |Xα \ Eα| = q = |Xβ \ Eβ|.

Proof. Suppose that g(α), g(β) < q. If α ∧ β exists under ≤, then Theorem

3.4.5 (ii) implies that q ≤ |Xα \ Eα| which is at most q by Theorem 3.4.5 (i).

Thus |Xα \ Eα| = q and likewise g(β) < q implies |Xβ \ Eβ| = q.
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Conversely, if |Xα \ Eα| = q = |Xβ \ Eβ| then both (i) and (ii) in Theorem

3.4.5 hold for E = E(α, β), so α ∧ β exists.

Example 3.4.8. Suppose that X = M ∪̇N ∪̇ {b, c}, where |M | = p, |N | = q and

α =

 M ∪N b

M b

 , β =

 M ∪N c

M c


where E = E(α, β) = M ∪ N . Then d(α) = q = d(β), so α, β ∈ PS(q) and

α|E = β|E ∈ PS(q). But, |Xα \ Eα| = 1 = |Xβ \ Eβ| and g(α) = 1 = g(β), so

E satisfies condition (i) in Theorem 3.4.5 but not condition (ii), and hence α ∧ β

does not exist in (PS(q),≤). That is, although α|E may be the greatest lower

bound under ⊆, that may not be true for ≤ since ≤ 6= ⊆ on PS(q).

Theorem 3.4.9. Let α, β ∈ I(X) under ⊆. Then α, β ⊆ γ for some γ ∈ I(X) if

and only if

(i) domα ∩ dom β ⊆ E(α, β) and

(ii) (domα \ dom β)α ∩ (dom β \ domα)β = ∅.

Moreover, in this case, α ∨ β exists and equals α ∪ β.

Proof. Suppose that α, β ⊆ γ ∈ I(X). If x ∈ domα ∩ dom β then xα = xγ =

xβ, and so x ∈ E(α, β). On the other hand, if there exist y ∈ domα \ dom β and

z ∈ dom β \ domα such that yα = zβ, then yγ = zγ. Since γ is injective, this

implies that y = z, a contradiction.

Conversely, suppose that the conditions hold and let γ = α∪β (as sets). Then

(i) says that γ is a mapping and (ii) says it is injective, so γ ∈ I(X) and clearly it

is an upper bound of {α, β}. Moreover, if (i) and (ii) hold, then γ = α ∨ β, since

α, β ⊆ λ ∈ I(X) implies α, β ⊆ α ∪ β ⊆ λ (as sets) where α ∪ β ∈ I(X).

Like before, the result for joins in PS(q) under ⊆ involves an extra condition.

Theorem 3.4.10. Let α, β ∈ PS(q) under ⊆. Then α, β ⊆ γ for some γ ∈ PS(q)

if and only if the following conditions hold.
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(i) domα ∩ dom β ⊆ E(α, β),

(ii) (domα \ dom β)α ∩ (dom β \ domα)β = ∅, and

(iii) |X \ (Xα ∪Xβ)| = q.

Moreover, in this case, α ∨ β exists and equals α ∪ β.

Proof. Suppose that α, β ⊆ γ in PS(q). Then, conditions (i) and (ii) hold

since PS(q) ⊆ I(X). Since Xα ∪Xβ ⊆ Xγ, we also have

q = |X \Xγ| ≤ |X \ (Xα ∪Xβ)| ≤ |X \Xα| = q.

Hence (iii) holds. Conversely, suppose (i), (ii) and (iii) hold and let γ = α ∪ β.

Then (i) and (ii) imply that γ ∈ I(X), and (iii) implies that

d(γ) = |X \Xγ| = |X \ (Xα ∪Xβ)| = q,

that is, γ ∈ PS(q). Since γ = α ∪ β, it follows that α, β ⊆ γ. Finally, as in

Theorem 3.4.9, we can show that α ∨ β = γ.

Theorem 3.4.11. Let α, β ∈ R(q). Then α, β ⊆ γ for some γ ∈ R(q) if and only

if the following conditions hold.

(i) domα ∩ dom β ⊆ E(α, β),

(ii) (domα \ dom β)α ∩ (dom β \ domα)β = ∅,

(iii) |X \ (Xα ∪Xβ)| = q, and

(iv) |X \ (domα ∪ dom β)| = q.

Moreover, when this occurs, α ∪ β is the join of α, β under ⊆.

Proof. Suppose that α, β ⊆ γ in R(q). Since R(q) ⊆ PS(q), Theorem 3.4.10

implies that (i), (ii) and (iii) hold. Since domα ∪ dom β ⊆ dom γ, we have

q = |X \ dom γ| ≤ |X \ (domα ∪ dom β)| ≤ |X \ domα| = q.

Hence (iv) holds. Conversely, suppose that the conditions hold. By Theorem

3.4.10 again, (i), (ii) and (iii) imply that γ = α ∪ β is an element of PS(q) and it

is also a join of α, β under ⊆. Also, (iv) implies that

g(γ) = |X \ dom γ| = |X \ (domα ∪ dom β)| = q,
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so γ ∈ R(q).

To characterize joins in PS(q) under ≤, we need two lemmas. In effect, the

first provides a description of ≤ in terms of ⊆ which differs from that in Theorem

3.1.1.

Lemma 3.4.12. Suppose that α, β ∈ PS(q) and α 6= β. Then α < β if and only if

α  β and g(α) ≥ q.

Proof. If α < β, then α  β and (α, β) ∈ L. Therefore, domα  dom β and

Xα ⊆ Xβ, and hence

X \ domα = (X \ dom β) ∪̇ (dom β \ domα), and (2)

Xβ = [(dom β \ domα)β] ∪̇ [(domα)β].

Now, (domα)β = (domα)α = Xα (since α  β) and so

|Xβ \Xα| = |(dom β \ domα)β| = | dom β \ domα|. (3)

By Theorem 2.3.10, we also know that

q ≤ max(g(β), |Xβ \Xα|) ≤ max(g(α), q).

Hence, if max(g(β), |Xβ \Xα|) = g(β), then q ≤ g(β) ≤ g(α) by (2); and if

max(g(β), |Xβ \Xα|) = |Xβ \Xα|, then

q ≤ |Xβ \Xα| = | dom β \ domα| ≤ |X \ domα| = g(α)

by (3). That is, the conditions hold.

Conversely, suppose that the conditions hold. Then (2) and (3) hold (since

α  β), max(g(α), q) = g(α) ≥ g(β) and |Xβ \Xα| ≤ |X \Xα| = d(α) = q. Since

g(α) ≥ q, (2) implies that |X \ dom β| ≥ q or | dom β \ domα| ≥ q. By this result

together with (3), we deduce that

g(β) = |X \ dom β| ≥ q or |Xβ \Xα| = | dom β \ domα| ≥ q.

Consequently,

q ≤ max(g(β), |Xβ \Xα|) ≤ max(g(α), q),

and so (α, β) ∈ L. By Theorem 3.1.1, it follows that α < β.
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Lemma 3.4.13. Suppose that α, β ∈ PS(q) are non-comparable under ≤. Then

α, β ≤ γ for some γ ∈ PS(q) if and only if

(i) α, β ⊆ θ for some θ ∈ PS(q), and

(ii) g(α) ≥ q and g(β) ≥ q.

Proof. If α, β ≤ γ ∈ PS(q), then α, β ⊆ γ, so (i) holds. In addition, if

g(α) < q, then α is maximal under ≤ (by Theorem 3.3.3). Hence α ≤ γ implies

α = γ and so β ≤ α, contradicting the supposition. Therefore, g(α) ≥ q and

likewise g(β) ≥ q. That is, (ii) holds.

Conversely, suppose that (i) and (ii) hold. Then (i) and Theorem 3.4.10 imply

that π = α ∪ β ∈ PS(q) is the join of {α, β} under ⊆. So, if α = π, then β  α

(since they are non-comparable). Thus, (ii) and Lemma 3.4.12 imply β < α, which

contradicts the supposition. Therefore, α  π and g(α) ≥ q, so α < π by Lemma

3.4.12 again. Similarly, β < π and so α, β have an upper bound in PS(q) under

≤.

Example 3.4.14. Surprisingly, (i) and (ii) in Lemma 3.4.13 do not ensure that α∪β

equals α∨β in PS(q) under≤. For example, writeX = A ∪̇B ∪̇C ∪̇D ∪̇ {a} where

|A| = p = |X| and |B| = |C| = |D| = q. Let

α =

 A ∪B

A

 ∪ idC , β =

 A ∪B

A

 ∪ idD

where xα = xβ for all x ∈ A∪B. Then α, β ∈ PS(q) and they are non-comparable

under ≤ (since α 6⊆ β and β 6⊆ α). If θ = α ∪ β, then α, β ⊆ θ ∈ PS(q) (since

d(θ) = |B| = q), hence α and β satisfy (i). Also, g(α) = |D| = q = |C| = g(β),

and hence α and β satisfy (ii). By Lemma 3.4.12, α, β < θ′ = θ ∪ id{a} ∈ PS(q),

but θ 6≤ θ′ since g(θ) = 1 6≥ q, and thus α ∪ β does not equal α ∨ β.

Theorem 3.4.15. Suppose that α, β ∈ PS(q) are non-comparable under ≤. Then

α ∨ β exists if and only if

(i) α, β < θ for some θ ∈ PS(q), and
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(ii) either X = domα ∪ dom β or |X \ (domα ∪ dom β)| ≥ q.

Moreover, when this occurs, α ∨ β equals α ∪ β.

Proof. Suppose that α∨β exists under ≤ and write γ = α∨β. Then α, β < γ

(since α and β are non-comparable), so (i) holds. Consequently, α, β  γ and so

Theorem 3.4.10 implies that π = α∪ β ∈ PS(q) is the join of {α, β} under ⊆ and

this follows that π ⊆ γ. Now, to prove (ii), suppose domα ∪ dom β  X. Choose

a ∈ X \ (domα ∪ dom β) = X \ dom π and, for any x ∈ X\Xπ (non-empty since

d(π) = q), we let

µx =

 dom π a

Xπ x


where µx| domπ = π. Then µx ∈ PS(q) since d(µx) = |X \ Xπ| = d(π) = q.

Clearly, α ⊆ µx and α 6= µx (since a ∈ domµx \ domα). Therefore, using the

fact that α < γ, Lemma 3.4.12 implies that g(α) ≥ q and thus α < µx by Lemma

3.4.12 again. Similarly, β < µx. It follows that γ ≤ µx for all x ∈ X \ Xπ since

γ = α ∨ β under ≤. If γ = µx for all x ∈ X \Xπ, then µx = µy for all x 6= y in

X \ Xπ, a contradiction. Hence, γ < µz for some z ∈ X \ Xπ, and so γ is not

maximal. Therefore, by Theorem 3.3.3,

q ≤ g(γ) ≤ g(π) = |X \ (domα ∪ dom β)|

since π ⊆ γ, and so we have proved (ii).

Conversely, suppose the conditions hold. Then (i) implies that α, β ⊆ θ since

⊆ contains ≤. Therefore, Lemma 3.4.13 (i) and Theorem 3.4.10 imply (say) π =

α ∪ β ∈ PS(q) is the join of {α, β} under ⊆ and we claim that it is also the join

under ≤. In addition, (i) and Lemma 3.4.12 imply that g(α), g(β) ≥ q. Now,

if π = α, then β  α (since they are non-comparable) and so β < α by Lemma

3.4.12, which contradicts the supposition. Thus, α  π and this follows that α < π

by Lemma 3.4.12 again. Likewise, we have β < π. Finally, if α, β ≤ µ for some

µ ∈ PS(q), then α, β ⊆ µ and so π ⊆ µ. Since (ii) holds, if X = domα ∪ dom β,

then X = dom π and so π = µ. Otherwise, if |X \ (domα ∪ dom β)| ≥ q, then
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g(π) ≥ q and so π < µ by Lemma 3.4.12. In other words, π is the join of α and β

in PS(q) under ≤.


