
Chapter 4

Automorphisms and Isomorphisms of R(q)

In [13] Theorem 3, Sullivan showed that Aut PS(q) and G(X) are isomorphic

when p = q. Later, in [12] Theorem 2, Pinto and Sullivan showed that this

is also true when p > q. Here, we first consider the problem of describing all

automorphisms of

R(q) = {α ∈ PS(q) : g(α) = q},

the largest regular (and also inverse) subsemigroup of PS(q).

4.1 Automorphisms

From Example 2.4.3, PS(q) is G(X)-normal and consequently the same is

true for R(q).

Lemma 4.1.1. R(q) is G(X)-normal.

Proof. Let h ∈ G(X), α ∈ R(q). Since R(q) ⊆ PS(q) and PS(q) is

G(X)-normal, we have hαh−1 ∈ PS(q). To show that hαh−1 ∈ R(q), consider

domhαh−1 = domhα = (Xh ∩ domα)h−1 = (domα)h−1. So

g(hαh−1) = |X \ (domα)h−1| = |(X \ domα)h−1| = q

since α ∈ R(q). Therefore hαh−1 ∈ R(q), that is, R(q) is G(X)-normal.

Levi showed in [6] that every automorphism of a G(X)-normal subsemigroup

of P (X) is inner. Then by lemma 4.1.1, we have ϕ is inner for all ϕ ∈ Aut R(q),

that is there exists g ∈ G(X) such that αϕ = gαg−1 for all α ∈ R(q). The next

result gives more details on Aut R(q).
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Lemma 4.1.2. For each ϕ ∈ Aut R(q), there exists a unique γ ∈ G(X) such that

αϕ = γ−1αγ for all α ∈ R(q) and, in this event, we write γ = γϕ.

Proof. Let ϕ ∈ Aut R(q). Then ϕ is inner, so there exists γ ∈ G(X) such

that αϕ = γ−1αγ for all α ∈ R(q). Suppose there exists µ ∈ G(X) such that

γ−1αγ = αϕ = µ−1αµ for all α ∈ R(q). Let x ∈ X and write X = A ∪̇B ∪̇ {x}

where |A| = p and |B| = q. If α = idA and β = idA ∪̇ {x}, then α, β ∈ R(q). This

implies that

Aγ = Xγ−1αγ = Xµ−1αµ = Aµ

and

(A ∪̇ {x})γ = Xγ−1βγ = Xµ−1βµ = (A ∪̇ {x})µ.

Since γ and µ are injective, we have

Aγ ∪̇ {xγ} = Aµ ∪̇ {xµ}

where Aγ = Aµ. Thus xγ = xµ for all x ∈ X, that is, γ = µ.

The proof of the next result is similar to that for [12] Theorem 2.

Theorem 4.1.3. Aut R(q) and G(X) are isomorphic.

Proof. Define θ : Aut R(q)→ G(X) by ϕ 7→ γϕ the unique permutation on X

such that αϕ = γ−1
ϕ αγϕ for all α ∈ R(q) (possible by Lemma 4.1.2). To show θ is

a homomorphism, let ϕ, ψ ∈ Aut R(q). Then for all α ∈ R(q), we have

α(ϕψ) = α(ϕ)ψ = (γ−1
ϕ αγϕ)ψ = γ−1

ψ (γ−1
ϕ αγϕ)γψ = (γϕγψ)−1α(γϕγψ).

Thus γϕψ = γϕγψ by the uniqueness of γϕψ (Lemma 4.1.2). So θ is a homomor-

phism. To show θ is surjective, let λ ∈ G(X) and define

ϕ : R(q)→ R(q) by α 7→ λ−1αλ.

Since R(q) is G(X)-normal, we have ϕ is a well-defined automorphism of R(q).

Thus γϕ = λ, so (ϕ)θ = γϕ = λ, that is, θ is onto. Finally, if γϕ = γψ, then

αϕ = γ−1
ϕ αγϕ = γ−1

ψ αγψ = αψ for all α ∈ R(q), that is, ϕ = ψ and therefore θ is

one-to-one.
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4.2 Isomorphisms

In what follows, we sometimes write R(X, p, q) in place of R(q) to highlight

the underlying set X and its cardinal p. Since R(X, p, q) played an important role

in both [4] and [12], it is natural to ask whether any of the semigroups R(X, p, q)

are isomorphic for different cardinals p and q. To answer this question, we first

need a result for R(q) which corresponds to [12] Lemma 1 for PS(q).

Lemma 4.2.1. If α, β ∈ R(q) then the following are equivalent.

(i) Xα ⊆ Xβ,

(ii) for each γ ∈ R(q), βγ = β implies αγ = α.

Proof. If Xα ⊆ Xβ and βγ = β for some γ ∈ R(q), then Xα ⊆ Xβ ⊆ dom γ

and γ|Xβ = idXβ. Hence (xα)γ = xα for each xα ∈ Xα ⊆ Xβ, so αγ = α.

Conversely, suppose there exists y = xα /∈ Xβ = B say. Then idB ∈ R(q) and

β ◦ idB = β but y idB 6= y; that is, α ◦ idB 6= α and hence the condition does not

hold.

Corollary 4.2.2. Suppose that |X| = p ≥ q ≥ ℵ0 and |Y | = r ≥ s ≥ ℵ0. If

ϕ : R(X, p, q) → R(Y, r, s) is an isomorphism then, for each α, β ∈ R(X, p, q),

Xα ⊆ Xβ if and only if Y (αϕ) ⊆ Y (βϕ).

Proof. Suppose that α, β ∈ R(X, p, q). Then, since ϕ is an isomorphism,

Lemma 4.2.1 provides the following equivalences.

Xα ⊆ Xβ ⇐⇒ for each γ ∈ R(X, p, q), βγ = β implies αγ = α,

⇐⇒ for each γ ∈ R(X, p, q), βϕ.γϕ = βϕ implies αϕ.γϕ = αϕ,

⇐⇒ for each γ′ ∈ R(Y, r, s), βϕ.γ′ = βϕ implies αϕ.γ′ = αϕ,

⇐⇒ Y (αϕ) ⊆ Y (βϕ).

Therefore we have proved the corollary.
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Theorem 4.2.3. The semigroups R(X, p, q) and R(Y, r, s) are isomorphic if and

only if p = r and q = s. Moreover, for each isomorphism ϕ : R(X, p, q) →

R(Y, r, s), there is a bijection γ : X → Y such that αϕ = γ−1αγ for each α ∈

R(X, p, q).

Proof. We assume that there is an isomorphism ϕ : R(X, p, q) → R(Y, r, s)

and write

U = {Xα : α ∈ R(X, p, q)}, V = {Y β : β ∈ R(Y, r, s)}.

Let Γ : U → V be defined by (Xα)Γ = Y (αϕ). Then, by Corollary 4.2.2, Γ is an

order-monomorphism: that is, Γ is injective and A ⊆ B if and only if AΓ ⊆ BΓ

for all A,B ∈ U . Next, if C = Y β for some β ∈ R(Y, r, s), then β = αϕ for some

α ∈ R(X, p, q) (since ϕ is onto). Thus (Xα)Γ = Y (αϕ) = Y β = C, so Γ is onto.

In fact, if

B(X, q) = {A ⊆ X : |X \ A| = q}, B(Y, s) = {B ⊆ Y : |Y \B| = s}

then U = B(X, q) and V = B(Y, s), since idA ∈ R(X, p, q) and idB ∈ R(Y, r, s) for

all A ∈ B(X, q) and B ∈ B(Y, s). That is, Γ is an order-isomorphism from B(X, q)

onto B(Y, s). Thus by Lemma 2.4.8, there exists a bijection γ : X → Y such that

AΓ = Aγ for all A ∈ B(X, q), so p = r. Now we aim to show αϕ = γ−1αγ for each

α ∈ R(X, p, q). Clearly this holds if α = ∅ (in this case, p = q). So suppose α 6= ∅

and note that domαγ = domα since dom γ = X. Let x ∈ domα and write X =

C ∪̇D ∪̇ {x} where |C| = p and |D| = q. Then β = idC , λ = idC∪{x} ∈ R(X, p, q).

Let A = Xβ and B = Xλ, we have A,B ∈ B(X, q), B \A = Xλ \Xβ = {x} and

Y ((λα)ϕ) \ Y ((βα)ϕ) = Y ((λϕ)(αϕ)) \ Y ((βϕ)(αϕ))

= (Y (λϕ) \ Y (βϕ))(αϕ)

= ((Xλ)Γ \ (Xβ)Γ)(αϕ)

= (BΓ \ AΓ)(αϕ)

= (Bγ \ Aγ)(αϕ)

= (B \ A)γ(αϕ)

= {x}γ(αϕ)
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On the other hand, we see that

Y ((λα)ϕ) \ Y ((βα)ϕ) = (X(λα))Γ \ (X(βα))Γ

= (X(λα))γ \ (X(βα))γ

= (Xλ \Xβ)αγ

= {x}αγ.

Thus {x}γ(αϕ) = {x}αγ for all x ∈ domα. We now aim to show that dom(γ(αϕ))

= dom(αγ). To do this, we first note that, α ∈ R(X, p, q) implies α−1 ∈ R(X, p, q)

since d(α−1) = g(α) = q and g(α−1) = d(α) = q. It follows that domα = Xα−1 ∈

U = B(X, q). Also, since ϕ is an isomorphism and R(X, p, q) and R(Y, r, s) are

inverse semigroups, we have (αϕ)−1 = α−1ϕ. Thus, (domα)γ = (Xα−1)γ =

(Xα−1)Γ = Y (α−1ϕ) = dom(αϕ), that is, domα = (dom(αϕ))γ−1. Consequently,

together with dom γ = X and Xγ = Y , we have

dom(αγ) = domα = (dom(αϕ))γ−1 = (Xγ ∩ dom(αϕ))γ−1 = dom(γ(αϕ)).

Therefore γ(αϕ) = αγ and so αϕ = γ−1αγ. Finally, since αϕ ∈ R(Y, r, s), we

have s = |Y \ Y (αϕ)| = |Y \ Y γ−1αγ| = |Xγ \Xαγ| = |(X \Xα)γ| = q.

Conversely, if p = r and q = s, then Theorem 2.4.7 implies that, there is

an isomorphism ϕ : PS(X, p, q) → PS(Y, r, s). Recall that every elements in

R(X, p, q) and R(Y, r, s) are all regular, thus, when restrict ϕ to R(X, p, q) we

have (R(X, p, q))ϕ = R(Y, r, s) since ϕ and ϕ−1 preserve the regularity. Therefore

R(X, p, q) and R(Y, r, s) are isomorphic.


