TABLE OF CONTENTS

TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENTS	3
ABSTRACT (ENGLISH)	vi
ABSTRACT (THAI)	X
TABLE OF CONTENTS	xiv
LIST OF TABLES	xxi
LIST OF FIGURES	xxiv
ABBREVIATIONS AND SYMBOLS	xxvii
CHAPTER 1 INTRODUCTION	1
1.1 Statement and significance of the problem	1
1.2 Objectives of this study	6
1.3 Education/Application advantages of this study	6
1.4 Literature review	7
1.4.1 History of hepatitis B virus	
1.4.2 Biology of Hepatitis B Virus	9
1.4.2.1 Structure of the hepatitis B virus	9 I Iniversi
1.4.2.2 Classification of Hepadnavirus family	10
1.4.2.3 Genome of the hepatitis B virus	e r 12/e
1.4.2.4 Replication cycle of the hepatitis B virus	16

1.4.3 Viral quasispecies of hepatitis B virus	18
1.4.3.1 Hepatitis B virus variants	19
1.4.3.1.1 Genotypes and subgenotypes of hepatitis B virus	19
1.4.3.1.2 Serotypes and subserotypes	25
1.4.3.2 Hepatitis B virus mutants	27
1.4.3.2.1 Basal core promoter and Pre-core mutants	27
1.4.3.2.2 Core mutants	29
1.4.3.2.3 X gene mutants	29
1.4.3.2.4 PreS1 and PreS2 mutants	30
1.4.3.2.5 S mutants	31
1.4.3.2.6 Pol gene mutants	35
1.4.3.2.7 Overlapping of surface gene and polymerase gene	37
1.4.4 Epidemiology of hepatitis B infection	39
1.4.4.1 Prevalence of HBV infection	39
1.4.4.1.1 In general population	39
1.4.4.1.2 In HBV/HIV co-infected population	42
1.4.4.2 Transmission of hepatitis B virus	45
1.4.4.2.1 Horizontal transmission	46
1.4.4.2.2 Vertical transmission	47
1.4.5 Natural history and clinical manifestations of hepatitis B	
infection	50
1.4.5.1 Acute HBV infection	<i>51</i>
1.4.5.2 Chronic HBV infection	53
1.4.6 Immune response to hepatitis B virus	57

1.4.6.1 Innate immune response	57
1.4.6.2 Adaptive immune response	58
1.4.6.2.1 Cellular immune response	59
1.4.6.2.2 Humoral immune response	60
1.4.7 Hepatitis B infection and hepatocellular carcinoma	61
1.4.8 HBV virological assessment	62
1.4.8.1 Serological testing for HBV status determination	62
1.4.8.2 Cell culture and animal models for HBV	63
1.4.8.3 Molecular assays in diagnosis of HBV infection	65
1.4.8.3.1 Quantitative HBV DNA assay	65
1.4.8.3.2 Genotyping assays	67
1.4.8.3.3 Drug resistance mutation tests	68
1.4.9 Treatment of HBV infection	72
1.4.9.1 HBV treatment for HBV mono-infected patients	72
1.4.9.2 HBV treatment for HBV/HIV co-infected patients	84
1.4.10 Pregnant women and hepatitis B virus infection	88
1.4.11 HBV prevention and vaccination	89
1.4.11.1 HBV prevention in general population	89
1.4.11.2 HB vaccination in HIV-infected population	97
1.4.12 Occult HBV infection	98
1.4.12.1 Occult HBV infection in HIV-infected patients	101
1.4.13 Isolated anti-HBc	Jnn ₁₀₁ ers

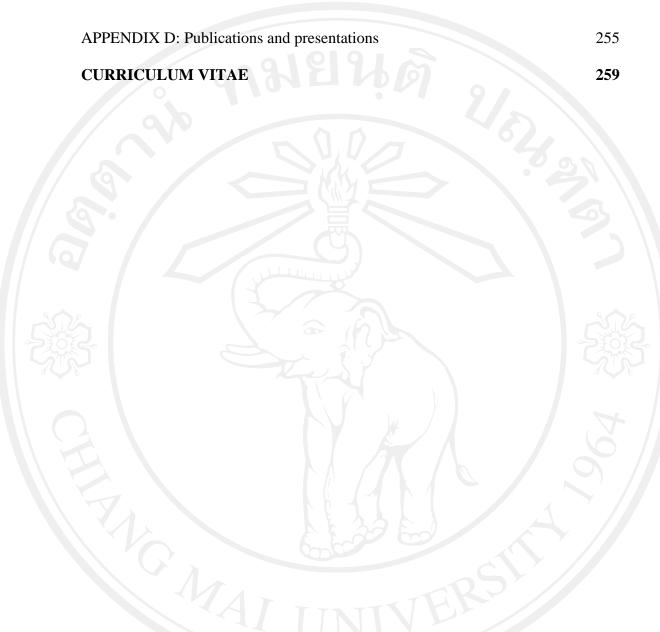
CHAPTER 2 METHODS AND RESULTS	107
2.1 Hepatitis B vaccine failure in offspring of women co-infected with	
human immunodeficiency virus and hepatitis B virus	107
2.1.1 Introduction	107
2.1.2 Methods	108
2.1.2.1 Patients	108
2.1.2.2 HBV Markers and HBV DNA quantification	109
2.1.2.3 HBV DNA preparation, amplification, and direct sequencing	109
2.1.2.4 HBV cloning and sequencing	110
2.1.2.5 Determination of HBV genotyping and serotyping	110
2.1.2.6 Statistical analysis	111
2.1.3 Results	112
2.1.3.1 Patient characteristics	112
2.1.3.2 Prevalence of HBsAg positivity in HIV-1 infected pregnant	
women	114
2.1.3.3 Prevalence of perinatal HBV transmission	116
2.1.3.4 Patterns of HBV mother-to-child transmission	117
2.1.4 Discussion and conclusion	122
2.1.5 Publications and presentations	126
2.2 Prevalence and factors associated with isolated antibody to hepatitis B	
core antigen and occult HBV infection in HIV-1 infected pregnant	
women in Thailand	129
2.2.1 Introduction	129
2.2.2 Materials and methods	131

		٠	٠	٠
Х	v	1	1	1

2.2.2.1 Study population:	131
2.2.2.2 Sample collection	131
2.2.2.3 Analysis of HBV infection markers	132
2.2.2.4 HBV sequencing	132
2.2.2.5 Statistical analysis	133
2.2.3 Results	134
2.2.3.1 Characteristics of women	134
2.2.3.2 HBV serology among HBsAg negative HIV-pregnant women	135
2.2.3.3 Factors associated with isolated anti-HBc	136
2.2.3.4 Prevalence of occult HBV infection	139
2.2.3.5 Detection of HBV DNA is inversely correlated with HIV RNA	
concentration in HIV-1 infected pregnant women with isolated	6
anti-HBc	140
2.2.3.6 Assessment of HBV infection in infants born to mothers with	
occult HBV infection	142
2.2.4 Discussion and conclusion	142
2.2.5 Publications and presentations	145
2.3 Long-term virological response of Hepatitis B virus to lamivudine-	
containing HAART in patients co-infected with HIV and HBV in	
Thailand Theiland	146
2.3.1 Introduction	146
2.3.2 Methods	148 ^{en} Sht
2.3.2.1 Study population	148
2.3.2.2 HBV and HIV testing	149

2.3.2.	3 HBV virological responses	149
2.3.2.	4 HBV DNA sequencing	149
2.3.2.	5 HBV Genotyping	151
2.3.2.	6 Statistical analyses	151
2.3.3	Results	152
2.3.3.	1 Baseline characteristics	152
2.3.3.	2 Efficacy of 3TC on HBV replication	157
2.3.3.	3 3TC resistance-associated mutations	160
2.3.3.	4 Efficacy of HAART on HIV replication, CD4 cell count and	
	alanine transaminase level	161
2.3.3.	5 Impact of baseline HBV DNA level on HIV response to 3TC-	
	containing HAART	164
2.3.3.	6 Impact of baseline HIV RNA load and HBV virological	
	response to 3TC-containing HAART	164
2.3.4	Discussion and conclusion	165
2.3.5	Publications and presentations	168
СНАРТЕН	R 3 CONCLUSIONS AND PERSPECTIVES	170

REFERENCES
APPENDICES
APPENDIX A: Table of standard amino acid abbreviations and properties
APPENDIX B: Multiple alignment of nucleotide sequences of HBV S gene
APPENDIX C: Abstract in French


252

179

247

248

249

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Page

	LIST OF TABLES	
Table		Page
1.1	Comparison of the length of viral genome and viral proteins between	
	each HBV genotype	20
1.2	Relationship between genotypes and serotypes, geographical	
	distribution	22
1.3	Amino acid residues specifying HBV serotypes	27
1.4	Changes of amino acids in S proteins and their impacts	34
1.5	Prevalence of HBsAg carriage in HIV-infected patients in Asia and	
	Asia-Pacific	43
1.6	Determination of HBV status according to serological testing	63
1.7	Available commercial hepatitis B virus DNA quantification assays	66
1.8	Medication available for the treatment of chronic HBV infection	84
1.9	HBV immunization schedule recommendations by WHO	93
1.10	HBV immunization schedule recommendations by Pediatric	
	Infectious Disease Society of Thailand, 2012	96
1.11	The underlying mechanisms of isolated anti-HBc serological profile	104
1.12	Prevalence of isolated anti-HBc and HBV DNA positivity in HIV-	
	uninfected populations	105
	ighte recer	

1.13	Prevalence of isolated anti-HBc and HBV DNA positivity in HIV	
	populations	106
2.1	Baseline characteristics of HIV-infected pregnant women	113
2.2	Characteristics of HBsAg-positive- and HBsAg-negative pregnant	
	women	115
2.3	HBV DNA load and infant HBV prophylaxis among 11 HBV	
	transmitting mother-child pairs	118
2.4	Pattern of HBV transmission, genotype, and mutations observed by	
	direct sequencing of S gene among 9 HBV transmitting mother-child	
	pairs.	119
2.5	Characteristics of women	135
2.6	HBV serological status of HBsAg negative women according to	
	region of birth.	136
2.7	Factors associated with isolated anti-HBc among HIV-1 infected	
	pregnant women	138
2.8	Proportion of occult HBV infection among 200 HIV-1 infected	
	pregnant women carrying isolated anti-HBc	139
2.9	Factors associated with HBV DNA positivity among 200 HIV-1	
	infected pregnant women carrying isolated anti-HBc	141
2.10	Baseline demographic and clinical characteristics of the study	
	population	155
2.11	HBV and HIV virological response to 3TC in HIV-1/HBV co-	
	infected patients during 12 months of 3TC treatment	156

2.12	Summary of HBV DNA and HIV RNA loads of HIV-HBV co-	
	infected patients on lamivudine-containing HAART	163
2.13	Impact of baseline HBV DNA level on HIV response during 5-years	
	of 3TC-containing HAART	164
3.1	Amino acid differences on pre-S1, pre-S2 and S genes of selected	
	clones issued from each mother and child pair	173

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

xxiv

LIST OF FIGURES

Figure

LIST OF FIGURES				
Figure		Page		
1.1	Schematic overview of the study	5		
1.2	The three forms of HBV particles	8		
1.3	Schematic diagrams of the components of 42 nm-Dane particle, 22			
	nm-sphere and filamentous forms of HBV	10		
1.4	The phylogenetic tree of reference strains of Orthohepadnaviruses			
	and Avihepadnaviruses	11		
1.5	Genome organization of HBV genotype B or C, the 2 genotypes			
	predominant in Thailand	13		
1.6	(A) Domains of the HBsAg open reading frame. (B) The L-, M-and			
	S-HBsAg are translated from three in-frame initiation sites but			
	sharing common C-terminal S domain. (C) Topology of the L-, M-			
	and S-HBsAg at the endoplasmic reticulum (ER) membrane	15		
1.7	Life cycle of HBV	17		
1.8	Global distribution of 8 genotypes of hepatitis B virus	21		
1.9	Schematic diagram of the secondary structure with amino acids			
	components, location of major hydrophilic region and "a"			
	determinant region of surface antigen of hepatitis B virus genotype C.	32		

1.10	(A) Illustration of the HBV polymerase open reading frame with the 4	
	functional domains and the 7 catalytic subdomains A-G. (B)	
	Proposed structure of the HBV polymerase based on the model of	
	HIV-1 reverse transcriptase. (C) Location of the major lamivudine	
	mutations relative to the conserved domains	36
1.11	The overlapping of surface and polymerase genes and its consequence	
	to antigen-antibody binding	39
1.12	Global distribution of chronic hepatitis B infection in 2006	41
1.13	Estimated rates of HBV mother-to-child transmission and factors	
	contributing the transmission according to the period of transmissions	48
1.14	Outcomes of acute HBV infection	51
1.15	Serology and molecular maker patterns during course of acute (A)	
	and chronic HBV infection (B)	53
1.16	Natural history of chronic hepatitis B infection	54
1.17	Immune responses against HBV infection. Control of HBV infection	
	requires both innate immune response and adaptive immune	
	responses: humoral and cellular arms	58
1.18	Structures of different nucleoside/nucleotide analogue	77
1.19	Estimated rates of genotypic resistance to anti-HBV treatments in	
	naïve patients. The numbers under the bar indicate years of therapy	82
1.20	An increase of number of countries where HB vaccination has been	
	introduced into their national EPI and 3-vaccine doses coverage from	
	1989 to 2010	94
2.1	Overall study diagram	114

2.2	Phylogenetic analysis of 9 mother-child pairs	117
2.3	Evolution of the HBV quasispecies in 9 representative transmitting	
	mother-child pairs	121
2.4	Overall study diagram	134
2.5	Prevalence of HIV-infected pregnant women with isolated anti-HBc	
	serological pattern according to age at enrollment and region of birth	136
2.6	Overall study diagram	153
2.7	Phylogenetic tree analysis for HBV genotyping of 30 HIV/HBV co-	
	infected patients	154
2.8	Kaplan-Meier curve of time to loss of HBV DNA suppression in 23	
	HIV-HBV co-infected patients who had achieved HBV DNA	
	suppression within 1 year of 3TC-containing HAART	158
2.9	Kaplan-Meier curve of time to HBV DNA suppression	159
2.10	Dot plot distribution graphs of HBV DNA load, HIV RNA load,	
	serum ALT level, and CD4+ T-cells count at baseline, 3, 12 months,	
	and last visit in HIV-HBV co-infected patients on 3TC-containing	
	HAART	160
3.1	Production of HDV particles harboring HBsAg mutants after co-	
	transfection with plasmids containing HBV and HDV genomes	174
3.2	Infectivity testing of produced HDV particles harboring HBsAg	
	mutants	175
3.3	Overall figure drawn from the study results	177 8 SI

xxvi

xxvii

ABBREVIATIONS AND SYMBOLS

%	Percent
α	Alpha
β	Beta
γ	Gamma
μ	Micro
μg	Microgram
μL	Microliter
3TC or LAM	2',3'-dideoxy-3'-thiacytidine or Lamivudine
95% CI	95 percent confidence interval
А	Adenine
ACPs	Antigen presenting cells
ADV	Adefovir dipivoxil
AIDS	Acquired immunodeficiency syndrome
ALT	Alanine transaminase or anine aminotransferase
Anti-HBc	Antibodies against hepatitis B core antigen
Anti-HBs	Antibodies against hepatitis B surface antigen
AST	Aspartate transaminase or Aspartate aminotransferase
bp	Basepair
С	Cytosine
cccDNA	Covalently closed circular deoxyribonucleic acid
CD	Cluster of differentiation
CD4+ T-cells	Mature T helper cells expressing the surface protein CD4
CD8+ T-cells	Killer T cells expressing the surface protein CD8
CTL	Cytotoxic T cell Deoxyriboadenosine triphosphate
dATP	Deoxyriboadenosine triphosphate
DBS	Dried blood spot
DCs	Dendritic cells

•	٠	٠
VVV1	1	1
ΛΛΥΙ	1	л.

dCTP	Deoxyribocytosine triphosphate
dGTP	Deoxyriboguanine triphosphate
DNA O	Deoxyribonucleic acid
dNTP	Deoxyribonucleotide triphosphate
dsDNA	Double stranded deoxyribonucleotide triphosphate
dTTP	Deoxyribothymine triphosphate
dUTP	Deoxyribouracil triphosphate
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme liked immunosorbent assay
EPI	the National Expanded Program on Immunization
ETV	Entecavir
FTC	Emtricitabine
G	Guanine
g	Gram
GP	Glycoprotein
HAART	Highly active antiretroviral treatment
HB vaccine	Hepatitis B vaccine
HBcAg	Hepatitis B core antigen
HBeAg	Hepatitis B e antigen
HBIg	Hepatitis B Immunoglobulin
HBsAg	Hepatitis B surface antigen
HBV	Hepatitis B virus
НСС	Hepatocellular carcinoma
HCV	Hepatitis C virus
HIV-1	Human immunodeficiency virus type-1
HIV/AIDS	Human immunodeficiency virus or acquired immunodeficiency
	syndrome
HLA	Human leukocyte antigens
IFN	Interferon
IgG	Immunoglobulin G
IgM	Immunoglobulin M

		٠	
X	X	1	Х

IL	Interleukin
IL-1β	Interleukin-1 beta
IL-6	Interleukin-6
IL-8	Interleukin-8
IQR	Interquartile range
kbp or kb	Kilo basepair
kDa	Kilo dalton
LB medium	Luria-Bertani medium
LdT	Telbivudine
L-HBsAg	Large form of hepatitis B surface antigen
М	Molarity
mg	Miligram
M-HBsAg	Medium form of hepatitis B surface antigen
MHC	Major histocompatibility complex
min	Minute
mL	Milliliter
mM	Millimolar
MoPH	The Ministry of Public Health
mRNA	Messenger ribonucleic acid
MW	Molecular weight
NF-ĸB	nuclear factor kappa-light-chain-enhancer of activated B cells
ng	Nanogram
NK	Natural killer cells
NKT	Natural killer T-cells
nm	Nanometer
no.	Number
O.D.	Optical density
°C	Degree Celsius
ORF	Open reading frame
Р	Protein
p24	Phosphoprotein 24, typical protein of lentiviruses

PBL	Peripheral blood leukocyte
PCR	Polymerase chain reaction
Peg-IFN	Pegylated interferon
pgRNA	Progenomic ribonucleic acid
pmol	Picomole
Pol gene	Gene encoding Hepatitis B polymerase enzyme
rcDNA	Relaxed circular deoxyribonucleic acid
RNA	Ribonucleic acid
rpm	Rounds per minute
RT-PCR	Reverse transcription polymerase chain reaction
S gene	Gene encoding Hepatitis B surface antigen
S-HBsAg	Small form of hepatitis B surface antigen
ssDNA	Single stranded deoxyribonucleic acid
Т	Thymine
TDF	Tenofovir Disoproxil Fumarate
TGF-β	Tumors growth factor – beta
TNF	Tumor necrosis factors
TNF-α	Tumors necrosis factor – alpha
UV	Ultraviolet light
vs.	Versus
w/v	Weight by volume
WHO	World Health Organization
YMDD	Tyrosine-methionine-aspartate-aspartate motif of HBV polymerase
	gene
ZDV	Zidovudine

All rights reserved