
Chapter 5

Maximal Subsemigroups of the Baer-Levi

Semigroups of Partial Transformations

In this chapter, we study maximal subsemigroups of PS(q). In particular,

in Section 5.1 we give necessary and sufficient conditions for the existence of

maximal subsemigroups of PS(q) when p > q. We also determine some maximal

subsemigroups of a subsemigroup Sr of PS(q) defined by

Sr = {α ∈ PS(q) : g(α) ≤ r},

where q ≤ r ≤ p. Moreover, we extend MA, a maximal subsemigroup of BL(q)

(see Section 2.3.2) to determine maximal subsemigroups of PS(q). In Section 5.2,

we determine some maximal subsemigroups of PS(q) when p = q.

5.1 Maximal Subsemigroups of PS(q) when p > q

The characterisation of maximal subsemigroups of a given semigroup is a

natural topic to consider when studying its structure. Sometimes, it is difficult to

describe all of them (see [2] and [9], for examples), but for a semigroup with some

special properties, we can easily describe some of its maximal subsemigroups.

In what follows, if S is a semigroup and M is a subsemigroup of S, we some-

times use Lemma 2.1.4 to show the maximality of M in S. Also, recall that an

ideal I of S is a prime ideal if its complement in S is a subsemigroup of S.

Lemma 5.1.1. Suppose that S is a semigroup and I is a prime ideal of S. Let

T = S \ I. Then,
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(i) for a maximal subsemigroup M of T , M ∪ I is a maximal subsemigroup of

S;

(ii) for a maximal subsemigroup N of S such that T \N 6= ∅ and T ∩N 6= ∅,

the set T ∩N is a maximal subsemigroup of T .

Proof. To see that (i) holds, let M be a maximal subsemigroup of T . Since I

is an ideal, we have M ∪ I is a subsemigroup of S. Clearly, M ∪ I ( T ∪ I = S. If

a ∈ S \ (M ∪ I), then a ∈ T \M and thus T = 〈M ∪ {a}〉 ⊆ 〈M ∪ I ∪ {a}〉. Since

〈M ∪ I ∪ {a}〉 contains I, we have S = T ∪ I = 〈M ∪ I ∪ {a}〉 and so M ∪ I is

maximal in S as required.

To prove (ii), let N be a maximal subsemigroup of S such that T \N 6= ∅ and

T ∩N 6= ∅, and let a ∈ T \N . Since N is maximal in S, we have 〈N ∪ {a}〉 = S.

Thus, for each b ∈ T \N , b = c1c2 . . . cn for some natural n and some ci ∈ N ∪{a}

for all i = 1, 2, . . . , n. Since b /∈ N , we have ci = a for some i. Moreover, since

b /∈ I, we have cj ∈ T ∩N for all j 6= i. It follows that T \N ⊆ 〈(T ∩N) ∪ {a}〉,

therefore

T = (T \N) ∪ (T ∩N) ⊆ 〈(T ∩N) ∪ {a}〉,

that is, T = 〈(T ∩N) ∪ {a}〉 and thus T ∩N is maximal in T .

From [12] p 95, for ℵ0 ≤ k ≤ p, the authors showed that

Sk = {α ∈ PS(q) : g(α) ≤ k}

is a subsemigroup of PS(q). Also, when p > q, the proper ideals of PS(q) are

precisely the sets:

Ts = {α ∈ PS(q) : g(α) ≥ s}

where q < s ≤ p (see Theorem 2.3.14). Thus, for any q ≤ r < p, it is clear that

PS(q) = Sr ∪̇Tr′ ,

that is, PS(q) can be written as a disjoint union of the semigroup Sr and the ideal

Tr′ . In other words, Tr′ is a prime ideal of PS(q). Hence, the next result follows

directly from Lemma 5.1.1(i).
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Corollary 5.1.2. Suppose that p > r > q ≥ ℵ0. If M is a maximal subsemigroup

of Sr, then M ∪ Tr′ is a maximal subsemigroup of PS(q).

Proof. Let M be a maximal subsemigroup of Sr. Since PS(q) = Sr ∪̇Tr′ and

Tr′ is a proper prime ideal of PS(q), we have M ∪ Tr′ is a maximal subsemigroup

of PS(q) by Lemma 5.1.1(i).

Lemma 5.1.3. Let p > q ≥ ℵ0 and suppose that M is a maximal subsemigroup of

PS(q). Then,

(i) Sr ∩M 6= ∅ for all q ≤ r < p ;

(ii) if there exists α /∈M with g(α) < p, then Sk \M 6= ∅ for some q ≤ k < p.

Proof. To show that (i) holds, we first note that Sq is contained in Sr for

all q ≤ r < p. If Sq ∩M = ∅, then M ⊆ Tq′  PS(q) and thus M = Tq′ by

the maximality of M . But Tq′  Tq′ ∪ BL(q)  PS(q) where Tq′ ∪ BL(q) is a

subsemigroup of PS(q) (since Tq′ is an ideal), this contradicts the maximality of

Tq′ . Therefore, ∅ 6= Sq ∩M ⊆ Sr ∩M for all q ≤ r < p.

To show that (ii) holds, suppose there is α /∈ M with g(α) = k < p. If k < q,

then α ∈ Sr \M for all q ≤ r ≤ p. Otherwise, if q ≤ k, then α ∈ Sk \M . Hence

(ii) holds.

In what follows, for any cardinal r ≤ p, we let

Gr = {α ∈ PS(q) : g(α) = r}.

Then G0 = BL(q) and Gq = R(q). Moreover, if p > q and r > q, then Gr = Sr∩Tr,

and so Gr is a subsemigroup of Sr (since it is the intersection of two semigroups).

Also, Gr is bi-simple and idempotent-free, when p > q and r > q (see Corollary

2.3.16).

From Theorem 2.3.17, if p ≥ q, then Sq = α.R(q) for each α ∈ BL(q), and

by Theorem 2.3.18, Sq = BL(q).µ.BL(q) for each µ ∈ R(q) when p 6= q. This

motivates the following result.
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Lemma 5.1.4. Suppose that p ≥ r > q ≥ ℵ0. Then Gr = BL(q).α.BL(q) for each

α ∈ Gr.

Proof. Let α ∈ Gr and β, γ ∈ BL(q). Since

X \ domα = [Xβ ∩ (X \ domα)] ∪̇ [(X \Xβ) ∩ (X \ domα)]

where g(α) = |X \ domα| = r > q and the second intersection on the right has

cardinal at most q (since |X \Xβ| = q), we have |Xβ ∩ (X \ domα)| = r. This

means that

r = |[Xβ ∩ (X \ domα)]β−1|

= |(Xβ \ domα)β−1|

= | dom β \ dom(βα)|

= |X \ dom(βα)|,

that is g(βα) = r. Since dom γ = X, we have dom(βαγ) = dom(βα), and so

g(βαγ) = g(βα) = r. Hence βαγ ∈ Gr and therefore BL(q).α.BL(q) ⊆ Gr.

For the converse, if α, β ∈ Gr, then |X \ domα| = r = |X \ dom β|. Since

p > q, every element in PS(q) has rank p, so we write

α =

 ai

xi

 , β =

 bi

yi

 where |I| = p.

Now write X \{yi} = A ∪̇B and X \{ai} = C ∪̇D where |A| = |B| = |C| = q and

|D| = r (note that this is possible since d(β) = q ≥ ℵ0 and g(α) = r > q ≥ ℵ0).

Define

δ =

 bi X \ {bi}

ai D

 , ε =

 xi X \ {xi}

yi A


where δ|(X \{bi}) and ε|(X \{xi}) are bijections. Then δ, ε ∈ BL(q) and β = δαε,

that is, Gr ⊆ BL(q).α.BL(q) and equality follows.

Now we can describe all maximal subsemigroups of PS(q) when p > q.
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Theorem 5.1.5. Suppose that p > q ≥ ℵ0. Then M is a maximal subsemigroup of

PS(q) if and only if M equals one of the following sets:

(i) PS(q) \Gp = {α ∈ PS(q) : g(α) < p};

(ii) N ∪ Tr′, where q ≤ r < p and N is a maximal subsemigroup of Sr.

Proof. Let α, β ∈ PS(q) be such that g(α) < p and g(β) < p. Since

|Xα \ dom β| ≤ |X \ dom β| = g(β) < p,

we have

| domα \ dom(αβ)| = |[Xα \ (Xα ∩ dom β)]α−1|

= |(Xα \ dom β)α−1|

= |Xα \ dom β| < p.

Hence,

|X \ dom(αβ)| = |X \ domα|+ | domα \ dom(αβ)| < p,

and this shows that PS(q)\Gp is a subsemigroup of PS(q). To show that PS(q)\

Gp is maximal in PS(q), we let α, β ∈ PS(q) \ (PS(q) \ Gp) = Gp. By Lemma

5.1.4, α = λβµ for some λ, µ ∈ BL(q) ⊆ PS(q) \Gp. Thus, α can be written as a

finite product of elements in (PS(q)\Gp)∪{β}, and hence PS(q)\Gp is maximal

in PS(q) by Lemma 2.1.4. Also, if q ≤ r < p and N is a maximal subsemigroup

of Sr, then N ∪ Tr′ is maximal in PS(q) by Corollary 5.1.2.

Finally, suppose that M is a maximal subsemigroup of PS(q) such that M 6=

PS(q) \Gp. Then there exists α /∈M with g(α) < p. Thus, Lemma 5.1.3 implies

that Sk \M 6= ∅ and Sk ∩M 6= ∅ for some k, where q ≤ k < p. Since Tk′ is a

proper prime ideal of PS(q) and Sk = PS(q) \ Tk′ , Lemma 5.1.1(ii) implies that

Sk ∩M is maximal in Sk. Since PS(q) = Sk ∪ Tk′ , we see that

M = (Sk ∩M) ∪ (Tk′ ∩M) ⊆ (Sk ∩M) ∪ Tk′ ,

where (Sk ∩M) ∪ Tk′ is maximal in PS(q) by Corollary 5.1.2. This means that

M = (Sk ∩M) ∪ Tk′ by the maximality of M .
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By the previous theorem, when p > q, most of the maximal subsemigroups of

PS(q) are induced by maximal subsemigroups of Sr where q ≤ r < p. Hence we

now determine some maximal subsemigroups of Sr.

As mentioned in Section 2.3.2, for every non-empty subset A of X such that

|X \ A| ≥ q, MA is a maximal subsemigroup of BL(q). Here we extend the

definition of MA and consider the set MA defined as

MA = {α ∈ PS(q) : A * Xα or (Aα ⊆ A ⊆ domα or |Xα \ A| < q)},

that is, α in PS(q) belongs to MA if and only if

(i) A * Xα, or

(ii) A ⊆ Xα and either Aα ⊆ A ⊆ domα, or |Xα \ A| < q.

The next result gives more details on MA.

Lemma 5.1.6. Suppose that p ≥ q ≥ ℵ0 and let A be a non-empty subset of X such

that |X \ A| ≥ q. Then,

(i) for any cardinal k such that 0 ≤ k ≤ p, there exist α, β ∈ PS(q) such that

g(α) = k = g(β) and α ∈MA, β /∈MA;

(ii) for each γ /∈MA, | dom γ \Aγ−1| = |X \A| = |Xγ \A| and |Aγ−1| = |A|.

Proof. To show that (i) holds, let |X \ A| = r ≥ q and let k be a cardinal

such that 0 ≤ k ≤ p. We write X \ A = R ∪̇Q where |R| = r and |Q| = q. If

r = p, then |A ∪ R| ≥ r = p; if r < p, then |X \ A| < p, and this implies |A| = p,

and so |A ∪ R| = p. Fix a ∈ A and let B = (A \ {a}) ∪ R. Then, |B| = p and

|X \ B| = |Q ∪ {a}| = q. We write X = K ∪̇L where |K| = k and |L| = p.

Then there exists a bijection α : L → B and so g(α) = k, d(α) = q. Also, since

A * B = Xα, we have α ∈MA.

To find β ∈ PS(q) \MA with g(β) = k, we consider two cases. First, if r = p,

we write X \ A = P ∪̇Q ∪̇K where |P | = p, |Q| = q, |K| = k. Fix a ∈ A and

define

β =

 P ∪Q ∪ {a} A \ {a}

P ∪K ∪ {a} A \ {a}





55

where β|(P ∪ Q ∪ {a}) and β|(A \ {a}) are bijections and aβ 6= a. On the other

hand, if r < p, then |A| = p. In this case we write A = A′ ∪̇K ′ and X \A = R ∪̇Q

where |A′| = p, |K ′| = k, |R| = r and |Q| = q. Fix a ∈ A′ and re-define

β =

 (X \ A) ∪ {a} A′ \ {a}

R ∪ {a} A \ {a}


where β|((X \ A) ∪ {a}) and β|(A′ \ {a}) are bijections and aβ 6= a. In both

cases, we have d(β) = q, g(β) = k, A ⊆ Xβ, Aβ * A and |Xβ \ A| ≥ q, that is

β ∈ PS(q) \MA.

To see that (ii) holds, suppose that there is γ /∈ MA, then A ⊆ Xγ and

|Xγ \ A| ≥ q. So |Aγ−1| = |A| since γ is injective. Also,

X \ A = (X \Xγ) ∪̇ (Xγ \ A)

where |X \ Xγ| = q. Since |X \ A| ≥ q and |Xγ \ A| ≥ q, we have |X \ A| =

|Xγ \ A| = |(Xγ \ A)γ−1| = | dom γ \ Aγ−1| as required.

In [9] Theorem 1, the authors proved that MA is a maximal subsemigroup of

BL(q) for every non-empty subset A of X such that |X \A| ≥ q. Using a similar

argument, we can show that MA is a subsemigroup of PS(q).

Lemma 5.1.7. Suppose that p ≥ q ≥ ℵ0 and let A be a non-empty subset of X such

that |X \ A| ≥ q. Then MA is a proper subsemigroup of PS(q).

Proof. Let α, β ∈ MA. If A * Xαβ, then αβ ∈ MA. Now we suppose that

A ⊆ Xαβ and this implies A ⊆ Xβ. Since β ∈MA, we either have

Aβ ⊆ A ⊆ dom β or |Xβ \ A| < q.

If |Xβ \ A| < q, then |Xαβ \ A| ≤ |Xβ \ A| < q and so αβ ∈ MA. If Aβ ⊆ A ⊆

dom β, then we have Aβ ⊆ A ⊆ Xαβ and hence A ⊆ Xα since β is injective.

Since α ∈ MA, we either have Aα ⊆ A ⊆ domα, or |Xα \ A| < q. If the latter

occurs, then

|Xαβ \ A| ≤ |Xαβ \ Aβ| = |(Xα \ A)β| ≤ |Xα \ A| < q,
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therefore αβ ∈ MA. On the other hand, if Aα ⊆ A ⊆ domα, we have Aαβ ⊆

Aβ ⊆ A. Moreover, Aα ⊆ Xα∩dom β, that is, A ⊆ (Xα∩dom β)α−1 = domαβ.

It follows that Aαβ ⊆ A ⊆ domαβ. Therefore αβ ∈ MA, and hence MA is

a subsemigroup of PS(q). Finally, this subsemigroup is properly contained in

PS(q) by Lemma 5.1.6(i).

Remark 5.1.8. By Lemma 5.1.6(i), for any cardinal r such that q ≤ r ≤ p, Sr ∩

MA is always non-empty and properly contained in Sr. Therefore, it is a proper

subsemigroup of Sr, but it is not maximal when q < r. To see this, suppose that

Sr ∩MA is maximal and choose α, β /∈ MA such that g(α) = r and g(β) = 0

(possible by Lemma 5.1.6(i)). Then α, β ∈ Sr \MA where dom β = X. Moreover

〈(Sr ∩MA) ∪ {α}〉 = Sr, and so

β = γ1γ2 . . . γnαλ1λ2 . . . λm

for some n,m ∈ N0 and γi, λj ∈ (Sr ∩MA) ∪ {α}, i = 1, . . . , n, j = 1, . . . ,m.

If n = 0 or γ1 = α, then dom β ⊆ domα and so g(α) = 0, a contradiction.

Thus, n 6= 0 and γ1 6= α. Since X = dom β ⊆ dom(γ1γ2 . . . γn), it follows that

γ = γ1γ2 . . . γn ∈ BL(q). Moreover, Xγ ⊆ domα, and this implies,

q ≤ r = |X \ domα| ≤ |X \Xγ| = q,

and hence r = q.

Since MA is maximal in BL(q), a subsemigroup of PS(q), it is natural to think

that MA is maximal in PS(q). But when p > q, by taking r = p, the above ob-

servation shows that this claim is false since Sp = PS(q). Thus, MA is not always

a maximal subsemigroup of PS(q) when p > q.

The proof of the next result follows some ideas from [9] Theorem 1.

Theorem 5.1.9. Suppose that p ≥ r ≥ q ≥ ℵ0 and let A be a non-empty subset of

X such that |X \A| ≥ q. Then Sr∩MA is a maximal subsemigroup of Sr precisely

when r = q.
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Proof. In Remark 5.1.8, we have shown that Sr ∩MA is not maximal in Sr

when r > q. It remains to show Sq ∩MA is maximal in Sq. Let α, β ∈ Sq \MA.

Then g(α) ≤ q, g(β) ≤ q and Lemma 5.1.6(ii) implies that

|Aα−1| = |A| = |Aβ−1|, and

| domα \Aα−1| = | dom β \Aβ−1| = |Xβ \A| = |Xα \A| = |X \A| = s (say) ≥ q.

We also have Aβ * A or A * dom β. In the case that Aβ * A, we have Aβ ∩

(X \ A) 6= ∅. Thus, there exists y ∈ A ∩ (X \ A)β−1, so y /∈ Aβ−1. Since

| dom β \ (Aβ−1 ∪ {y})| = s, we can write

dom β \ (Aβ−1 ∪ {y}) = {cj} ∪̇ {dk}

where |J | = s and |K| = q. Also, since α, β /∈MA, we have A ⊆ Xα and A ⊆ Xβ.

Thus, for convenience, write A = {ai}, let yi, zi ∈ X be such that yiα = ai = ziβ

for each i, and let domα \ Aα−1 = {bj}. Hence, we can write

β =

 zi cj dk y

ai cjβ dkβ yβ

 .

Now define γ ∈ P (X) by

γ =

 yi bj

zi cj

 .

Then, d(γ) = |X\({zi}∪{cj})| = |{dk}∪{y}∪(X\dom β)| = |{dk}∪{y}|+g(β) =

q, that is, γ ∈ PS(q). Also, since dom γ = domα, we have g(γ) = g(α) ≤ q and

so γ ∈ Sq. Moreover, since y ∈ A and y /∈ Xγ, we have A * Xγ, that is, γ ∈MA.

Also, since d(α) = q, we can write X \Xα = {mk} ∪̇ {nk} ∪̇ {z} and define µ in

P (X) by

µ =

 ai cjβ dkβ yβ

ai bjα mk z

 .

Then d(µ) = |X\({ai}∪{bjα}∪{mk}∪{z})| = |X\(Xα∪{mk}∪{z})| = |{nk}| =

q = d(β) = g(µ), that is, µ ∈ Sq. Moreover, µ ∈ MA since Aµ = A ⊆ domµ.

Finally, we can see that α = γβµ where γ, µ ∈ Sq ∩MA.
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On the other hand, if A * dom β, then there exists w ∈ A \ dom β. In this

case, we rewrite

dom β \ Aβ−1 = {cj} ∪̇ {dk} and X \Xα = {mk} ∪̇ {nk}

where |J | = s, |K| = q. Like before, we write A = {ai} and domα = {yi} ∪̇ {bj}

where yiα = ai = ziβ and {bj} = domα \ Aα−1, then

β =

 zi cj dk

ai cjβ dkβ

 .

Define γ, µ ∈ P (X) by

γ =

 yi bj

zi cj

 , µ =

 ai cjβ dkβ

ai bjα mk

 .

Then, d(γ) = |{dk}| + g(β) = q, g(γ) = g(α) ≤ q, d(µ) = |{nk}| = q = d(β) =

g(µ), and so γ, µ ∈ Sq. Also, γ, µ ∈MA since A * Xγ (note that w ∈ A\dom β ⊆

A \ Xγ) and Aµ = A ⊆ domµ. Moreover, α = γβµ. In other words, we have

shown that for every α, β ∈ Sq \ MA, α can be written as a finite product of

elements in (Sq ∩MA) ∪ {β}. Therefore, Sq ∩MA is maximal in Sq.

We now determine some other classes of maximal subsemigroups of Sr.

Lemma 5.1.10. Suppose that p ≥ r ≥ q ≥ ℵ0. Let k be a cardinal such that k = 0

or q ≤ k ≤ r. Then

Sr \Gk = {α ∈ PS(q) : k 6= g(α) ≤ r}

is a proper subsemigroup of Sr.

Proof. Since k ≤ r, we have Sr \Gk  Sr. If k = 0, then Sr \G0 = Sr \BL(q)

and this is a subsemigroup of Sr since, for α, β ∈ Sr \BL(q), dom(αβ) ⊆ domα  

X, and this implies αβ ∈ Sr \ BL(q). Now suppose q ≤ k ≤ r and let α, β ∈ Sr
be such that g(αβ) = k. We claim that g(α) = k or g(β) = k. To see this, assume

that g(α) 6= k. Since

k = |X \ dom(αβ)| = |X \ domα|+ | domα \ dom(αβ)|,
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we have |X \ domα| < k, thus

k = | domα\dom(αβ)| = |[Xα\(Xα∩dom β)]α−1| = |(Xα\dom β)α−1| = |Xα\dom β|.

Note that

X \ dom β = [Xα \ dom β] ∪̇ [(X \Xα) ∩ (X \ dom β)]

where the intersection on the right has cardinal at most q. Hence

g(β) = |X \ dom β| = k

since k ≥ q, and we have shown that Sr \Gk is a subsemigroup of Sr.

Remark 5.1.11. Observe that, if 0 < k < q then Sr \ Gk is not a semigroup for

all q ≤ r ≤ p. To see this, let α ∈ BL(q) and β = idXα\K for some subset K of

Xα such that |K| = k (possible since |Xα| = p > k), then α, β ∈ PS(q) since

d(β) = d(α) + k = q. Moreover, since g(α) = 0 and g(β) = q 6= k, we have

α, β ∈ Sr \Gk. But

dom(αβ) = (Xα ∩ dom β)α−1 = (Xα \K)α−1 = X \Kα−1,

thus g(αβ) = |Kα−1| = k, that is, αβ ∈ Gk.

Theorem 5.1.12. Suppose that p ≥ r ≥ q ≥ ℵ0. Then the following statements

hold:

(i) Sr \G0 is a maximal subsemigroup of Sr;

(ii) if p > q, then for each cardinal k such that q ≤ k ≤ r, Sr \Gk is a maximal

subsemigroup of Sr.

Proof. By Lemma 5.1.10, Sr \ G0 is a subsemigroup of Sr. To see that it is

maximal in Sr, let α, β ∈ Sr \ (Sr \G0) = G0 = BL(q) ⊆ Sq. By Theorem 2.3.17,

Sq = β.R(q), and this implies that α = βγ for some γ ∈ R(q) ⊆ Sr \ G0. Hence

Sr \G0 is maximal in Sr.
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Now suppose that p > q and q ≤ k ≤ r. Let α, β ∈ Sr \ (Sr \ Gk) = Gk.

If k = q, then Gk = R(q) ⊆ Sq and, by Theorem 2.3.18, Sq = BL(q).β.BL(q).

If k > q, then Gk = BL(q).β.BL(q) (by Lemma 5.1.4). In both cases, we have

α = γβµ for some γ, µ ∈ BL(q) ⊆ Sr \Gk, and so Sr \Gk is maximal in Sr.

Corollary 5.1.13. Suppose that p > q ≥ ℵ0 and let A be a non-empty subset of

X such that |X \ A| ≥ q. Then the following sets are maximal subsemigroups of

PS(q):

(i) MA ∪ Tq′;

(ii) Nk = {α ∈ PS(q) : g(α) 6= k} where k = 0 or q ≤ k ≤ p.

Proof. By Theorem 5.1.9, Sq ∩MA is maximal in Sq. Then Corollary 5.1.2

implies that (Sq ∩MA) ∪ Tq′ is maximal in PS(q). But

(Sq ∩MA) ∪ Tq′ = (Sq ∪ Tq′) ∩ (MA ∪ Tq′) = PS(q) ∩ (MA ∪ Tq′) = MA ∪ Tq′ ,

and so (i) holds. To show that (ii) holds, let r = p in Theorem 5.1.12. Then

Sp = PS(q) and thus Nk = Sp \Gk is maximal in PS(q).

Corollary 5.1.14. Suppose that p > q ≥ ℵ0 and k equals 0 or q. Let A be a

non-empty subset of X such that |X \ A| ≥ q. Then the two classes of maximal

subsemigroups Sq ∩MA and Sq \Gk of Sq are always disjoint.

Proof. By Theorem 5.1.9 and Theorem 5.1.12, Sq∩MA and Sq\Gk are maximal

subsemigroups of Sq. By Lemma 5.1.6(i), there exists α ∈ MA with g(α) = k.

Then α ∈ Sk ∩MA ⊆ Sq ∩MA but α /∈ Sq \Gk, that is, Sq ∩MA * Sq \Gk. Also,

Sq \Gk * Sq ∩MA by the maximality of Sq ∩MA and Sq \Gk. Therefore Sq ∩MA

is not equal to Sq \Gk.

5.2 Maximal Subsemigroups of PS(q) when p = q

We first recall that, when p = q, the empty transformation ∅ belongs to PS(q)

since d(∅) = p = q. In this case, the ideals of PS(q) are precisely the sets:

Jr = {α ∈ PS(q) : r(α) < r}
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where 1 ≤ r ≤ p′ (see Theorem 2.3.15). Clearly, Jp′ = PS(q) and

Jp = {α ∈ PS(q) : r(α) < p}

is the largest proper ideal. In this case, Jr is not a prime ideal of PS(q). To see this,

write X = A ∪̇B ∪̇C where |A| = p and |B| = r = |C|. Then idB, idC ∈ PS(q)\Jr
whereas idB . idC = ∅ ∈ Jr. Hence, unlike what was done in Section 5.1, we

cannot use Lemma 5.1.1 to find maximal subsemigroups of PS(q) when p = q.

In this section, we determine some maximal subsemigroups of PS(q), for p = q,

using a different approach. We first describe some properties of each maximal

subsemigroup in this case.

Lemma 5.2.1. Suppose that p = q ≥ ℵ0 and M is a maximal subsemigroup of

PS(q). Then the following statements hold:

(i) M contains all α ∈ PS(q) with r(α) < p,

(ii) if R(q) ⊆M , then M ∩BL(q) = ∅.

Proof. Let α ∈ PS(q) with r(α) = k < p. Then g(α) = p and we write in the

usual way

α =

 ai

xi

 .

Also, write X \ {ai} = P ∪̇Q and X \ {xi} = R ∪̇S where |P | = |Q| = p = |R| =

|S|, and define β, γ in P (X) by

β =

 ai P

ai P

 , γ =

 ai Q

xi R


where β|P and γ|Q are bijections. Then β, γ ∈ PS(q) and also,

α = β · α · idXα ∈ PS(q).α.PS(q).

If M = M∪(PS(q).α.PS(q)), then α ∈M and we have completed the proof. Oth-

erwise, M  M ∪(PS(q).α.PS(q)) where M ∪(PS(q).α.PS(q)) is a subsemigroup

of PS(q). This means that M ∪ (PS(q).α.PS(q)) = PS(q) by the maximality of

M . Since all mappings in PS(q).α.PS(q) have rank at most k, it follows that M



62

contains all mappings with rank greater than k. Therefore β, γ ∈ M and thus

α = βγ ∈M as required.

To show that (ii) holds, suppose that R(q) ⊆M . If there exists α ∈M∩BL(q),

then Theorem 2.3.17 implies that PS(q) = α.R(q) ⊆ M (note that Sq = PS(q)

when p = q), so M = PS(q), contrary to the maximality of M . Thus M∩BL(q) =

∅.

Remark 5.2.2. The maximality properties in Lemma 5.2.1 hold for PS(q) precisely

when p = q. If p > q, then every α ∈ PS(q) has rank p. This contrast with

Lemma 5.2.1(i). Also, by Corollary 5.1.13, if p > q and q < k ≤ p, Nk is

a maximal subsemigroup of PS(q) containing R(q) ∪ BL(q), this contrast with

Lemma 5.2.1(ii).

As in Section 5.1, for any cardinal k, we let

Nk = {α ∈ PS(q) : g(α) 6= k}.

By Lemma 5.1.10 and Remark 5.1.11, if p = q, then Nk is a subsemigroup of PS(q)

precisely when k = 0 or k = p. From Corollary 5.1.13(ii), when p > q, Np is a

maximal subsemigroup of PS(q), but when p = q, Lemma 5.2.1(i) implies that

Np is not maximal since ∅ /∈ Np. Moreover, Lemma 5.2.1(i) implies that every

maximal subsemigroup of PS(q) must contain the largest proper ideal

Jp = {α ∈ PS(q) : r(α) < p}.

Note that Jp itself is a subsemigroup of PS(q) and it is contained in R(q) since, in

case p = q, r(α) < p implies g(α) = p = q. Moreover, this containment is always

proper. For example, write X = A ∪̇B where |A| = p = |B| and let α : A → B

be a bijection, thus α ∈ R(q) \ Jp. Hence Jp is not maximal in PS(q).

Theorem 5.2.3. Suppose that p = q ≥ ℵ0 and let A be a non-empty subset of X

such that |X \ A| ≥ q. The following are maximal subsemigroups of PS(q):

(i) MA;

(ii) N0;

(iii) Np ∪ Jp.
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Proof. If p = q, then Sq = PS(q), and so (i) holds by Theorem 5.1.9. Also,

by taking r = p in Theorem 5.1.12(i), we see that (ii) holds. To show that (iii)

holds, take r = p = k in Lemma 5.1.10, we have Np = Sp \Gp is a subsemigroup

of PS(q). Moreover, Np ∪ Jp is also a subsemigroup of PS(q) since Jp is an

ideal. To show the maximality of Np ∪ Jp, let α, β ∈ PS(q) \ (Np ∪ Jp). Then

g(α) = g(β) = p = r(α) = r(β). Write in the usual way

α =

 ai

xi

 , β =

 bi

yi


where |I| = p, and let

X \ {ai} = A ∪̇B and X \ {yi} = C ∪̇D

where |A| = |B| = |C| = |D| = p. Then define γ, µ ∈ P (X) by

γ =

 bi X \ {bi}

ai A

 , µ =

 xi X \ {xi}

yi C


where γ|(X \ {bi}) and µ|(X \ {xi}) are bijections. Thus γ, µ ∈ PS(q) since

d(γ) = |B| = p = |D| = d(µ). Moreover γ, µ ∈ Np ∪ Jp since g(γ) = g(µ) = 0 < p.

It is clear that β = γαµ and therefore Np ∪ Jp is maximal in PS(q).

Remark 5.2.4. When p = q, if M is a maximal subsemigroup of PS(q) containing

R(q), then

M ⊆ (PS(q) \BL(q)) = N0

by Lemma 5.2.1(ii). Thus, M = N0 by the maximality of M . So we conclude that

N0 is the only maximal subsemigroup of PS(q) containing R(q) when p = q.


