TABLE OF CONTENTS

	Page
Acknowledgement	iii
Abstract (English)	v
Abstract (Thai)	ix
List of tables	xxvii
List of figures	xxx
Abbreviations and symbols	xxxviii
Chapter 1 Introduction	
1.1 Statement and significance of the problem	
1.2 Objective	4
1.3 Scope of study	4
1.4 Literature reviews	5
1.4.1. Green fluorescent protein (GFP)	5
1.4.1.1. Introduction	5
A. Historical perspective	5
B. Chromophore formation	9
1.4.1.2. Applications of GFP	SSG 11
A. Fusion tags	11
B. The reporter gene	
C. Fluorescence resonance	13
energy transfer (FRET)	

D. Photobleaching	14
E. Protein-Protein interaction	15
F. Other applications	16
1.4.2. Calcitonin	17
1.4.2.1. Introduction	17
1.4.2.2. Physiologic roles of calcitonin	20
1.4.2.3. Indications	21
A. Osteoporosis	22
B. Paget's disease	22
C. Analgesic effect	23
1.4.2.4. Pharmaceutical sCT formulations	23
1.4.2.5. Calcitonin receptor (CTR) and cell	24
signaling	
1.4.3. Cell penetrating peptides (CPPs)	25
1.4.3.1. Introduction	25
1.4.3.2. Mechanism of translocation	27
1.4.3.3. Applications	32
A. The targeted and enhanced	32
delivery	
B. Protein and peptide delivery	33
C. Antisense nucleotides delivery	34
D. Peptide nucleic acids (PNAs)	35
delivery	
E. siRNA delivery	35

F. Liposome delivery	36
G. Plasmid delivery	36
1.4.3.4. Tat peptide	39
A. Introduction	39
B. Tat and cell surface interactions	40
C. Possible mechanisms of	46
internalisation	
1.4.4. Poliovirus	50
1.4.4.1. General introduction	50
1.4.4.2. The structure of poliovirus	52
1.4.4.3. Cellular life cycle	54
A. Cell entry	54
B. Polyprotein translation and	56
proteolytic processing	
C. RNA replication	57
1.4.4.4. Poliovirus receptor (PVR, CD155) and	60
pathogenesis	
1.4.4.5. Interaction of poliovirus receptor to	64
poliovirus	
1.4.4.6. Application of poliovirus capsid proteins	67
A. Drug design	67
B Ligand-receptor mediated drug	69 SIT
targeting	
1 4 5. Protein and peptide delivery systems	
	10

1.4.5.	1. Barriers of protein and peptide delivery	70
	A. Physical barriers: size, charge and	70
	solubility constraints	
	B. Enzymatic barriers	70
1.4.5.2	2. Strategy for peptide delivery	74
	A. Chemical modification	74
	B. Protease inhibitors co-administration	76
	C. Absorption enhancers	77
	D. Formulation vehicles	79
	1. Emulsions	79
	2. Hydrogels	80
	3. Polymeric Particulate Systems	81
	4. Nanovesicles	81
	E. Cell penetrating peptides (CPPs)	82
1.4.6. Protein	expression	82
1.4.6.1	. Fundamental techniques	82
	A. Polymerase chain reaction (PCR)	82
	B. Agarose gel electrophoresis	87
	C. SDS-PAGE	88
	D. Western blot analysis	90
1.4.6.2.	Generation of expression plasmids	91
	A. Multi-parallel molecular cloning	91
	strategies	
	B. Choice of tag	93
	5	

1.4.6.3. Expression system	95
A. Escherichia coli-mediated protein	95
expression	
B. Baculovirus-mediated insect cell protein	96
expression	
C. Other expression systems	97
1.4.6.4. Protein purification	99
Chapter 2 Materials and methods	
2.1. Materials and equipments	100
2.1.1. Chemicals	100
2.1.2. Animals	102
2.1.3. Cell lines, bacterial cultures and plasmids	102
2.1.4. Equipments	102
2.2 Methods	105
Part 1 : Construction of GFP, Tat/GFP, VP/GFP	106
and VP/Tat/GFP fusion proteins	
expression plasmid	
1.1. Primer design	106
1.2. Amplification of genes encoding GFP	107
or fusion protein	
1.3. Linearization of pET28a(+)	107
expression vector and PCR fragment	
digestion	
1.4. Ligation reaction	108

xvii

Part 2	: Expression and purification of GFP,	109
	Tat/GFP, VP/GFP and VP/Tat/GFP	
	fusion protein	
	2.1. Transformation	109
	2.2. Protein expression	110
	2.3. Purification and analysis	110
	2.3.1. Ni-NTA purification	110
	2.3.2. SDS-PAGE and western	111
	blot analysis	
	2.3.3. Protein concentration	112
	determination by Bradford	
	method	
	2.3.4. Fluorescent intensity	113
	measurement	
Part 3	: Cellular uptake of GFP, Tat/GFP,	113
	VP/GFP and VP/Tat/GFP fusion	
	proteins	
	3.1. Cell culture	113
	3.2. Cellular uptake study	113
Part 4 :	Cellular uptake efficiency enhancement	880114 ML
	strategy	
	4.1. Entrapment in nanovesicles	Univ ₁₁₄ rsity

4.1.1. Preparation of the emp	ty 115
nanovesicles	
(liposomes/niosomes)	
4.1.2. Physical properties	115
determination of	
nanovesicular formula	ations
A. Mean particle size	as and 116
zeta potential	
B. Entrapment efficie	ency of 116
Tat-GFP loade	d in
nanovesicles	
C. Deformability inde	ex (DI) 117
determination	
4.1.3. Cellular uptake study	of Tat- 117
GFP loaded nanovesicl	es
4.1.4. Chemical stability	117
determination of Tat-G	FP
loaded nanovesicles	
4.1.5. Cytotoxicity of nanov	esicular 118
formulations by the S	RB
assay	
4.1.6. Development of low	v toxic 118
elastic anionic nioson	nes o r v o d
4.1.7. Transdermal absorption	n study 119

A. Preparation of rat skin	119
B. Transdermal absorption	120
experiment	
4.2. Tat/GFP, VP/GFP and VP/Tat/GFP	121
mixture	
4.2.1. Evaluation of simple mixing	121
method as cargoes transport	
strategy	
A. Cellular uptake study	121
B. Transepithelial study	121
C. Transdermal delivery	122
through rat skin	
4.2.2. Tat/GFP, VP/GFP and	122
VP/Tat/GFP mixture preparation	
4.2.3. Cellular uptake study of Tat/GFP,	123
VP/GFP and VP/Tat/GFP	
mixture	
Part 5 : In vitro calcitonin activity study of	123
Tat/sCT, VP/sCT and VP/Tat/sCT	
ansum mixture 193818	
5.1. Mixture preparation	123
5.2. Physical properties of mixture	NIV₁₂₃ ISITY
5.2.1. Size and zeta potential	124
determination	

5.2.2. Differential scanning	124
calorimetry (DSC)	
5.2.3. Fourier transform infrared	124
spectroscopy (FT-IR)	
5.3. In vitro calcitonin activity	124
experiment	
5.4. Determination of poliovirus	125
receptor (PVR) expression	
Part 6 : In vivo calcitonin activity of Tat/sCT,	126
VP/sCT and VP/Tat/sCT mixture	
6.1. Animals	126
6.2. Subcutaneous administration of	126
sCT	
6.3. Oral administration of Tat/sCT,	126
VP/sCT and VP/Tat/sCT mixture	
6.4. Transdermal absorption of sCT and	127
Tat/sCT at 1:1 molar ratio	
6.5. Chemical stability of sCT and	127
Tat/sCT mixture	
Chapter 3 Results and discussion	
Part 1 : Construction of GFP, Tat/GFP, VP/GFP and VP/Tat/GFP fusion protein expression	Universit
A plasmid S M C S	

1.1. Amplification of genes encoding GFP,	129
Tat/GFP, VP/GFP and VP/Tat/GFP	
1.2. Construction of GFP, Tat/GFP, VP/GFP	131
and VP/Tat/GFP fusion protein	
expression vectors	
Part 2 : Expression and purification of GFP, Tat/GFP,	134
VP/GFP and VP/Tat/GFP fusion protein	
2.1. Transformation of expression vectors and	134
colony screening	
2.2. Protein expression and purification	136
2.2.1. Target protein verification for	136
expression level and solubility	
2.3. Analysis of purified proteins	136
Part 3 : Cellular uptake of GFP, Tat/GFP, VP/GFP and	140
VP/Tat/GFP fusion protein	
Part 4 : Cellular uptake efficiency enhancement	145
strategy	
4.1. Entrapment in nanovesicles	146
4.1.1. Preparation and physical properties	146
determination of nanovesicular	
formulations (liposomes/niosomes)	
A. Mean particle sizes and zeta	146
potential	

xxii

B. Entrapment efficiency of Tat-	147
GFP loaded in nanovesicles	
C. Deformability index (DI)	150
determination	
4.1.2. Cellular uptake and cytotoxicity of	151
Tat-GFP loaded nanovesicles	
4.1.3. Chemical stability determination of	154
Tat-GFP loaded nanovesicles	
4.1.4. Development of low toxic elastic	156
anionic niosomes	
4.1.5. Cellular uptake and cytotoxicity	160
4.1.6. Transdermal absorption study	161
4.2. Tat/GFP, VP/GFP and VP/Tat/GFP	164
mixture	
4.2.1. Evaluation of simple mixing method	164
as cargoes transport strategy	
4.2.2. Cellular uptake study of Tat/GFP,	169
VP/GFP and VP/Tat/GFP mixture	
Part 5 : In vitro calcitonin activity of Tat/sCT, VP/sCT	170
and VP/Tat/sCT mixture	
5.1. Physical properties of the mixture	170
5.1.1. Sizes and zeta potential	
determination	

xxiii

5.1.2. Differential scanning calorimetry	172
(DSC) and Fourier transform	
infrared spectroscopy (FT-IR)	
5.2. In vitro calcitonin activity experiment	181
Part 6 : In vivo calcitonin activity of Tat/sCT, VP/sCT	182
and VP/Tat/sCT mixtures	
6.1. Subcutaneous administration of sCT	182
6.2. Oral administration of Tat/sCT, VP/sCT	184
and VP/Tat/sCT mixtures	
6.3. Transdermal absorption of sCT and Tat/sCT	186
at 1:1 molar ratio	
6.4. Chemical stability of sCT and Tat/sCT	190
mixture	
Chapter 4 Conclusion	
Part 1 : Construction of GFP, Tat/GFP, VP/GFP and	192
VP/Tat/GFP fusion protein expression	
plasmid	
Part 2 : Expression and purification of GFP,	192
Tat/GFP, VP/GFP and VP/Tat/GFP fusion	
protein protein	
Part 3 : Cellular uptake of GFP, Tat/GFP, VP/GFP	193
Part 4 : Cellular uptake efficiency enhancement	194
strategy	
4.1. Entrapment in nanovesicles	194

xxiv

4.2. Tat/GFP, VP/GFP and VP/Tat/GFP	195
mixture	
Part 5 : In vitro calcitonin activity of Tat/sCT,	196
VP/sCT and VP/Tat/sCT mixture	
Part 6 : In vivo calcitonin activity of Tat/sCT, VP/sCT	197
and VP/Tat/sCT mixture	
References	200
Appendices	234
Appendix A Chemical and physical properties of substances	235
used in this study	
Appendix B Plasmid map	242
Appendix C Formulation of buffer and solution used in this	244
study	
Appendix D Amino acids sequence of GFPmut2	246
Appendix E Calculation of nanovesicle compositions	247

Curriculum vitae 249 **A l l c g h t s r e s e r v e d**

LIST OF TABLES

Table		Page	
1	Nucleotide and amino acid sequence of GFP of wild-	8	
	type Aequorea victorea		
2	Selection of the commonly used CPPs	27	
3a	Bond specificities of secreted peptidases	72	
3b	Intestinal brush-border membrane-bound peptidases	72	
P 4	Comparison of commonly used tags for purification	94	
	and expression enhancement		
5	The amount of each component (μl) in PCR reaction	108	
6	Vesicular sizes (nm) and zeta potential (mV) of the	148	
	blank and Tat-GFP loaded nanovesicles		
7	Entrapment efficiency of Tat-GFP fusion protein in	149	
	various nanovesicular formulations		
8	Deformability index (DI) and the DI ratios of the	151	
	blank nanovesicles		
9	Cellular uptake of Tat-GFP fusion protein and cell	153	
	viability of HT-29 cells after incubated with various		
	nanovesicular formulations		
10	Vesicle sizes, zeta potential and DI of blank elastic	157	
	and non-elastic anionic niosomes containing ethanol,		
	NaC or NaDC at various concentrations		

11	Entrapment efficiencies of Tat-GFP loaded in	159
	different elastic vesicular formulations	
12	Cellular uptake and cytotoxicity of Tat-GFP loaded	162
	in elastic and non-elastic niosomes in HT-29 and KB	
	cells	
13	The cumulative amounts $(\mu g/cm^2)$ and fluxes	163
	$(\mu g/cm^2h)$ of GFP and Tat-GFP from various systems	
	in SC, VED and receiver compartment following	
	transdermal absorption across excised rat skin at 6	
	hours by vertical Franz diffusion cells	
14	Transdermal absorption across excised rat skin of	168
	GFP, Tat-GFP fusion protein and Tat/GFP mixture at	
	6 hours in stratum corneum (SC), viable epidermis	
	and dermis (VED) and receiver compartment of	
	vertical Franz diffusion cells	
15	Particle sizes (nm) and zeta potential (mV) of sCT,	174
	Tat, VP and Tat/VP/sCT mixtures at various molar	
	ratios	
16	Percentage remaining of sCT in sCT solution and	191
	Tat/sCT mixture after 1 month storage at different	
	temperatures	
D	Amino acid sequences of GFPmut2 (237 amino	$Univ_{247}$ rsity
	acids)	

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1	Bioluminescence in Aequorea victorea	7
2	Solid-state structures of GFP, the chromophore is	6 9
	located in the center of the 11-sheet β -barrel	
3	The amino acid sequences of salmon calcitonin	18
4	Proposed mechanisms of cellular delivery of cargos	29
	mediated by cell penetrating peptides (CPP)	
5	Proposed models for MPG-mediated membrane	31
	translocation of nucleic acids (A) and model of Pep-	
	1-mediated transfer of proteins through lipid bilayers	
	(B)	
6	Utility of protein transduction technology	38
7	Genomic organization and proteolytic processing of	53
	poliovirus	
8	Hypothesis for poliovirus transport through the axon.	64
	Human poliovirus receptor (hPVR)-mediated	
	endocytosis occurs at synapses	
9	The mature structure of human PV receptor	65
	(hCD155)	
10	The footprint of the CD155 on the PV surface	66

11	Structures of "carrier" molecules used for enhancing	80
	oral bioavailability of protein and peptide drugs	
12	Schematic drawing of the PCR cycle	90
13	Agarose electrophoresis of (A) pET28a(+) digested	90
	with HpaI (lane 1), pET28a(+)GFP digested with	
	HpaI (lane 2), pET28a(+)GFP-Tat digested with HpaI	
14	Scope of the study	105
15	Experimental set-up of Franz diffusion cell apparatus	121
16	PCR product of GFP (A) and GFP-Tat (B)	130
17	PCR product of VP-GFP	130
18	Agarose electrophoresis of (A) 1 kb DNA ladder	131
	(lane 1), linearized pET28a(+) (lane 2), digested	
	GFP (lane 3) and digested GFP-Tat (lane 4) (B) 1 kb	
	DNA ladder (lane 1), linearized pET28a(+) (lane 2)	
	and digested Tat-GFP	
19	Agarose electrophoresis of linearized pET28a(+)	132
	(lane 1), digested VP-GFP (lane 2) and digested Tat-	
	GFP-VP (lane 3)	
20	Agarose electrophoresis of ligation products (A)	132
	pET28a(+)GFP (lane 1; 6059 bp), pET28a(+)GFP-	
	Tat (lane 2; 6086 bp) and 1 kb DNA ladder. (B) 1 kb	
	DNA ladder (lane 1), pET28a(+)Tat-GFP (lane 2;	
	6086 bp) and pET28a(+) (lane 3; 5369 bp)	

21 Agarose electrophoresis of ligation products (A) VC 133 1 kb DNA ladder (lane 1) and pET28a(+)VP-GFP (lane 2; 6110 bp) (B) VC 1 kb DNA ladder (lane 1) and pET28a(+)Tat-GFP-VP (lane 2; 6137 bp) Agarose electrophoresis of (A) pET28a(+) digested 133 with HpaI (lane 1), pET28a(+)GFP digested with HpaI (lane 2), pET28a(+)GFP-Tat digested 23 134 E. coli DH5 α transformed with pET28a(+) (A and G), pET28a(+)GFP (B and H), pET28a(+)GFP-Tat (C and I), pET28a(+)Tat-GFP (D and J), pET28a(+) VP-GFP (E and K) and pET28a(+)Tat-GFP-VP (F and L). A-F and G-L were captured under transmission light and fluorescent filter, respectively SDS-PAGE analysis of the expressed proteins from 137 non-transformed E. coli BL21 (DE3) (lane 2), E. coli BL21 (DE3) transformed with pET28a(+) (lane 3), E. coli BL21 (DE3) transformed with pET28a(+)GFP (lane 4, 6 and 8) and E. coli BL21 (DE3) transformed with pET28a(+)GFP-Tat (lane 5, 7 and 9). Lanes 2-5 were TCP fraction. Lanes 6-7 were soluble cytoplasmic fractions. Lanes 8-9 were insoluble cytoplasmic fractions

25	SDS-PAGE analysis of GFP (A) and GFP-Tat (B)	138
	expression after IPTG induction at final	
	concentration 0.1 mM (lane 2), 0.2 mM (lane 3), 0.4	
	mM (lane 4) and 1 mM (lane 5) for 3 hr	
26	SDS-PAGE analysis of GFP (A) and GFP-Tat (B)	138
	expression after IPTG induction at final	
	concentration 0.1 mM for 1 hr (lane 2), 2 hr (lane 3),	
	3 hr (lane 4), 4 hr (lane 5) and 5 hr (lane 6)	
27	(A) Analysis of the purified GFP (lane2; ~28 kDa)	139
	and GFP-Tat (lane 3; ~30 kDa) and Tat-GFP (lane 4;	
	~30 kDa) by 12% SDS-PAGE (B) Purified Tat-GFP	
	(lane 1; ~30 kDa), VP-GFP (lane 2; ~30 kDa) and	
	Tat-GFP-VP (lane 3; ~32 kDa) resolved in SDS-	
	PAGE	
28	Western blot analysis using anti-penta-His-HRP	139

conjugate antibody. M : molecular weight markers, G : GFP, G-T : GFP-Tat fusion protein, T-G : Tat-GFP fusion protein

29

Fluorescent intensity at various concentrations of GFP, GFP-Tat, Tat-GFP, VP-GFP and Tat-GFP-VP fusion protein

30 Cellular uptake efficiency represented as percentage of protein detected in HT-29 and KB cells after 1 hour incubation with GFP or Tat/GFP fusion proteins at 1 µM Cellular uptake efficiency of GFP and Tat/GFP 31 fusion proteins in HT-29 cell lines as fluorescent intensity units (rfu) after incubation for 1 hour with various concentrations of GFP, GFP-Tat and Tat-GFP fusion proteins 32 The effect of incubation on cellular uptake of GFP 142and Tat/GFP fusion proteins in HT-29 cell lines. The concentration of all samples was 1 µM CLSM pattern from uptake study of N-terminal 6XHis GFP, GFP-Tat and Tat-GFP Cellular uptake efficiency represented as percentage 34 of protein detected in HT-29 and KB cells after 1 hour incubation with GFP or Tat/VP/GFP fusion

proteins at 1 µM

35

The percentages of fluorescent signal remaining in comparing to at initial of Tat-GFP loaded in elastic and non-elastic anionic niosomes and the non-loaded Tat-GFP when stored at 30±2°C for 3 months

141

142

143

145

The negative staining TEM images of (a) blank elastic anionic niosomes (Tween61/CHL/DP/NaC at 1:1:0.02 molar ratio, 1 mol% NaC) (b) Tat-GFP loaded elastic anionic niosomes

Comparison of cellular uptake at various time intervals of GFP, Tat:GFP fusion protein (Tat-GFP) and mixture (Tat/GFP) into HT-29 cells. The folds of Tat/GFP uptake in comparing to Tat-GFP and GFP at 1 hour were labeled above the bar chart.

Transepithelial permeation of GFP, Tat-GFP and Tat/GFP through HT-29 cells. Percentages of protein in lower chamber comparing with the total protein added into each well were presented. The concentration of all samples was equivalent to 2 μ M of GFP. Tat/GFP at 1:1 molar ratio was used.

Cellular uptake (%) of GFP, mixture of GFP, VP1 BC loop (VP) and Tat into the HT-29 (A) and KB cells (B). The concentration of GFP was 1 µM at all molar ratio. The molar ratio with the highest GFP uptake in each mixture was specified by asterisk and folds of uptake comparing with GFP were labeled. 165

166

158

171

38

40 Agarose gel electrophoresis of poliovirus receptor 172 (PVR, CD155; 349 bp) transcripts amplified by RT-PCR from KB cells (lane 1) and HT-29 cells (lane 2). Lane 3 was the 100 kb DNA ladder. Differential scanning calorimetry (DSC) 175 thermograms of sCT (A), Tat (B) VP (C), Tat/sCT mixture (D), VP/sCT mixture (E) and VP/Tat/sCT mixture (F) FT-IR spectra of sCT (A), Tat (B) VP (C), Tat/sCT 42 178 mixture (D), VP/sCT mixture (E) and VP/Tat/sCT mixture (F) Relative intracellular calcium (%) after incubation 183 43 with sCT (fixed concentration 100 pg/ml), Tat (61.22 pg/ml), VP (61.22 pg/ml) and Tat/VP/sCT mixtures at various molar ratios. The direction of particle size increasing was indicated by arrow. 44 Relative serum calcium level in: A. Subcutaneous 185 administration of sCT at various doses of 10, 50, 100, 250 and 500 µg/kg. B. Oral administration of sCT, Tat, VP at 32 μ g/kg (3.64 μ M) and the mixtures containing sCT equivalent to 50 µg/kg.

Cumulative amounts (μ g/cm²) and fluxes (μ g/cm²hr) 45 189 of sCT of each sample in VED and receiver compartment solution at 1, 3 and 6 hour Percentages of sCT (%) detected 190 46 in each compartment at various time intervals calculated from the initial sCT concentration in the sample (2.5 mg/ml) **B**.1 Restriction sites of the pWH105-gfpmut2 map 242 **B.2** Restriction sites of the pET28a(+) map under T7 243 promoter

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved xxxviii

ABBREVIATIONS AND SYMBOLS

BSA	Bovine serum albumin
CHL	Cholesterol
СРР	Cell penetrating peptide
DDAB	Dimethyl dioctadecyl ammonium bromide
DMEM	Dulbecco's Modified Eagle's Medium
DP	Dicetyl phosphate
DPPC	L- alpha -dipalmitoyl phosphatidylcholine
DSC	Differential scanning calorimeter
E.coli	Escherichia coli
FBS	Fetal bovine serum
FDEL	Freeze dried empty liposomes
FT-IR	Fourier-transform infrared
HPLC	High performance liquid chromatography
HRP	Horseradish peroxidase
HT-29	Human colon adenocarcinoma
КВ	Human mouth epidermal carcinoma
mV	Millivolt
NaC	Sodium cholate
NaDC	Sodium deoxycholate
nm	Nanometer S P P S P I V P O
PBS	Phosphate-buffered saline

xxxix

PCR	Polymerase chain reaction
PVR	Poliovirus receptor
SC	Stratum corneum
sCT	Salmon calcitonin
SDS-PAGE	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
SRB	Sulforhodamine B
TEM	Transmission electron microscopy
Tween61	Polyoxyethylene sorbitan monostearate
VED	Viable epidermis and dermis
VP	Viral protein
μg	Microgram
μΙ	Microliter
μΜ	Micromolar
°C	Celcius degree

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved