Chapter 4

Automorphisms and Isomorphisms of R(q)

In [13] Theorem 3, Sullivan showed that Aut PS(¢q) and G(X) are isomorphic
when p = ¢. Later, in [12] Theorem 2, Pinto and Sullivan showed that this
is also true when p > ¢. Here, we first consider the problem of describing all

automorphisms of
R(q) ={a € PS(q) : g(a) = q},

the largest regular (and also inverse) subsemigroup of PS(q).

4.1 Automorphisms

From Example 2.4.3, PS(q) is G(X)-normal and consequently the same is
true for R(q).

Lemma 4.1.1. R(q) is G(X)-normal.

Proof. Let h € G(X), o € R(q). Since R(q) € PS(q) and PS(q) is
G(X)-normal, we have hah™' € PS(q). To show that hah™ € R(q), consider
dom hah™ = dom ha = (XhNdoma)h™! = (doma)h™!. So

g(hah™) = |X \ (doma)h | = |(X \ doma)h™!| = ¢

since a € R(q). Therefore hah™' € R(q), that is, R(q) is G(X)-normal. u

Levi showed in [6] that every automorphism of a G(X)-normal subsemigroup
of P(X) is inner. Then by lemma 4.1.1, we have ¢ is inner for all ¢ € Aut R(q),
that is there exists ¢ € G(X) such that ap = gag™! for all @ € R(g). The next

result gives more details on Aut R(q).
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Lemma 4.1.2. For each ¢ € Aut R(q), there exists a unique v € G(X) such that

ap =y tay for all a € R(q) and, in this event, we write v = 7,.

Proof. Let ¢ € Aut R(q). Then ¢ is inner, so there exists v € G(X) such
that ap = v lay for all a € R(q). Suppose there exists p € G(X) such that
v lay = ap = ptap for all @ € R(q). Let x € X and write X = AUBU{x}
where |A| = p and |B| = ¢. If a =id4 and § = ida (), then «, 8 € R(q). This
implies that

Ay = Xvtay = Xptap = Ap
and

(AU{z})y = X718y = Xp~ ' Bp = (AU{z})p.

Since v and p are injective, we have
AyU{ay} = ApU{au}

where Ay = Au. Thus xy = zp for all x € X, that is, v = pu. ]

The proof of the next result is similar to that for [12] Theorem 2.

Theorem 4.1.3. Aut R(q) and G(X) are isomorphic.

Proof. Define 0 : Aut R(¢q) — G(X) by ¢ — 7, the unique permutation on X
such that ap = 7y, for all @ € R(q) (possible by Lemma 4.1.2). To show 6 is
a homomorphism, let ¢, 9 € Aut R(q). Then for all & € R(q), we have

a(ey) = ale)y = (15 ) = 75 (15 ave ) 1w = (T )~ (e )-

Thus v,y = Y7y by the uniqueness of 7, (Lemma 4.1.2). So 6 is a homomor-
phism. To show 6 is surjective, let A € G(X) and define

¢ : R(q) — R(q) by ar Ata\

Since R(q) is G(X)-normal, we have ¢ is a well-defined automorphism of R(q).
Thus v, = A, so (¢)§ = 7, = A, that is, 6 is onto. Finally, if 7, = -, then
ap = vgla% = 'yl;lozw, = a) for all o € R(q), that is, ¢ = 1 and therefore 6 is

one-to-one. [ ]
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4.2 Isomorphisms

In what follows, we sometimes write R(X,p, q) in place of R(q) to highlight
the underlying set X and its cardinal p. Since R(X, p, q) played an important role
in both [4] and [12], it is natural to ask whether any of the semigroups R(X, p, q)
are isomorphic for different cardinals p and ¢. To answer this question, we first

need a result for R(q) which corresponds to [12] Lemma 1 for PS(q).

Lemma 4.2.1. If o, 5 € R(q) then the following are equivalent.
(i) Xa C X7,
(i) for each v € R(q), By = [ implies ay = .
Proof. If Xav C X3 and By = 3 for some v € R(q), then Xa C X3 C dom~y
and | X = idxs. Hence (za)y = za for each za € Xa C X3, so ay = .
Conversely, suppose there exists y = xa ¢ X3 = B say. Then idp € R(q) and

B oidg = (B but yidg # y; that is, a oidg # « and hence the condition does not
hold. ]

Corollary 4.2.2. Suppose that |X| =p > q > Rg and |Y]| =7 > s > Xy, If
v R(X,p,q) — R(Y,r,s) is an isomorphism then, for each o, € R(X,p,q),
Xa C XG if and only if Y(ap) C Y (By).

Proof. Suppose that o, € R(X,p,q). Then, since ¢ is an isomorphism,
Lemma 4.2.1 provides the following equivalences.
Xa C X3 <= foreachy € R(X,p,q), fy=0 implies ay = a,
<= for each v € R(X,p,q), Bp.vp = By implies ap.yp = ap,
< for each v € R(Y,r,s), Bp.y = Bp implies ap.y = ayp,

= Y(ayp) CY(Byp).

Therefore we have proved the corollary. ]
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Theorem 4.2.3. The semigroups R(X,p,q) and R(Y,r,s) are isomorphic if and
only if p = r and ¢ = s. Moreover, for each isomorphism ¢ : R(X,p,q) —

R(Y,r,s), there is a bijection v : X — Y such that ap = v~}

R(X,p,q).

avy for each o €

Proof. We assume that there is an isomorphism ¢ : R(X,p,q) — R(Y,r,s)

and write
U={Xa:a€R(X,pq}, V={YB:B€RY,rs)}

Let I' : U — V be defined by (Xa)I' = Y (o). Then, by Corollary 4.2.2, I" is an
order-monomorphism: that is, I' is injective and A C B if and only if AI' C BI'
for all A, B € U. Next, if C' =Y for some 3 € R(Y,r,s), then 3 = ayp for some
a € R(X,p,q) (since ¢ is onto). Thus (Xa)[' =Y (ap) =Y = C, so I is onto.
In fact, if

B(X,q) ={AC X:[X\A[=q}, B(Y,s)={BCY:|Y\B|=s}

then U = B(X,q) and V = B(Y, s), since id4 € R(X,p,q) and idg € R(Y,r,s) for
all A € B(X,q) and B € B(Y,s). That is, I' is an order-isomorphism from B(X, q)
onto B(Y,s). Thus by Lemma 2.4.8, there exists a bijection v : X — Y such that
AT = Ay for all A € B(X,q), so p =r. Now we aim to show ap = v tay for each
a € R(X,p,q). Clearly this holds if & = () (in this case, p = ¢). So suppose a # ()
and note that dom ay = dom « since domy = X. Let z € dom « and write X =
CUDU{z} where |C| = p and |D| = ¢. Then  =ide, A = idcuay € R(X,p, q).
Let A= Xf and B = X\, we have A, B € B(X,q), B\ A= XX\ X3 ={z} and
Y((Aa)p) \ Y ((Ba)e) = Y((Ap)(a)) \ Y((Be)(ap))

Y (Ap) \ Y(Be))(ap)

(XN (X)) ()
= (BT'\ AT)(ap)

(B \ A7) (ap)

(B\ A)v(ayp)

)

= {z}y(ap
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On the other hand, we see that

Y((Aa)p) \Y((Ba)p) = (X(Aa))I'\ (X (Be))T
= (X(Qa))y \ (X(Ba))y
= (XA\ XF)ay

= {z}ay.

Thus {x}y(ap) = {z}ay for all x € dom a. We now aim to show that dom(y(ay))
= dom(ay). To do this, we first note that, « € R(X, p, ¢) implies ™! € R(X, p, q)
since d(a™!) = g(a) = g and g(a™!) = d(a) = q. Tt follows that doma = Xa™! €
U = B(X,q). Also, since ¢ is an isomorphism and R(X,p,q) and R(Y,r,s) are
inverse semigroups, we have (ap)™' = a'p. Thus, (doma)y = (Xa ')y =
(Xa ™) =Y (atp) = dom(ayp), that is, dom a = (dom(ap))y~!. Consequently,
together with dom~y = X and X+ =Y, we have

dom(ay) = dom a = (dom(ap))y ™ = (XN dom(ap))y " = dom(y(ay)).

Therefore y(ap) = ay and so ap = v 'ay. Finally, since ap € R(Y,r,s), we
have s = [V \ Y(ag)| = [V \ Y9~ laq] = | X7\ Xaq| = [(X \ Xa)| = ¢
Conversely, if p = r and ¢ = s, then Theorem 2.4.7 implies that, there is
an isomorphism ¢ : PS(X,p,q) — PS(Y,r,s). Recall that every elements in
R(X,p,q) and R(Y,r,s) are all regular, thus, when restrict ¢ to R(X,p,q) we
have (R(X,p,q))p = R(Y,r,s) since ¢ and ¢! preserve the regularity. Therefore
R(X,p,q) and R(Y,r,s) are isomorphic. m



