CHAPTER III

RESULTS

1. Mosquito rearing

1.1 Observation on the life duration, hatchability, pupation and emergence

An iso-female line colony of Thai strain *An. campestris*-like Form E was successfully established under laboratory conditions for more than 40 generations. Detailed life duration of eggs, larvae, pupae, adult females and males of F_{1} -, F_{5} -, F_{10} -, F_{20} - and F_{30} -progenies is summarized in Table 1. Observation of the life cycle and developmental period of *An. campestris*-like Form E from the laboratory-raised iso-female line colony (F_1 , F_5 , F_{10} , F_{20} , F_{30}), demonstrated that the average eggs per deposited female (observation on 20 gravid adult females) were 213.87 ± 96.49 (19-307), 238.17 ± 72.74 (20-296), 201.23 ± 55.03 (57-265), 235.23 ± 59.50 (100-302) and 236.80 ± 71.20 (58-308) in F_1 , F_5 , F_{10} , F_{20} and F_{30} , respectively. The duration of egg-hatching was 2-4 days, in which the percentage embryonation and hatching was 81-99% and 78-96%, respectively. The larval instars matured in 8-10 days. Pupation duration ranged from 2-3 days, and more than 80% of first instar larvae eventually pupated. More than 85% of pupae successfully emerged as adults.

 Table 1
 Life duration of An. campestris-like Form E from an iso-female line laboratory-raised colony.

* 100 samples for each generation.

** 30 samples for each generation.

for each generation. Copyright[©] by Chiang Mai University All rights reserved

1.2 Feeding ability

Results of direct feeding ability on white rat in a 30 x 30 x 30 cm cage, and artificial feeding ability on bovine heparinized-blood in a paper cup (8.5 cm in diameter and 11 cm in depth), of female *An. campestris*-like Form E at different ages ranging from 1 to 10 days, demonstrated that in the cage, adult females aged of 3, 4, 5 and 6 days were successful in feeding on the blood of white rats, with feeding rates of 30%, 39%, 62% and 43%, respectively. Interestingly, the adult females aged 3, 4, 5, and 6 days succeeded in artificial feeding on bovine heparinzed-blood in the paper cup at higher rates than direct feeding on white rat in the cage in all experiments by yielding feeding rates of 62%, 68%, 78% and 61%, respectively (Table 2).

1.3 Ability of free mating in a 30 cm cubed cage

In order to determine the adaptive stenogamy of *An. campestris*-like Form E, the newly emerged females and males co-habitated at a ratio of 150:300, in a 30 x 30 x 30 cm cage for one week. The results indicated that *An. campestris*-like Form E failed to mate freely in the cage at a 0% insemination rate (from experiments repeated 3 times). Additionally, in current studies of various strains, *An. campestris*-like Form B (Kamphaeng Phet: F_{11}) and E (Sa Kaeo: F_{22} , Chanthaburi: F_{11} , Ayutthaya: F_{21} , Maha Sarakham: F_{16} , Udon Thani: F_{11} , Khon Kean: F_{11} , Mukdahan: F_{10} , Prachuap Khiri Khan: F_{10} Chumphon: F_{10}) failed to copulate freely in a 30 x 30 x 30 cm cage as determined by 0% insemination rates, indicating strong eurygamy.

 Table 2
 Direct feeding ability on white rat in a 30 x 30 x 30 cm cage and artificial feeding ability on bovine heparined blood from different ages of

An. campestris-like Form E.

Day after emergence	Direct feeding*	Artificial feeding*
	No. successfully fed females (%)	No. successfully fed females (%)
1	13 (13%)	12 (12%)
2	17 (17%)	25 (25%)
3	30 (30%)	62 (62%)
4	39 (39%)	68 (68%)
5	62 (62%)	78 (78%)
6	43 (43%)	61 (61%)
7	24 (24%)	58 (58%)
8	16 (16%)	47 (47%)
9	14 (14%)	48 (48%)
10	12 (12%)	50 (50%)

*100 adult females for each experiment.

Copyright[©] by Chiang Mai University All rights reserved

1.4 Ability of male in artificial mating

The artificial mating ability of *An. campestris*-like Form E is demonstrated in Table 3. The best age for artificial mating in male was 5-days-old. Nonetheless, males aged 4 to 8 days old could be used satisfactorily.

Table 3 Artificial mating ability of An. campestris-like Form E males.

Day after emergence*	No. successfully mated	No. insemination (%)
	females (%)	
	11 (36.67)	0 (0)
2	23 (76.67)	18 (78.26)
3	23 (76.67)	18 (78.26)
4	30 (100)	24 (80.00)
5	30 (100)	26 (86.67)
6	28 (93.33)	23 (82.14)
7	28 (93.33)	24 (85.71)
8	28 (93.33)	23 (82.14)
9	26 (86.67)	16 (61.54)
10	23 (76.67)	11 (47.83)

*Thirty males for each experiment.

Copyright^O by Chiang Mai University

1.5 Ability of eggs deposition

In the case of puting 20 gravid adult females of *An. campestris*-like Form E in a 30 x 30 x 30 cm cage, fewer numbers of eggs were obtained from the oviposition in a plastic cup (9.7 cm in diameter and 11.5 cm in depth), *i.e.*, 0, 0, 279, 0 and 0 eggs per cup were obtained in experiment I (F₅), II (F₁₀), III (F₁₅), IV (F₂₀) and V (F₃₀), respectively. In the case of forced laying of eggs by placing 20 gravid adult females in a plastic cup (2 replicates) in the same size and conditions as used in the cage, a massive number of eggs, *i.e.*, 1,273, 1,318, 1,705, 2,180 and 1,501 eggs per cup, were recovered for experiment I (F₅), II (F₁₀), III (F₁₅), IV (F₂₀) and V (F₃₀), respectively (Figure 3A). Thus, in rearing *An. campestris*-like Form E and other sibling species members of *An. barbirostris* complex in our laboratory, this method has been used routinely up until now.

1.6 Rearing condition for chromosome preparation

The results of comparison between rearing condition for a high yield of chromosomes by using 10 larvae per tray and routine rearing conditions by using 80 larvae per tray indicated that the former yielded higher percent outcomes than the latter in all experiments, *i.e.*, metaphase chromosomes-experiment I: 10 larvae (87.50%)/80 larvae (33.33%), experiment II: 10 larvae (75.00%)/80 larvae (30.00%), experiment III: 10 larvae (77.78%)/80 larvae (30.00%); salivary gland polytene chromosomes-experiment I: 10 larvae (80.00%)/80 larvae (50.00%), experiment III: 10 larvae (66.67%)/80 larvae (50.00%), experiment III: 10 larvae (66.67%).

2. Metaphase karyotype characters

A total of seventy-one isolines of An. campestris-like Form B, E and F from Chiang Mai, Kamphaeng Phet, Ayuttaya, Udon Thani, Khon Kaen, Mukdahan, Maha Sarakham, Chaiyaphum, Sa Kaeo, Chanthaburi, Prachuap Khiri Khan and Chumphon provinces, derived from both human-biting and animal-biting female mosquitoes, were established in the insectary. Cytological observation of F₁- and/or F₂-progenies of the 71 isolines demonstrated three forms of metaphase karyotypes, *i.e.*, Form B (X₂, Y_2), E (X₁, X₂, X₃, Y_5) and F (X₂, X₃, Y₆) (Figure 4). Form B was found in three isolines from Chiang Mai (human biting: HCmB18, HCmB20) and Kamphaeng Phet (animal biting: AKpB1); Form E was obtained in thirty-nine isolines from Chiang Mai (human biting: HCmE12, HCmE14, HCmE15), Kamphaeng Phet (human biting: HKpE1), Ayuttaya (AAyE7, AAyE8, AAyE9), Udon Thani (animal biting: AUdE2, AUdE6), Khon Kaen (animal biting: AKkE4, AKkE5, AKkE8), Mukdahan (animal biting: AMkE1, AMkE2), Maha Sarakham (animal biting: AMsE1, AMsE2, AMsE3, AMsE4, AMsE5), Sa Kaeo (human biting: HSkE2, HSkE3, HSkE4, HSkE9, HSkE10, HSkE15, HSkE17), Chanthaburi (human biting: HCtE1, HCtE2, HCtE7, HCtE14, HCtE17, HCtE18, HCtE19, HCtE20, HCtE21), Prachuap Khiri Khan (animal biting: APkE2), and Chumphon (animal biting: ACpE1, ACpE5, ACpE6); and Form F was recovered in twenty-nine isolines from Udon Thani (animal biting: AUdF3, AUdF4, AUdF5), Khon Kaen (animal biting: AKkF1, AKkF2, AKkF3, AKkF7, AKkF9), Chaiyaphum (animal biting: ACiF1), Ayuttaya (animal biting: AAyF2, AAyF3, AAyF5, AAyF6), Sa Kaeo (human biting: HSkF1, HSkF12), Chanthaburi (human biting: HCtF3, HCtF4, HCtF6, HCtF8, HCtF9, HCtF10, HCtF11, HCtF12, HCtF13,

HCtF16), Prachuap Khiri Khan (animal biting: APkF1, APkF3, APkF4), and Chumphon (animal biting: ACpF2).

In consideration of new karyotypic forms, X₂, X₃, Y₆ sex chromosomes were exhibited. The X₂ and X₃ chromosome had a submetacentric shape resembling that of the sex chromosomes of An. barbirostris Form A, B, C and D. The Y₆ chromosome had a large subtelocentric (acrocentric) with a considerable portion of heterochromatin present in the short arm, and it was similar in size to the X₂ chromosome. The Y_6 chromosome quite different from was Y_1 (subtelocentric/acrocentric), Y_2 (submetacentric), Y_3 (large submetacentric/metacentric) and Y₄ (medium metacentric) chromosomes of An. barbirostris Form A, B, C and D, respectively, and the Y (telocentric) chromosome of An. campestris and Y₅ (small metacentric) chromosome of An. campestris-like Form E. Thus, the X₂, X₃, Y₆ sex chromosomes represent a new karyotype, tentatively designated as Form F (Figure 4).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 4 Metaphase karyotypes of *An. campestris*-like Form B, E and F (**a-e**). Form B: **a** Kamphaeng Phet strain, showing X_2 , Y_2 chromosomes; Form E: **b** Chumphon strain, showing X_2 , Y_5 chromosomes; **c** Sa Kaeo strain, showing X_3 , Y_5 chromosomes; Form F: **d** Udon Thani strain, showing X_2 , Y_6 chromosomes; **e** showing homozygous X_2 , X_2 chromosomes; **f** Diagrams of representative metaphase karyotypes of *An. campestris*-like Form F.

ລິບສິກສົນກາວົກຍາລັຍເຮີຍວໃหນ Copyright[©] by Chiang Mai University All rights reserved

3. Crossing study

Details of hatchability, pupation and emergence of parental, reciprocal and F_1 hybrid crosses among twelve isoline strains of *An. campestris*-like Form B, E and F are displayed in Table 4. Observation on the hatchability, pupation, emergence, and adult sex-ratio of parental, reciprocal and F_1 -hybrid crosses revealed that all crosses yielded viable progenies, and no evidence of genetic incompatibility and/or postmating reproductive isolation was observed among twelve isoline strains of *An. campestris*-like Form B, E and F.

ລິບສິກຣົ້ນກາວົກຍາລັຍເຮີຍວໃหນ Copyright[©] by Chiang Mai University All rights reserved

ng the 12 isolines of A	n. campestris-like Fo	rm B. E and F.				
Total eggs	Embryonation	Number	Number	Number	Number from	total emergence
(number)*	rate**	hatched	pupation	emergence	(9	%)
		(%)	(%)	(%)	Female	Male
			<u>k</u>			
536 (60, 476)	88	456 (85.07)	357 (78.29)	336 (94.12)	162 (48.21)	174 (51.79)
577 (286, 291)	85	433 (75.04)	312 (72.06)	303 (97.12)	154 (50.83)	149 (49.17)
484 (186, 298)	71	335 (69.21)	256 (76.42)	242 (94.53)	142 (58.68)	100 (41.32)
509 (145, 364)	89	387 (76.03)	348 (89.92)	306 (87.93)	156 (50.98)	150 (49.02)
499 (171, 328)	95	455 (91.18)	400 (87.91)	320 (80.00)	164 (51.25)	156 (48.75)
515 (202, 313)	84	443 (86.02)	363 (81.94)	316 (87.05)	143 (45.25)	173 (54.75)
469 (186, 283)	75	352 (75.05)	299 (84.94)	250 (83.61)	110 (44.00)	140 (56.00)
490 (231, 259)	86	397 (81.02)	381 (95.97)	355 (93.18)	153 (43.10)	202 (56.90)
564 (263, 301)	87	474 (84.04)	431 (90.93)	328 (76.10)	180 (54.88)	148 (45.12)
494 (226, 268)	82	346 (70.04)	327 (94.51)	278 (85.02)	131 (47.12)	147 (52.88)
525 (197, 328)	93	389 (74.10)	319 (82.01)	290 (90.91)	130 (44.83)	160 (55.17)
566 (272, 294)	94	521 (92.05)	454 (87.14)	427 (94.05)	217 (50.82)	210 (49.18)
	ng the 12 isolines of <i>A</i> Total eggs (number)* 536 (60, 476) 577 (286, 291) 484 (186, 298) 509 (145, 364) 499 (171, 328) 515 (202, 313) 469 (186, 283) 490 (231, 259) 564 (263, 301) 494 (226, 268) 525 (197, 328) 566 (272, 294)	ng the 12 isolines of <i>An. campestris</i> -like Fo Total eggs Embryonation (number)* rate** 536 (60, 476) 88 577 (286, 291) 85 484 (186, 298) 71 509 (145, 364) 89 499 (171, 328) 95 515 (202, 313) 84 469 (186, 283) 75 490 (231, 259) 86 564 (263, 301) 87 494 (226, 268) 82 525 (197, 328) 93 566 (272, 294) 94	ng the 12 isolines of <i>An. campestris</i> -like Form B, E and F. Total eggs Embryonation Number (number)* rate** hatched (%) 536 (60, 476) 88 456 (85.07) 577 (286, 291) 85 433 (75.04) 484 (186, 298) 71 335 (69.21) 509 (145, 364) 89 387 (76.03) 499 (171, 328) 95 455 (91.18) 515 (202, 313) 84 443 (86.02) 469 (186, 283) 75 352 (75.05) 490 (231, 259) 86 397 (81.02) 564 (263, 301) 87 474 (84.04) 494 (226, 268) 82 346 (70.04) 525 (197, 328) 93 389 (74.10) 566 (272, 294) 94 521 (92.05)	ng the 12 isolines of <i>An. campestris</i> -like Form B, E and F. Total eggs Embryonation Number Number (number)* rate** hatched pupation (%) (%) 536 (60, 476) 88 456 (85.07) 357 (78.29) 577 (286, 291) 85 433 (75.04) 312 (72.06) 484 (186, 298) 71 335 (69.21) 256 (76.42) 509 (145, 364) 89 387 (76.03) 348 (89.92) 499 (171, 328) 95 455 (91.18) 400 (87.91) 515 (202, 313) 84 443 (86.02) 363 (81.94) 469 (186, 283) 75 352 (75.05) 299 (84.94) 469 (126, 268) 82 346 (70.04) 327 (94.51) 525 (197, 328) 93 389 (74.10) 319 (82.01) 566 (272, 294) 94 521 (92.05) 454 (87.14)	ng the 12 isolines of <i>An. campestris</i> -like Form B, E and F. Total eggs Embryonation Number Number Pupation emergence (number)* Rate** hatched pupation emergence (%) (%) (%) 536 (60, 476) 88 456 (85.07) 357 (78.29) 336 (94.12) 577 (286, 291) 85 433 (75.04) 312 (72.06) 303 (97.12) 484 (186, 298) 71 335 (69.21) 256 (76.42) 242 (94.53) 509 (145, 364) 89 387 (76.03) 348 (89.92) 306 (87.93) 499 (171, 328) 95 455 (91.18) 400 (87.91) 320 (80.00) 515 (202, 313) 84 443 (86.02) 363 (81.94) 316 (87.05) 469 (186, 283) 75 352 (75.05) 299 (84.94) 250 (83.61) 490 (231, 259) 86 397 (81.02) 381 (95.97) 355 (93.18) 564 (263, 301) 87 474 (84.04) 431 (90.93) 328 (76.10) 494 (226, 268) 82 346 (70.04) 327 (94.51) 278 (85.02) 525 (197, 328) 93 389 (74.10) 319 (82.01) 290 (90.91) 566 (272, 294) 94 521 (92.05) 454 (87.14) 427 (94.05)	ng the 12 isolines of <i>An. campestris</i> -like Form B, E and F. Total eggs Embryonation Number Number </th

Table 4 (continued).

Table 4 (continued).									
Crosses	Total eggs	Embryonation	Number	Number	Number	Number from t	otal emergence		
(Female x Male)	(number)*	rate**	hatched	pupation	emergence	(%	%)		
			(%)	(%)	(%)	Female	Male		
Reciprocal cross				<u>k</u>		324			
HCE6 x AKpB1	473 (102, 371)	93	359 (75.90)	280 (77.99)	258 (92.14)	130 (50.39)	128 (49.61)		
AKpB1 x HCE6	360 (87, 273)	74	220 (61.11)	216 (98.18)	190 (87.96)	96 (50.53)	94 (49.47)		
HCE6 x AAyF2	467 (170, 297)	71	309 (66.17)	263 (85.11)	232 (88.21)	112 (48.28)	120 (51.72)		
AAyF2 x HCE6	423 (207, 216)	92	360 (85.11)	266 (73.89)	218 (81.95)	97 (44.50)	121 (55.50)		
HCE6 x AUdF5	398 (196, 202)	83	330 (82.91)	268 (81.21)	254 (94.78)	130 (51.18)	124 (48.82)		
AUdF5 x HCE6	485 (184, 301)	96	378 (77.94)	318 (84.13)	309 (97.17)	151 (48.87)	158 (51.13)		
HCE6 x AKkE4	402 (171, 231)	94	382 (95.02)	330 (86.39)	307 (93.03)	169 (55.05)	138 (45.95)		
AKkE4 x HCE6	306 (119, 187)	62	189 (61.76)	136 (71.96)	117 (86.03)	63 (53.85)	54 (46.15)		
HCE6 x AMkE1	499 (186, 313)	95	459 (91.98)	418 (91.07)	372 (89.00)	179 (48.12)	193 (51.88)		
AMkE1 x HCE6	424 (138, 286)	86	344 (81.13)	337 (97.97)	317 (94.07)	139 (43.85)	178 (56.15)		
HCE6 x AMsE3	440 (193, 247)	81	339 (77.05)	281 (82.89)	235 (83.63)	120 (51.06)	115 (48.94)		
AMsE3 x HCE6	409 (180, 229)	90	295 (72.13)	233 (78.98)	192 (82.40)	102 (53.12)	90 (46.88)		

ลิปสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

Crosses	Total eggs	Embryonation	Number	Number	Number	Number from t	otal emergence
(Female x Male)	(number)*	rate**	hatched	pupation	emergence	(%	(0)
			(%)	(%)	(%)	Female	Male
 Reciprocal cross	S S S			K	Ţ		
HCE6 x ACiF1	431 (211, 220)	91	375 (87.01)	357 (95.20)	332 (93.00)	149 (44.88)	183 (55.12)
ACiF1 x HCE6	378 (118, 260)	98	352 (93.12)	334 (94.89)	301 (90.12)	166 (55.15)	135 (44.85)
HCE6 x HSkE3	357 (161, 196)	82	253 (70.87)	238 (94.07)	196 (82.35)	84 (42.86)	112 (57.14)
HSkE3 x HCE6	408 (145, 263)	76	249 (61.03)	243 (97.59)	224 (92.18)	125 (55.80)	99 (44.20)
HCE6 x HCtF4	346 (147, 199)	84	287 (82.95)	241 (83.97)	201 (83.40)	87 (43.28)	114 (56.72)
HCtF4 x HCE6	436 (138, 298)	91	388 (88.99)	380 (97.94)	365 (96.05)	186 (50.96)	179 (49.04)
HCE6 x APkF1	472 (212, 260)	94	402 (85.17)	370 (92.04)	300 (81.08)	135 (45.00)	165 (55.00)
APkF1 x HCE6	403 (172, 231)	89	283 (70.22)	253 (89.40)	235 (92.89)	133 (56.60)	102 (43.40)
НСЕ6 х АСрЕ6	383 (33, 350)	90	306 (79.90)	301 (98.37)	247 (82.06)	114 (46.15)	133 (53.85)
АСрЕ6 х НСЕ6	473 (159, 314)	99	445 (94.08)	414 (93.03)	385 (93.00)	177 (45.97)	208 (54.03)

 Table 4 (continued).

Table 4 (continued).

Table 4 (continued)							
					2		
Crosses	l otal eggs	Embryonation	Number	Number	Number	Number from t	otal emergence
(Female x Male)	(number) [*]	rate**	hatched	pupation	emergence	(%	(0)
			(%)	(%)	(%)	Female	Male
F ₁ cross	25		\$ m		S		
(HCE6 x AKpB1)F ₁ x (HCE6 x AKpB1)F ₁	407 (180, 227)	90	366 (89.93)	278 (75.96)	231 (83.09)	137 (59.31)	94 (40.69)
(AKpB1 x HCE6)F ₁ x (AKpB1 x HCE6)F ₁	399 (75, 324)	91	303 (75.94)	251 (82.84)	226 (90.04)	104 (46.02)	122 (53.98)
(HCE6 x AAyF2)F ₁ x (HCE6 x AAyF2)F ₁	529 (226, 303)	81	397 (75.05)	369 (92.95)	317 (85.91)	158 (49.84)	159 (50.16)
(AAyF2 x HCE6) F_1 x (AAyF2 x HCE6) F_1	541 (224, 317)	86	422 (78.00)	301 (71.33)	265 (88.04)	135 (50.94)	130 (49.06)
(HCE6 x AUdF5)F ₁ x (HCE6 x AUdF5)F ₁	485 (157, 328)	87	407 (83.92)	338 (83.05)	294 (86.98)	141 (47.96)	153 (52.04)
(AUdF5 x HCE6)F ₁ x (AUdF5 x HCE6)F ₁	438 (159, 279)	81	350 (79.91)	317 (90.57)	282 (88.96)	127 (45.04)	155 (54.96)
(HCE6 x AKkE4)F ₁ x (HCE6 x AKkE4)F ₁	459 (225, 234)	73	317 (69.06)	288 (90.85)	265 (92.01)	138 (52.08)	127 (47.92)
(AKkE4 x HCE6)F ₁ x (AKkE4 x HCE6)F ₁	400 (136, 264)	77	280 (70.00)	262 (93.57)	215 (82.06)	109 (50.70)	106 (49.30)
(HCE6 x AMkE1)F ₁ x (HCE6 x AMkE1)F ₁	420 (116, 304)	96	386 (91.90)	317 (82.12)	247 (77.92)	101 (40.89)	146 (59.11)
(AMkE1 x HCE6) F_1 x (AMkE1 x HCE6) F_1	489 (204, 285)	97	449 (91.82)	332 (73.94)	252 (75.90)	128 (50.79)	124 (49.21)
(HCE6 x AMsE3)F ₁ x (HCE6 x AMsE3)F ₁	439 (77, 362)	91	356 (81.09)	263 (73.88)	228 (86.69)	120 (52.63)	108 (47.37)
(AMsE3 x HCE6) F_1 x (AMsE3 x HCE6) F_1	507 (211, 296)	93	451 (88.95)	343 (76.05)	281 (81.92)	129 (45.91)	152 (54.09)

Table 4 (continued).

Total eggs	Embryonation	Number	Number	Number	Number from t	otal emergence
(number)*	rate**	hatched	pupation	emergence	(%	(0)
		(%)	(%)	(%)	Female	Male
493 (221, 272)	90	434 (88.03)	352 (81.11)	250 (71.02)	132 (52.80)	118 (47.20)
491 (201, 290)	79	349 (71.08)	293 (83.95)	252 (86.01)	116 (46.03)	136 (53.97)
443 (154, 289)	89	381 (86.00)	312 (81.89)	275 (88.14)	140 (50.91)	135 (49.09)
531 (249, 282)	98	494 (93.03)	449 (90.89)	350 (77.95)	161 (46.00)	189 (54.00)
374 (101, 273)	93	359 (95.99)	330 (91.92)	271 (81.12)	146 (53.87)	125 (46.13)
424 (79, 345)	86	399 (94.10)	391 (97.99)	305 (78.01)	135 (44.26)	170 (55.74)
506 (227, 279)	80	380 (75.10)	331 (87.11)	245 (74.02)	118 (48.16)	127 (51.84)
531 (259, 272)	92	431 (81.17)	344 (79.81)	276 (80.23)	141 (51.09)	135 (48.91)
545 (269, 276)	91	447 (82.02)	387 (86.58)	325 (83.98)	136 (41.85)	189 (58.15)
397 (69, 328)	89	346 (87.15)	243 (70.23)	224 (92.18)	106 (47.32)	118 (52.68)
	Total eggs (number)* 493 (221, 272) 491 (201, 290) 443 (154, 289) 531 (249, 282) 374 (101, 273) 424 (79, 345) 506 (227, 279) 531 (259, 272) 545 (269, 276) 397 (69, 328)	Total eggsEmbryonation(number)*rate**493 (221, 272)90491 (201, 290)79443 (154, 289)89531 (249, 282)98374 (101, 273)93424 (79, 345)86506 (227, 279)80531 (259, 272)92545 (269, 276)91397 (69, 328)89	Total eggsEmbryonationNumber(number)*rate**hatched(%)(%)493 (221, 272)90434 (88.03)491 (201, 290)79349 (71.08)443 (154, 289)89381 (86.00)531 (249, 282)98494 (93.03)374 (101, 273)93359 (95.99)424 (79, 345)86399 (94.10)506 (227, 279)80380 (75.10)531 (259, 272)92431 (81.17)545 (269, 276)91447 (82.02)397 (69, 328)89346 (87.15)	Total eggsEmbryonationNumberNumber(number)*rate**hatchedpupation(%)(%)(%)493 (221, 272)90434 (88.03)352 (81.11)491 (201, 290)79349 (71.08)293 (83.95)443 (154, 289)89381 (86.00)312 (81.89)531 (249, 282)98494 (93.03)449 (90.89)374 (101, 273)93359 (95.99)330 (91.92)424 (79, 345)86399 (94.10)391 (97.99)506 (227, 279)80380 (75.10)331 (87.11)531 (259, 272)92431 (81.17)344 (79.81)545 (269, 276)91447 (82.02)387 (86.58)397 (69, 328)89346 (87.15)243 (70.23)	Total eggsEmbryonationNumberNumberNumber(number)*rate**hatchedpupationemergence(%)(%)(%)(%)493 (221, 272)90434 (88.03)352 (81.11)250 (71.02)491 (201, 290)79349 (71.08)293 (83.95)252 (86.01)443 (154, 289)89381 (86.00)312 (81.89)275 (88.14)531 (249, 282)98494 (93.03)449 (90.89)350 (77.95)374 (101, 273)93359 (95.99)330 (91.92)271 (81.12)424 (79, 345)86399 (94.10)391 (97.99)305 (78.01)506 (227, 279)80380 (75.10)331 (87.11)245 (74.02)531 (259, 272)92431 (81.17)344 (79.81)276 (80.23)545 (269, 276)91447 (82.02)387 (86.58)325 (83.98)397 (69, 328)89346 (87.15)243 (70.23)224 (92.18)	Total eggsEmbryonationNumberNumberNumberNumberNumber from t(number)*rate**hatchedpupationemergence(%)(%)(%)(%)(%)Female493 (221, 272)90434 (88.03)352 (81.11)250 (71.02)132 (52.80)491 (201, 290)79349 (71.08)293 (83.95)252 (86.01)116 (46.03)443 (154, 289)89381 (86.00)312 (81.89)275 (88.14)140 (50.91)531 (249, 282)98494 (93.03)449 (90.89)350 (77.95)161 (46.00)374 (101, 273)93359 (95.99)330 (91.92)271 (81.12)146 (53.87)424 (79, 345)86399 (94.10)391 (97.99)305 (78.01)135 (44.26)506 (227, 279)80380 (75.10)331 (87.11)245 (74.02)118 (48.16)531 (259, 272)92431 (81.17)344 (79.81)276 (80.23)141 (51.09)545 (269, 276)91447 (82.02)387 (86.58)325 (83.98)136 (41.85)397 (69, 328)89346 (87.15)243 (70.23)224 (92.18)106 (47.32)

* Two selective egg-batches of inseminated females from each cross; ** Dissection from 100 eggs.

4. DNA sequences and phylogenetic analysis

DNA sequences were determined and analyzed for the ITS2, COI, and COII regions of the twenty-eight isolines of An. campestris-like Form B, E and F from twelve provinces in Thailand (Table 5). All isolines showed the same length for the ITS2 (1,651 bp), COI (658 bp) and COII (685 bp). Each species of An. barbirostris A1, A2, A3, A4 and An. campestris-like had different length for the ITS2 region (Saeung et al, 2007; 2008; Suwannamit et al, 2009). All isolines from the present study, including the new karyotypic form, had the same length for the ITS2 region as that of An. campestris-like in the previous studies. To reveal the evolutionary relationship among the three karyotypic forms of An. campestris-like, neighborjoining trees were made (Figure 5-7). The trees for ITS2, COI and COII separated twenty-eight isolines of An. campestris-like Form B, E and F from the other species, with strongly supported bootstrap probabilities (98-100%). But, in the clade of An. campestris-like of the trees, the isolines of Form B, E, and F were nested. Additionally, averages genetic distances within and between the karyotypic forms were listed in Table 6, indicating low intraspecific variation (0.001-0.004) both within and between the forms for the three regions.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved Table 5 Locations, isoline colonies and karyotypic forms of An. campestris-like and their GenBank accession numbers.

						Genbank accession number		
Location	Code of	Karyotypic form	Length of ITS2	Region				
	isoline*		(bp)					
					ITS2	COI	COII	
Chiang Mai	502	2			S			
	HCE6**	Е	1,651	ITS2, COI, COII	AB331566	AB331583	AB331604	
	НСВ9	В	1,651	ITS2, COI, COII	AB331563	AB331582	AB331601	
	HCmE12	Е	1,651	ITS2, COI, COII	AB436074	AB436102	AB436130	
	HCmE14	Е	1,651	ITS2, COI, COII	AB436075	AB436103	AB436131	
	HCmE15	Е	1,651	ITS2, COI, COII	AB436076	AB436104	AB436132	
	HCmB18	В	1,651	ITS2, COI, COII	AB436077	AB436105	AB436133	
	HCmB20	В	1,651	ITS2, COI, COII	AB436078	AB436106	AB436134	
Kamphaeng Phet	AKpB1**	В	1,651	ITS2, COI, COII	AB436079	AB436107	AB436135	
	HKpE1	E	1,651	ITS2, COI, COII	AB436080	AB436108	AB436136	
Ayuttaya	AAyF2**	F	1,651	ITS2, COI, COII	AB436081	AB436109	AB436137	
	AAyF6	F	1,651	ITS2, COI, COII	AB436082	AB436110	AB436138	
	AAyE7	Е	1,651	ITS2, COI, COII	AB436083	AB436111	AB436139	
Со	oyrigh	nt [©] b	y Chia	ng Mai	Univ	ersit	y	

Table 5 (continued).

						Genbank accession number		
Location	Code of	Karyotypic	Length of ITS2 (bp)	Region				
	isoline*	form			ITS2	СОІ	COII	
Udon Thani	AUdF3	F	1,651	ITS2, COI, COII	AB436084	AB436112	AB436140	
	AUdF4	F	1,651	ITS2, COI, COII	AB436085	AB436113	AB436141	
	AUdF5**	F	1,651	ITS2, COI, COII	AB436086	AB436114	AB436142	
Khon Kaen	AKkF1	F	1,651	ITS2, COI, COII	AB436087	AB436115	AB436143	
	AKkE4**	Е	1,651	ITS2, COI, COII	AB436088	AB436116	AB436144	
	AKkE8	Е	1,651	ITS2, COI, COII	AB436089	AB436117	AB436145	
Maha Sarakham	AMsE3**	Е	1,651	ITS2, COI, COII	AB436090	AB436118	AB436146	
	AMsE4	Е	1,651	ITS2, COI, COII	AB436091	AB436119	AB436147	
	AMsE5	Е	1,651	ITS2, COI, COII	AB436092	AB436120	AB436148	
Mukdahan	AMkE1**	Е	1,651	ITS2, COI, COII	AB436093	AB436121	AB436149	
Chaiyaphum	ACiF1**	F	1,651	ITS2, COI, COII	AB436094	AB436122	AB436150	
Sa Kaeo	HSkF1	F	1,651	ITS2, COI, COII	AB436095	AB436123	AB436151	
	HSkE2	Е	1,651	ITS2, COI, COII	AB436096	AB436124	AB436152	
	HSkE3**	E	1,651	ITS2, COI, COII	AB436097	AB436125	AB436153	

Copyright[©] by Chiang Mai University All rights reserved

Table 5 (continued).

					Ger	bank accession	number
Location	Code of	Karyotypic	Length of ITS2	Region			
	isoline*	form	(bp)				
					ITS2	COI	COII
Chanthaburi	HCtE2	Е	1,651	ITS2, COI, COII	AB436098	AB436126	AB436154
	HCtF4**	F	1,651	ITS2, COI, COII	AB436099	AB436127	AB436155
Prachuap Khiri Khan	APkF1**	F	1,651	ITS2, COI, COII	AB436100	AB436128	AB436156
Chumphon	ACpE6**	Е	1,651	ITS2, COI, COII	AB436101	AB436129	AB436157

*: H-human bait, A-animal bait; **: Isolines used in crossing experiments.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 5 A phylogenetic trees of *An. campestris*-like Form B, E and F (*CAM*) based on molecular analysis of ITS2. The tree was generated by neighbor-joining analysis. Numbers on the nodes indicate probabilities based on 1,000 bootstrap replicates. A probability of more than 50% is shown. Branch lengths are proportional to genetic distance (scale bar).

Figure 6 A phylogenetic trees of *An. campestris*-like Form B, E and F (*CAM*) based on molecular analysis of COI. The tree was generated by neighbor-joining analysis. Numbers on the nodes indicate probabilities based on 1,000 bootstrap replicates. A probability of more than 50% is shown. Branch lengths are proportional to genetic distance (scale bar).

Figure 7 A phylogenetic tree of *An. campestris*-like Form B, E and F (*CAM*) based on molecular analysis of COII. The tree was generated by neighbor-joining analysis. Numbers on the nodes indicate probabilities based on 1,000 bootstrap replicates. A probability of more than 50% is shown. Branch lengths are proportional to genetic distance (scale bar).

90	ITS2	COI	COII	
Within Form			. 3	$\overline{\Lambda}$
В	0.001	0.004	0.001	
Е	0.002	0.004	0.002	
F	0.002	0.003	0.002	
Between Forms				
В-Е	0.002	0.004	0.001	
B-F	0.002	0.004	0.001	
E-F	0.002	0.003	0.002	

Table 6 Average genetic distance within and between the *An. campestris*-like FormB, E and F for the ITS2, COI and COII regions.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved 5. Morphological studies of eggs, larvae, pupae and adults under light microscope

The characteristics for morphological investigations of eggs, larvae, pupae and adults were depending upon the standard description of Reid (1968), and Harrison and Scanlon (1975). A total of 71 material samples of eggs, larvae, pupae and adults of F_1 - and/or F_2 -progeny derived from 71 isolines were used for examination. Comparative morphology of larvae, *i.e.*, summation of branches of seta 5-I (6-9), 5-III (11-17) and 5-VII (8-16), and seta 13-I (14-31), 13-II (17-25), 13-III (13-24) and 13-IV (8-14); and pupae, *i.e.*, seta 2-III (10-19), 2-VI (20.3-30.0 branches), and 2-VII (10-18); and adults, *i.e.*, color of wing (light- and dark-winged type), pale sterna scales, and hind tarsal pale band, the results of examination revealed that all characteristics were cryptic differentiation among *An. campestris*-like strains and/or karyotypic forms.

6. Morphological studies of eggs under scanning electron microscopy

The morphological feature and exochorionic sculpturing of *An. campestris*like Form B, E and F was generally similar (Figure 8, 9), and no account of species specific characteristics that could be used to differentiate and/or characterize under SEM. The eggs were boat-shaped, with a somewhat broader anterior or head-end (Figure 8A). Viewed laterally, the contour of the entire egg was concave on the morphologically dorsal surface and convex on the ventral surface (Figure 8B). The middle region of each egg side was dominated by a float with approximately 31 ribs. Viewed dorsally, there was a bare area, which was surrounded by the two longitudinal bands of a sclerotized ridge-like frill; this bare area is called the deck. The deck was continuous for the whole length of the egg and slightly constricted near the midline (Figure 8A). At each end of the egg on the dorsal surface were large-lobed tubercles that ranged from 4-5 in number. Large-lobed tubercles on the anterior and posterior ends were rosette-shaped, giving rise to 6-7 lateral lobes, and surrounded by a sclerotized ridge and raised border (Figure 8C). The tubercles on the deck were irregularly jagged and surrounded by other much smaller, irregular tubercles (Figure 8D). The inner surface of the frill was of a sclerotized, ridged-like texture and marked by picket like-ribs (Figure 9A); the outer surface was smooth with a parallel brick-like texture along its entire length (Figure 9B). The exochorionic sculpturing appears as more or less regularly hexagonal reticulum. The reticulum is found throughout the entire egg except at the deck. It is formed by membrane like-wall enclosing many small, less prominent tubercles (Figure 9C). Downward to the anterior end, the micropylar orifice could be seen clearly. It was surrounded by a smooth collar that had an irregular outer margin about 6 spurs that extended radially toward the central orifice (Figure 9D).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 8 Egg surface topography of *An. campestris*-like under scanning electron microscope (SEM); whole eggs: (A) dorsal aspect, anterior end (a), posterior end (p) (x 230). (B) Lateral aspect, anterior end (a), posterior end (p) (x 250). (C) Anterior end, showing irregularly jagged tubercles on the deck and four large, rosette-shaped tubercles (2,200). (D) A higher magnification of the irregularly jagged tubercles on the deck (x 7,000).

<mark>ລິບສີກຮົ້ນກາວົກຍາລັຍເຮີຍວໃหນ່</mark> Copyright[©] by Chiang Mai University All rights reserved

Figure 9 Egg surface topography of *An. campestris*-like under scanning electron microscope (SEM): (A) the inner surface of the frill (fr), showing its sclerotized, ridge-like texture with picket-like ribs (x 3,500). (B) The outer surface of the frill (fr), showing its smooth surface and parallel brick-like texture along its entire length (x 3,500). (C) The exochorionic sculptering in the middle of the egg, showing more or less regularly hexagonal reticulum with membrane like-wall enclosing many small, less prominent tubercles. (D) The anterior end, showing the micropylar orifice surrounded by a smooth collar with an irregular outer margin (x 3,300).

7. Salivary gland polytene chromosome investigation

When comparing bands on the same arm of X-chromosome and autosomes (2R, 2L, 3R and 3L) among 12 strains of *An. campestris*-like Form B (Figure 10), E (Figure 11) and F (Figure 12), no major chromosomal rearrangement that related to the strains and/or karyotypic variations were demonstrated. In addition, the homosequential synapsis salivary gland polytene chromosomes of F_1 -hybrid larvae from the crosses among *An. campestris*-like forms were good supportive evidence.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Figure 10 Complete set of salivary gland polytene chromosomes of An. campestris-like Form B (C = Centromere,

L = Left arms, R = Right arms, X = X-chromosome).

Copyright[©] by Chiang Mai University All rights reserved

Figure 11 Complete set of salivary gland polytene chromosomes of *An. campestris*like Form E (C = Centromere, L = Left arms, R = Right arms, X = X-chromosome).

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Figure 12 Complete set of salivary gland polytene chromosomes of *An. campestris*like Form F (C = Centromere, L = Left arms, R = Right arms, X = X-chromosome).

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

8. Malaria susceptibility test

Details of oocyst and sporozoite rates are shown in Table 7 and 8. The 100% oocyst rate and 93.33% sporozoite rate, and 100% oocyst rate and 85.71-92.31% sporozoite rates obtained from *An. cracens* (the outgroup control mosquito-vector) from experimental feedings of blood containing gametocytes of *P. falciparum* and *P. vivax*, respectively, indicated that all feedings were conditional experiments, which reflected on the proper density and maturity of infective gametocytes in infected blood.

In the experimental feedings of *P. falciparum*, represented *An. campestris*-like Form E (Chiang Mai strain) and F (Udon Thani strain) were refractory to *P. falciparum* by providing 0% oocyst and sporozoite rate, while 100% oocyst and 93.33% sporozoite rates were obtained from the out group control mosquito-vector, *An. cracens* (Table 7).

In the experimental feedings of *P. vivax* (Table 8), comparative statistical analyses of the oocyst rates and average number of oocysts per infected midgut of *An. campestris*-like [oocyst rates: Form B (100%) and (66.67%), and E (100%) and (100%), 8 and 14 days, respectively, after feeding; average number oocyst per infected midgut: Form B (77.60) and (20.75), and E (131.00) and (42.00), 8 and 14 days, respectively, after feeding], and *An. cracens*, an efficient control-vector, exhibited no significant difference (p > 0.05). Likewise, the sporozoite rates of *An. campestris*-like [Form B (66.67%) and E (64.29%), 14 days after feeding], did not differ significantly from *An. cracens* (p > 0.05). The characteristics of oocysts in midguts and sporozoites from squashed salivary glands of *An. cracens* and *An campestris*-like Form E are shown in Figures 13 and 14, respectively.

An. campestris-like Form E (Sa Kaeo strain) and F (Ayuttaya strain): the oocyst rates of An. campestris-like Form E [experiment II (60%) and III (40%), 8 days after feeding; experiment II (33.33%) and III (0%), 14 days after feeding] and F [experiment II (40%) and III (20%), 8 days after feeding; experiment II (12.50%) and III (0%), 14 days after feeding], and the average number of oocysts per infected midgut of An. campestris-like Form E [experiment II (20.33) and III (2.50), 8 days after feeding; experiment II (12.20) and III (0), 14 days after feeding] and F [experiment II (8.50) and III (1.50), 8 days after feeding; experiment II (2.50) and III (0), 14 days after feeding], were lower than An. cracens, an efficient control-vector, in all experimental studies. Comparative statistical analyses of the oocyst rates and average number of oocysts per infected midgut between An. cracens and An. campestris-like Form E and F, 8 days after feeding, were performed. The results demonstrated that only the oocyst rates between An. cracens and An. campestris-like Form F (experiment III) differed significantly (p < 0.05), whereas only the average number of oocysts per infected midgut between An. cracens and An. campestris-like Form E and F (experiment III) did not differ significantly (p > 0.05). Comparative statistical analyses of the oocyst rates and average number of oocysts per infected midgut between An. cracens and An. campestris-like Form E and F, 14 day after feeding, were not done because during this period the mature oocysts from the midguts of An. cracens ruptured and yielded unreliable results. It was interesting to note that different stages of oocyst development could be observed in An. campestrislike Form E and F, when compared with An. cracens. Most of the oocysts recovered from An. cracens, 8 and 14 days after feeding, showed a mature stage of development, with a wheel-shaped pattern of sporozoites inside cysts, while in An. campestris-like

Form E (Sa Kaeo strain) and F (Ayuttaya strain), all of the investigated oocysts had abnormal development, with retaining stages and some forming melanin inside cysts. The sporozoite rates of *An. campestris*-like Form E and F (experiment II and III) were 0% 14 days after feedings. The results revealed that only *An. campestris*-like Form B and E strain from Chiang Mai province were proven to be the efficiently potential vector for *P. vivax*.

 Table 7 Oocysts and sporozoites detected from An. cracens and An. campestris-like Form E and F 8 and 14 days post infection with P. falciparum

 (gametocyte density/200 wbc = 40).

Magguita anagiag		8 days	14 days				
Mosquito species	Oocyst rate	Average number of oocysts	Oocyst rate	Average number of oocysts	Sporozoite rate		
	(number)	per infected midgut (range)	(number)	per infected midgut (range)	(number)		
An. cracens	100 (5/5)	114.80 ± 25.26 (79-141)	86.67 (13/15)	86.38 ± 65.39 (4-201)	93.33 (14/15)		
An. campestris-like							
forms							
E (CM)	0 (0/5)	0	0 (0/14)	0	0 (0/14)		
F (UD)	0 (0/5)	0	0 (0/12)	0	0 (0/12)		

CM: Chiang Mai strain; UD: Udon Thani strain

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

 Table 8 Oocysts and sporozoites detected from An. cracens and An. campestris-like Form B, E and F 8 and 14 days post infection with P. vivax (gametocyte density/200wbc = 32, 15 and 20 in experiment I, II and III, respectively).

	8 days		14 days		
Mosquito species	Oocyst rate (number)	Average number of oocysts per	Oocyst rate	Average number of oocysts	Sporozoite
		infected midgut (range)	(number)	per infected midgut (range)	rate (number)
Experiment I	202		2	202	
An. cracens	100 (5/5)	108.60 ± 38.22 (53-136)	90.00 (18/20)	48.44 ± 17.84 (17-78)	90.00 (18/20)
An. campestris-like forms					
B (CM)	100 (5/5)	77.60 ± 37.33 (29-130)	66.67 (4/6)	20.75 ± 9.91 (8-32)	66.67 (4/6)
E (CM)	100 (5/5)	131.00 ± 42.95 (91-194)	100 (14/14)	42.00 ± 14.90 (14-77)	64.29 (9/14)
Experiment II					
An. cracens	100 (5/5)	145.00 ± 93.37 (11-245)	85.71 (18/21)	40.17 ± 66.38 (1-248)	85.71 (18/21)
An. campestris-like forms					
E (SK)	60 (3/5)	20.33 ± 16.44 (8-39)**	33.33 (5/15)	12.20 ± 9.73 (3-24)	0 (0/15)
F (AY)	40 (2/5)	8.50 ± 4.95 (5-12)**	12.50 (2/16)	2.50 ± 2.12 (1-4)	0 (0/16)
Experiment III					
An. cracens	100 (5/5)	$10.20 \pm 6.46 (1-18)$	76.92 (10/13)	4.50 ± 2.07 (1-7)	92.31 (12/13)
An. campestris-like forms					
E (SK)	40 (2/5)	2.50 ± 0.71 (2-3)	0 (0/12)	0	0 (0/12)
F (AY)	20 (1/5)*	$1.50 \pm 0.71 \ (1-2)$	0 (0/14)	0	0 (0/14)

CM: Chiang Mai strain; SK: Sa Kaeo strain; AY: Ayuttaya strain; Oocyst rate: *, p < 0.05 (Fisher exact test); Average number of oocyst per infected midgut: **, p < 0.05 (t-test, two-sides); sporozoite rate.

62

Figure 13 Oocysts of *P. vivax* recovered from midgut of (A) *An. cracens* and (B) *An. campestris*-like Form E (Chiang Mai) on day 8 after infection.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 14 Free flow regular spindle-shaped sporozoites of *P. vivax* from the squashed salivary glands (small arrow) (A) *An. cracens* and (B) *An. campestris*-like Form E (Chiang Mai) on day 14 after infection.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved