TABLE OF CONTENTS

	Page
Acknowledgements	ii
Abstract (English)	iv
Abstract (Thai)	vi
List of tables	xviii
List of figures	xxii
Abbreviations and symbols	xxxiii
Chapter 1 Introduction	
1.1 Statement and significance of the problem	
1.2 Objectives	3
1.3 Scope of study	3
1.4 Literature reviews	5
1.4.1 Elastic nanovesicles	6
1.4.1.1 Classification of elastic nanovesicles	7
A. Phospholipid-based types	7
- Transfersomes	
- Ethosomes	0008
B. Detergent-based types	l pivorcity
1.4.1.2 Applications in topical pharmaceuticals	10
A. A depot formulation for pharmaceuticals	

B. Improvement of transdermal delivery of the drug	10
C. Enhancement of biological activities	12
1.4.1.3 Applications in cosmetics	14
1.4.2 Transdermal delivery systems	16
1.4.2.1 Skin structure and route of skin penetration	16
1.4.2.2 Skin penetration enhancement	20
1.4.2.3 Interaction of elastic nanovesicles with skin	28
1.4.3 Thai Lanna medicinal plants database	31
1.4.3.1 Thai Lanna medicinal plant textbook database	31
1.4.3.2 Plant selection	32
1.4.4 The 15 selected Thai Lanna medicinal plants	33
1.4.5 Problems of bioactive compounds from plants in pharmaceutical	
and cosmetic applications	48
1.4.5.1 Chemical stability	48
1.4.5.2 Formulation compatibility	49
1.4.5.3 Skin irritation	49
1.4.5.4 Transdermal absorption	49
1.4.6 Phytochemical	50
1.4.6.1 Alkaloids	50
1.4.6.2 Flavonoids	50
1.4.6.3 Saponins	52
ovright 1.4.6.4 Tannins Chiang Mai Univ	53
1.4.6.5 Reducing sugars	54
1.4.7 In vitro biological assays to evaluate anti-aging activity	55

1.4.7.1 DPPH free radical scavenging activity assay	55
1.4.7.2 Ferrous metal chelating activity assay	57
1.4.7.3 Tyrosinase inhibition assay	57
1.4.7.4 Nitric oxide inhibition assay	59
1.4.7.5 Cell proliferation activity	61
A. MTT assay	61
B. SRB assay	62
1.4.7.6 Gelatinolytic activity on MMP-2 inhibition (Zymography)	63
A. Types of collagen and MMPs	63
B. Collagen and MMPs in aging	65
C. Zymography	66
D. Hemocytometer counting cell method	67
1.4.8 In vivo biological assays	67
1.4.8.1 Animals testing for pharmaceutical activities	67
A. Rat ear edema test	67
B. Rabbit skin testing for irritation determination	68
1.4.8.2 Human volunteers for performance test	69
A. Skin elasticity measurement	69
B. Skin surface microstructure measurement	71
C. Skin hydration measurement	72
D. Skin erythema and pigmentation measurements	72
Chapter 2 Materials and methods	
2.1 Materials and equipments	74
2.1.1 Chemicals	74

2.1.2 Cell lines	77
2.1.3 Animals	77
2.1.4 Human volunteers	77
2.1.5 Equipments	77
2.2 Methods	79
2.2.1 Development of the modified proper elastic nanovesicular	
formulations loaded with the model drug (diclofenac	
diethylammonium; DCFD)	79
2.2.1.1 Preparation of DCFD-loaded niosomal system	79
2.2.1.2 Physicochemical property determination	80
2.2.1.3 Preparation of gel containing DCFD loaded in elastic	
niosomes	83
2.2.1.4 In vitro skin permeation study	83
2.2.1.5 In vivo anti-inflammatory assay	84
2.2.2 In vitro anti-aging activities of Terminalia chebula gall extrac	et and
Thai Lanna medicinal plant extracts	85
2.2.2.1 Plant selection	85
2.2.2.2 Preparation of the extracts	86
2.2.2.3 Phytochemical test of the extracts	87
2.2.2.4 Biological assays to evaluate the <i>in vitro</i> anti-aging activ	vities
of the extracts	88
2.2.3 Biological activities of phenolic compounds isolated from	
galls of Terminalia chebula	93

2.2.3.1 Fractionation and isolation of phenolic compounds from	
the gall extracts	93
2.2.3.2 Structure elucidation of the phenolic compounds isolated	
from the gall extracts	94
2.2.3.3 Biological assays	95
2.2.4 The entrapment of the semi-purified fraction and gallic acid in	the
selected niosomal formulation	98
2.2.4.1 Preparation of the semi-purified fraction containing gallie	2
acid from T. chebula galls crude extract	98
2.2.4.2 Determination of the phenolic components in the selected	IN I
semi-purified fractions	99
2.2.4.3 Entrapment of the semi-purified fraction and gallic acid	
in the selected elastic niosomes	100
2.2.4.4 Physicochemical characteristics of the loaded niosomes	100
2.2.4.5 Stability of the semi-purified fraction and gallic acid loa	aded in
the selected elastic niosomes	101
2.2.5 Preparation of gel formulations containing the semi-purified fr	action
from <i>T. chebula</i> galls	102
2.2.5.1 Selection of the gel base formulation	102
2.2.5.2 Preparation of gel containing the semi-purified fraction	
loaded in niosomes	103
2.2.5.3 Physical stability determination	103
2.2.5.4 Chemical stability determination	103

2.2.6 Transdermal absorption of gel containing niosomes loaded	
with gallic acid from <i>Terminalia chebula</i> galls	104
2.2.6.1 Preparation of the rat skin	104
2.2.6.2 Formulations for transdermal absorption study	104
2.2.6.3 Transdermal absorption study	104
2.2.6.4 Extraction of gallic acid from the skin strips and	
whole skin	105
2.2.7 In vivo anti-aging evaluation of gel containing niosomes loaded	with
phenolic compounds extracted from Terminalia chebula galls	106
2.2.7.1 Rabbit skin irritation test by the closed patch test	106
2.2.7.2 Skin anti-aging evaluation in human volunteers	108
A. Subjects and study protocol	107
B. Skin surface microstructure measurement	109
C. Skin elasticity measurement	110
D. Skin hydration measurement	111

E. Skin erythema and pigmentation measurements 2.2.8 Statistical analysis

Chapter 3 Results and discussion

3.1 Development of the modified proper elastic nanovesicular	
formulations loaded with the model drug (diclofenac	
diethylammoniumDCFD)	112
3.1.1 Characteristics of the vesicles	112
3.1.2 In vitro transdermal absorption through the excised rat skin of	
different gel formulations containing DCFD	117

3.1.3 In vivo anti-inflammatory activity of different gel	
formulations containing DCFD	121
3.2 In vitro anti-aging activities of Terminalia chebula gall extract	
and Thai Lanna medicinal plant extracts	123
3.2.1 Percentage yields of the plant extracts prepared by	
different processes	123
3.2.2 Phytochemical tests of the extracts	123
3.2.3 DPPH radical scavenging activity	126
3.2.4 Chelating activity	129
3.2.5 Tyrosinase inhibition activity	129
3.2.6 Proliferation of normal human skin fibroblasts by the	
SRB assay	131
3.2.7 Gelatinolytic activity on MMP-2 inhibition of the plant	
extracts (Zymography)	132
3.3 Biological activities of phenolic compounds isolated from galls	of
Terminalia chebula Retz. (Combretaceae)	134
3.3.1 Fractionation, isolation and structure elucidation of phenol	lic
compounds from the gall extracts	134
3.3.2 Biological assays	140
3.4 Entrapment of the semi-purified fraction and gallic acid in the	
selected niosomal formulation	146
3.4.1 Total phenolic contents and identification of the phenolic	
compounds in the selected semi-purified fraction	146
3.4.2 Characteristics of niosomes	146

3.5 Preparation of gel formulations containing bioactive compounds	154
3.5.1 Preparation of gel base formulations	154
3.5.2 Preparation of gel containing the semi-purified fraction loaded	ł
in elastic niosomes	157
3.6 Transdermal absorption of gel containing elastic niosomes	
loaded with gallic acid from <i>Terminalia chebula</i> Retz.	
(Combretaceae) galls	160
3.7 In vivo anti-aging evaluation of gel containing niosomes loaded	
with phenolic compounds from Terminalia chebula galls	162
3.7.1 Skin irritation evaluation	162
3.7.1.1 Rabbit skin irritation by the closed patch test	162
3.7.1.2 Human skin erythema measured by Mexameter [®]	166
3.7.2 Human skin anti-aging evaluation	166
3.7.2.1 Skin elasticity	166
3.7.2.2 Skin surface microstructure	168
3723 Skin hydration and pigmentation	170
Chapter 4 Conclusion	173
References	179
Appendices	211
Appendix A Chemical and physical properties of the chemicals	AK
used in this study	212
Appendix B NMR spectra of the isolated phenolic compounds	iversit
$from T \ observes collections$	216
	²¹⁰ e
Appendix U Certificate of the approval for the use of animals	230

Appendix D	Certificate of the ethical clearance for the use of huma	n
	volunteers	234
Appendix E	The information and consents of human volunteers	
	form for the performance test	236
Appendix F	Data of <i>in vivo</i> anti-aging evaluation	241
Curriculum vitae		245

xvii

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

	• •	•
XVI	1	1

LIST OF TABLES

Table Page Drugs skin penetration from Transfersomes[®] 1 The cumulative amounts ($\mu g/cm^2$) and fluxes ($\mu g/cm^2/h$) of pLuc in SC 2 (stratum corneum), VED (whole skin of viable epidermis and dermis), and receiver chamber following transdermal absorption across excised rat skin by vertical Franz diffusion cells at 6 hours 13 α -tocopherol skin permeation and skin accumulation from different liposomes containing 0.17% α-tocopherol and from a control solution 15 Sources and numbers of anti-aging Thai Lanna medicinal-plant rescipes selected from the Thai Lanna Medicinal Plant Textbook 34 Database program version "Manosroi II" 5 The 15 selected Thai Lanna medicinal plants with their frequent use selected from the 31 Lanna medicinal-plant rescipes 34 6 Body distribution of collagen types 64 7 Types of MMPs 64 8 Parameters used in the assessment of skin visiometer SV600 72 9 The 15 selected Thai Lanna plants Descriptions and compositions of the samples in the transdermal 10 absorption study 105 11 Classification system for skin reaction by optical observation 107 Response categories of irritation in rabbit skin irritation test 108 12

13	Descriptions and compositions of the samples in skin anti-aging	
	evaluation in human volunteers	109
14	Effects of ethanol contents on size, entrapment efficiency, zeta	
	potential and deformability index of niosomes loaded and unloaded	
	with DCFD	113
15	The cumulative amounts (ug/cm2) and fluxes (µg/cm2 /h) in SC	
	(stratum corneum), VED (viable epidermis and dermis) and receiver	
	chamber following transdermal absorption across excised rat skin by	
	Franz diffusion cells from various gel formulations.	120
16	Effects of various gel formulations containing DCFD on the %inhibition	
	of EPP-induced ear edema at various time intervals	122
17	Comparison of percentage yields of the 60 extracts from the 15	
	selected Thai Lanna plants including <i>T. chebula</i> gall prepared by	
	aqueous and methanol cold and hot processes	124
18	Qualitative determination of constituents by phytochemical tests in	
	60 extracts from the 15 selected Thai Lanna plants including T. chebula	
	gall prepared by various extraction processes	125
19	The IC_{50} values of the 60 extracts from the 15 selected Thai Lanna plants	
	including T. chebula gall determined by the DPPH radical scavenging,	
	chelating and tyrosinase inhibition assays	127
20	Comparison of the stimulation index (SI) of the 12 extracts at 0.1 mg/ml	
	of the 3 selected Thai Lanna plants including T. chebula gall on normal	
	human skin fibroblasts (15 th passage)	¹³² e o

21	¹³ C (100 MHz) and ¹ H NMR (400 MHz) spectroscopic data for	
	Gallic acid (1) and Chebulagic acid (5)	136
22	¹³ C (100 MHz) and ¹ H NMR (400 MHz) spectroscopic data for	
	Punicalagin (2) and Isoterchebulin (3)	137
23	¹³ C (100 MHz) and ¹ H NMR (400 MHz) spectroscopic data for	
	1,3,6-tri- O -Galloyl- β -D-glucopyranose (4) and Chebulinic acid (6)	138
24	DPPH radical scavenging activity of 6 phenolic compounds isolated	
	from <i>T.chebula</i> galls	141
25	Melanogenesis inhibition on B16 murine melanoma cells of 6 phenolic	
	compounds isolated from T.chebula galls	143
26	Cytotoxic activity (EC $_{50}$) on four human tumor cell lines of the 6 phenolic	
	compounds isolated from <i>T.chebula</i> galls	144
27	Percentage yields and total phenolic contents of fractions by column	
	chromatography from the cold aqueous T. chebula gall crude extract	147
28	Size, entrapment efficiency, zeta potential and deformability index	
	(DI) of non-elastic and elastic niosomes loaded with gallic acid or	
	the semi-purified fraction containing gallic acid	150
29	The compositions of gel base formulations	154
30	Physical appearances and characteristics (color, odor, texture and pH)	
	of the four gel base formulations kept at 4 ± 2 , 27 ± 2 and $45 \pm 2^{\circ}C$ for 3	
	nt by Chiang Mai Univ	155 /ers

- The percentages of gallic acid amounts (%) in SC (stratum cormeum),
 VED (viable epidermis and dermis) and receiving solution following
 transdermal absorption across excised rat skin from various gel
 formulations by Franz diffusion cells after 12 h
 Primary irritation index (PII) and category of irritation based on PII
- 32 Primary irritation index (PII) and category of irritation based on PII of various gel formulations
- 33 Percentage changes of skin parameter (%) after 8 weeks of applicationsof various gel formulations and the negative control (the untreated area) 168

165

244

- E.1 Erythema and edema grade of the samples by rabbit skin irritation by the closed patch test
- E.2 Skin anti-aging evaluation in human volunteers including skin hydration, maximum roughness, average roughness, skin elastic recovery, skin elastic extension, melanin and erythema index
 245

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

xxii

LIST OF FIGURES

Figure					
	1 UVB photodegradation profiles of 0.17% w/w α -tocopherol in				
	hydrogenated soya lecithin (HPC) and HPC with surfactant				
		liposomes at various molar ratio	16		
	2	Skin structure of human skin	17		
	3	Two main pathways of skin penetration including transepidermal			
		route (A), transappendageal route including hair follicles with their			
		associated sebaceous glands (B) (left) and transepidermal route			
		containing two micro-pathways including intercellular and			
		transcellular pathway (right)	19		
	4	Techniques to optimize drug permeation across the skin	21		
	5	Mechanism to penetrate the skin of ethosomes	30		
	6	Lanna Medicinal Plant Textbook Database: Recipes-Disease-Medicinal			
		Plant "Manosroi II"	32		
	7	Acorus gramineus L. (Family: Araceae)	35		
	8	Cassia fistula L. (Family: Fabaceae)	36		
	9	Cyperus rotundus L. (Family: Cyperaceae)	37		
	10	Dregea volubilis (L.f.) Benth. Ex Hook.f. (Family: Asclepiadaceae)	38		
	11	Eclipta prostrate L. (Family: Asteraceae)	39		
	12	Myristica fragrans Houtt. (Family: Myristicaceae)	-40		
	13	Nigella sativa L. (Family: Ranunculaceae)	41		

	٠	٠	٠	
XX	1	1	1	

14	Plumbago indica L. (Family: Plumbaginaceae)	42
15	Piper nigrum L. (Family: Piperaceae)	43
16	Pellacalyx parkinsonii Fisch. ST. (Family: Rhizophoraceae)	43
17	Piper sarmentosum Roxb. (Family: Piperaceae)	44
18	Plumbago zeylanica L. (Family: Plumbaginaceae)	45
19	Terminalia chebula Retz. (Family: Combretaceae)	46
20	Tinospora crispa L. (Family: Menispermaceae)	47
21	Zingiber officinale Roscoe. (Family: Zingiberaceae)	48
22	Chemical structures of some common alkaloids	51
23	Chemical structures of flavoniod classes	52
24	Chemical structures of saponins	53
25	Chemical structures of condensed (proanthocyanins) and	
	hydrolysable (corilagin and geraniin) tannins	54
26	Chemical structures of reducing forms of glucose (left) and fructose (right)	55
27 Reaction of the DPPH radical in the presence of the antioxidant		
	during the DPPH assay	56
28	Melanogenesis pathway	58
29	Nitric oxide biosynthesis catalyzed by nitric oxide synthease enzyme	59
30	Structures of natural products isolated from Melastoma dodecandrum	
	that present inhibitory activity on NO production in activated	
	macrophages	60
31	Structure of MTT and their corresponding reaction products	62
32	Gelatin zymography	67
33	Deformation-time curve of the viscoelasticity of the skin	70

- 34 Negative staining TEM images of conventional niosomes and elastic niosomes entrapped with DCFD. (a) conventional Tween61 niosomes (×80K). (b) elastic Tween61 niosomes (×80K). (c) conventional Tween61 niosomes loaded with DCFD (×80K). (d) elastic Tween61 niosomes loaded with DCFD (×150K)
- 35 The percentages of DCFD remaining in the elastic niosomal dispersion (sol) and the gel containing DCFD loaded in elastic niosomes (gel) at different storage temperatures (27±2, 4±2 and 45±2°C) versus times (weeks)
- 36 Cumulative amounts (μ g/cm²) of DCFD versus time (hours) in SC (stratum corneum)(A), VED (viable epidermis and dermis)(B) and receiver chamber (C) following transdermal absorption across excised rat skin by Franz diffusion cells from various gel formulations. Each value represents the mean ± SD (n = 3)
- The fluxes (µg/cm²/h) of DCFD in SC (stratum corneum) (A), VED (viable epidermis and dermis) (B) and receiver chamber (C) versus times (hours) following transdermal absorption across excised rat skin by Franz diffusion cells from various gel formulations.
 Each value represents the mean ± SD (n = 3)
 The plot of the %inhibition of EPP induced rat ear edema of
- phenylbutazone, gel base, gel containing the unloaded DCFD, emulgel, gel containing conventional and elastic niosomal vesicles loaded with DCFD

114

116

118

119

39	Comparison of the percentages of DPPH radical scavenging activity	
	of the 60 extracts at 0.1 mg/ml from the 15 selected Thai Lanna	
	plants including <i>T. chebula</i> gall and the standard antioxidants	128
40	Comparison of the percentages of the chelating effect (%) by the	
	ferrous iron-ferrozine complex method of the 60 extracts at 0.1 mg/ml	
	from the 15 selected Thai Lanna plants including <i>T. chebula</i> gall	
	and the standard chelating agent	130
41	Comparison of the percentages of tyrosinase inhibition of	
	the 60 extracts at 0.1 mg/ml from the 15 selected Thai Lanna plants	
	including <i>T. chebula</i> gall and the standard whitening agents	130
42	Comparison of the gelatinolytic activity on MMP-2 inhibition	
	between T. chebula gall extracts	133
43	The chemical structures of the 6 isolated compounds from	
	T. chebula galls	139
44	The gradient HPLC chromatogram of A) cold water crude	
	extract of <i>T. chebula</i> galls and B) the semi-purified fraction	148
45	Negative-staining TEM images of elastic and non-elastic niosomes	
	loaded with gallic acid and the semi-purified fraction containing	
	gallic acid	151
46	The percentages of gallic acid remaining in various formulations	
	at different storage temperatures $(27 \pm 2, 4 \pm 2 \text{ and } 45 \pm 2^{\circ}\text{C})$	
	for 3 months	153
47	Negative-staining TEM images of gels containing elastic and	
	non-elastic niosomes loaded with gallic acid and the semi-purified fraction	n 158

48 The percentages of gallic acid remaining in various gel formulations at different storage temperatures $(27 \pm 2, 4 \pm 2 \text{ and } 45 \pm 2^{\circ}\text{C})$ for 3 months 159 Cumulative amounts $(\mu g/cm^2)$ of gallic acid from various gel 49 formulations versus time (hours) in SC (stratum corneum) (A), VED (viable epidermis and dermis) (B) and receiving solution (C) following transdermal absorption across excised rat skin by vertical Franz diffusion cells 164 Changes of the skin elastic recovery or Ur/Uf (A) and changes of 50 the skin elastic extension or Uv/Ue (B) of various topical gel formulations in 31 human volunteers after application for 8 weeks 169 Comparison of the skin roughness before (left) and after application 51 for 8 weeks (right) and % changes of the arithmetic average roughness (Ra) values of various topical formulations 171 52 Changes of the skin elastic recovery or Ur/Uf (A) and changes of the skin elastic extension or Uv/Ue (B) of various topical gel formulations in 31 human volunteers after application for 8 weeks 172 A.1 Chemical structure of DPPC 212 A.2 Chemical structure of sorbitan monostearate 213 Chemical structure of polyoxyethylene (4) sorbitan monostearate A.3 214 Chemical structure of cholesterol A.4 215 **B**.1 ¹H-NMR spectrum of gallic acid (acetone- d_6) 216 B.2 ¹H-NMR spectrum of gallic acid (acetone- d_6 +D₂O) 217 ¹³C-NMR spectrum of gallic acid (acetone- d_6 +D₂O) B.3 218

•	•
XXV1	1

B.4	¹ H-NMR spectrum of punicalagin (acetone- d_6 +D ₂ O)	219
B.5	¹³ C-NMR spectrum of punicalagin (acetone- d_6 +D ₂ O)	220
B.6	¹ H-NMR spectrum of isoterchebulin (acetone- d_6 +D ₂ O)	221
B.7	¹³ C-NMR spectrum of isoterchebulin (acetone- d_6 +D ₂ O)	222
B.8	¹ H-NMR spectrum of β -1,3,6- <i>O</i> -trigalloyl-D-glucopyranoside (acetone-	
	d_6 +D ₂ O)	223
B.9	13 C-NMR spectrum of β -1,3,6- <i>O</i> -trigalloyl-D-glucopyranoside (acetone-	
	d_6 +D ₂ O)	224
B.10	¹ H-NMR spectrum of chebulagic acid (acetone- d_6)	225
B.11	¹ H-NMR spectrum of chebulagic acid (acetone- d_6 +D ₂ O)	226
B.12	13 C-NMR spectrum of chebulagic acid (acetone- d_6 +D ₂ O)	227
B.13	¹ H-NMR spectrum of chebulinic acid (acetone- d_6 +D ₂ O)	228
B.14	13 C-NMR spectrum of chebulinic acid (acetone- d_6 +D ₂ O)	229

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

ВНТ	butylated hydroxytoluene
DCFD	diclofenac diethylammonium
D-MEM	dulbecco's modified eagle's medium
DMSO	dimethyl sulfoxide
DLS	dynamic light scattering
DPPC	l-α-dipalmitoyl phosphatidylcholine
DPPH	1, 1-Diphenyl-2-picryhydracyl
EDTA	ethylenediaminetetraacetic acid
FBS	fetal bovine serum
FeCl ₂	ferrous chloride
h	hour
HPLC	high performance liquid chromatography
J	coupling constant in Hz
IC ₅₀	concentration providing 50% inhibition
L-NMMA	N ^G -monomethyl-L-arginine
LPS	lipopolysaccharide
α-MSH	α-melanocyte-stimulating hormone
MEM	eagle's minimal essential medium
MTT	3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-2 <i>H</i> -tetrazolium
	bromide
mg	milligram

xxxiv

ml	milliliter
mM	millimolar
nm	nanometer
NMR	nuclear magnetic resonance
¹ H NMR	proton nuclear magnetic resonance
¹³ C NMR	carbon nuclear magnetic resonance
ODS	octadecyl silica
PBS	phosphate-buffered saline
rpm	revolutions per minute
S	second
SC	stratum corneum
SC_{50}	concentration providing 50% scavenging
Span 60	sorbitan monostearate
SRB	sulphorodamine B
TEM	transmission electron microscopy
TLC	thin layer chromatography
Tween 61	polyoxyethylene sorbitan monostearate
VED	viable epidermis and dermis
δ	chemical shift value in ppm
	wavelength in nanometer
/ ^{µg} ht ^C	microgram hang Mai University
μL	microliter
°C	celcius degree