TABLE OF CONTENTS

	Page
ACKNOWLEDMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
ABBREVIATIONS AND SYMBOLS	xvi
CHAPTER 1 GENERAL INTRODUCTION	1
1.1 Statement and significance of the problem	1
1.2 Aims of the study	3
NA SI	
CHAPTER 2 LITERATURE REVIEWS	4
2.1 Butea monosperma (Lam.) Taubert	4
2.2 Antioxidant	7
2.3 Nanotechnology	9
2.4 Method Validation	22
CHAPTER 3 MATERIALS AND METHODS	25
3.1 Chemicals and instruments	25
3.2 Acquisition of bioactive compounds from <i>B. monosperma</i> flowers	30
3.3 Phytochemical screening of <i>B. monosperma</i> flowers extract	31
3.4 Isolation of <i>B. monosperma</i> flowers extract	35
3.5 Antioxidant activity	37
3.6 Structure Elucidation	38
3.7 Development of nanoparticles protocol	40
3.8 Particles diameter size and zeta potential	43
3.9 Characterization of ethanolic crude extract loaded nanoparticles	44

3.10 Assay Validation	44
3.11 Percentage of entrapment efficiency	44
3.12 In vitro release of ethanolic crude extract loaded nanoparticle	45
3.13 Statistical analysis	45
CHAPTER 4 RESULTS	46
4.1 Medicinal plant materials	46
4.2 Extract preparation	47
4.3 Quality control of the extract	48
4.4 Antioxidant activity of B. monosperma flowers extract	
(crude extract)	57
4.5 Isolation of <i>B. monosperma</i> flowers extract	61
4.6 Antioxidant activity of the isolation of ethyl acetate fraction	
and ethanolic crude extract from <i>B. monosperma</i> flowers	62
4.7 Structure Elucidation	68
4.8 Assay Validation	82
4.9 Particle size, size distribution and zeta potential	84
4.10 Characterization of ethanolic crude extract loaded nanoparticles	95
4.11Percentage of entrapment efficiency	95
4.12 In vitro release of ethanolic crude extract loaded nanoparticle	98
CHAPTER 5 DISCUSSION	99
CHAPTER 6 CONCLUSION	106
REFERENCES	108
wryight [©] by Chiang Mai University	110

Copyraight[©] by Chiang Mai Universite

LIST OF TABLES

Та	able	Page
1	Types of polymers, method of nanoparticles, and nature of the particles	10
2	The mixture of toluene and ethanol in the gradient composition.	36
3	HPLC conditions for quality control of B. monosperma flowers extract	39
4	MS conditions for <i>B. monosperma</i> flowers extract	39
5	DSC conditions for quality control of <i>B. monosperma</i> flowers extract	40
6	The percent yield for powder from fresh B. monosperma. Flowers	47
7	The yield values of <i>B. monosperma</i> flowers extracts	47
8	Alkaloids screening test	56
9	Glycosides screening test	56
10) Phenolic and Tannin test	57
11	The percent yield of combined fractions (F1-F7) from	
	ethyl acetate crude extract	61
12	2 The percent yield of combined fractions (F1-F5) of ethanolic crude extract.	62
13	³ Wavelength (λ) of the crude extract and the combined fractions	
	of <i>B. monosperma</i> , which had the antioxidant activity	69
14	The gradient condition for isolation <i>B. monosperma</i> flowers extract	
	using HPLC	70
15	The spectroscopic data of F2 ethanolic crude extract compare with butin	77
16	5 The spectroscopic data of F2 ethanolic crude extract compare with butin	78
17	7 The spectroscopic data of F2 ethanolic crude extract compare with	
	isomonospermoside	79
18	3 The spectroscopic data of F2 ethanolic crude extract compare with butein	80
19	• The spectroscopic data of F2 ethanolic crude extract compare with	
	monospermoside	81
20) The intra-day accuracy and precision of analytical method	83

21	Effect of polymer ratio and concentration of	
	Butea monosperma flowers extract (CS : SCMC = 1:1)	85
22	Effect of polymer ratio and concentration of	
	Butea monosperma flowers extract (CS : SCMC = 2:1)	85
23	Effect of the concentration of Butea monosperma flowers extract	
	(chitosan-alginate)	87
24	Effect of the concentration of Butea monosperma flowers extract	
	(PLGA nanoparticles)	88
25	Effect of the concentration of Butea monosperma flowers extract (SLN)	91
26	Effect of the solid lipid and liquid lipid ratio	93
27	Effect of the concentration of Butea monosperma flowers extract	93
28	The percentage of entrapment efficiency (%EE) of	
	chitosan : SCMC : ethanolic extract	96
29	The percentage of entrapment efficiency of PLGA nanoparticles	
	with ethanolic crude extract	97
30	The percentage of entrapment efficiency which the ratio of	
	solid lipid : liquid lipid = 3:7, 5:5, and 7:3	97
31	The percentage of entrapment efficiency which the ratio of	
	solid lipid : liquid lipid = 7:3	98

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

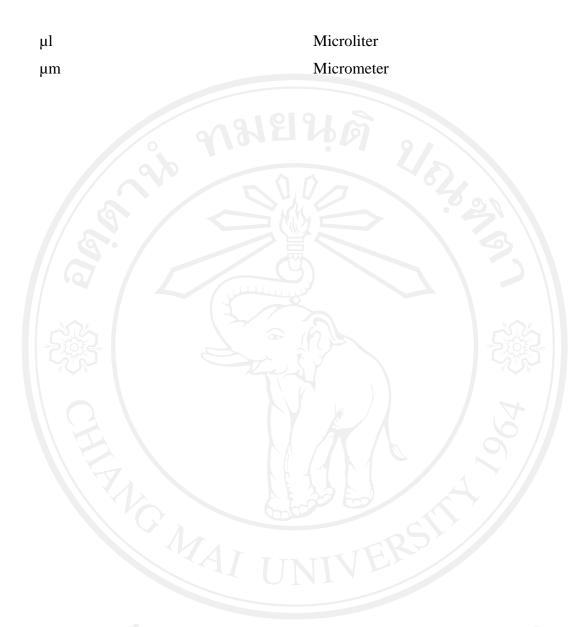
Fig	gure	Page
1	Butea monosperma (Lam.) Taubert flowers	4
2	Schematic of drug encapsulated or absorbed at the surface of a	
	polymeric nanoparticle	10
3	Chitosan (CS) structure	11
4	Sodium carboxymethylcellulose (SCMC) structure	12
5	The structure of alginate monomers: β-D-mannuronic acid (M)	
	and α-L-guluronic acid (G)	13
6	The structure of chain conformation of alginate	14
7	The structure of polylactide-co-glycolide (PLGA)	15
8	Hydrolysis of PLGA nanoparticles	15
9	Basic type of solid lipid nanoparticles	16
10	Perfect crystal in SLN comparable with a brick wall and structure with	
	imperfections due to spacially very different molecules in NLC type 1	18
11	Different types of NLC (versus SLN with high crystallinity)	19
12	Flow chart of the overall experimental methods	29
13	The herbarium specimen of <i>B. monosperma</i>	46
14	The characterization of <i>B. monosperma</i>	47
15	Appearance of <i>B. monosperma</i> flowers extract	48
16	The results from alkaloid testing with specific reagents	49
17	The result from anthracene / anthraquinone glycoside	50
18	The result from the sterol glycoside/ triterpene glycoside testing	51
19	The result from cardiac glycoside testing	51
20	The result from saponin glycoside	52
21	The result from flavonoid glycoside	-52
22	The result from anthocyanine glycoside in acidic solution	53
23	The result from anthocyanine glycoside	53
24	The result from coumarin testing in visible light and under the UV lamp	54
25	The result from the phenolic and tannin testing	55

26	Free radical-scavenging activity of B. monosperma flowers	
	crude extracts by ABTS method	58-59
27	Reducing power of B. monosperma flowers extracts were expressed	
	as EC value, Crude extract	60
28	Free radical-scavenging activity of B. monosperma flowers extracts	
	were expressed as IC ₅₀ value, Crude extract	60
29	The combined fractions of <i>B. monosperma</i> flowers EtOAc	
	crude extracts examined by TLC	61
30	The combined fractions of <i>B. monosperma</i> flowers ethanolic	
	crude extracts examined by TLC	62
31	Free radical-scavenging activity of <i>B. monosperma</i> flowers extracts	
	were expressed as TEAC value of EtOAc extract (A), Ethanolic extract (C)	
	and IC ₅₀ value of EtOAc extract (B), Ethanolic extract (D)	
	by ABTS method	63-64
32	Reducing power of <i>B. monosperma</i> flowers extracts were expressed	
	as EC value, EtOAc extract (A), and Ethanolic extract (B)	
	by FRAP method	65
33	Free radical-scavenging activity of <i>B. monosperma</i> flowers extracts	
	were expressed as IC_{50} value, EtOAc extract (A), and Ethanolic	
	extract (B) by DPPH method	66-67
34	Correlation between free radical scavenging activity versus reducing power	ſ
	(A), free radical scavenging activities in different method, ABTS versus	
	DPPH, between TEAC-IC $_{50}$ (B) of the crude extract and the combined	
	fractions of <i>B. monosperma</i> flowers extract	67-68
35	The UV Spectrum of <i>B. monosperma</i> flowers extract (Ethanolic extract)	69
36	HPLC chromatograms were developed under gradient condition	70-71
37	HPLC chromatograms were developed under isocratic condition	71-72
38	The structures of Butin (A), Isomonospermoside (B), Butein (C), and	
	Monospermoside (D).	73

39	The HPLC chromatogram of ethanolic crude extract was developed in	
	isocratic condition (ACN : DI water = $17 : 83$).	73
40	Mass spectrum of ethanolic crude extract at 9.994 min	74
41	Mass spectrum of ethanolic crude extract at 44.371 min	74
42	FT-IR spectrogram of F2 ethanolic crude extract from	
	B. monosperma flowers	75
43	The structure of reference compounds	76
44	Standard curve of <i>B. monosperma</i> flowers extract	82
45	The nanoparticles were prepared from chitosan and SCMC in different ratio	84
46	The nanoparticles were prepared from chitosan and alginate	86
47	The PLGA nanoparticles were prepared from PLGA and 1% PVA in	
	different concentration of ethanolic crude extract	88
48	The DSC thermogram of <i>B. monosperma</i> flowers extract and	
	the mixtures of lipid	90
49	The solid lipid nanoparticle was prepared from Palmitic acid	
	and Stearyl alcohol	92
50	The nanostructured lipid carrier was prepared from palmitic acid and	
	stearyl alcohol for solid lipid and jojoba oil for liquid lipid in different	
	ratio between solid lipid and liquid lipid, and different concentration	94
51	TEM photography of NLC blank (50000x)	95
52	TEM photography of ethanolic crude extract loaded NLC (50000x)	95
53	Release profile of ethanolic extract and ethanolic extract loaded NLC	98

Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS


%	Percent
λ_{max}	Maximum wavelength
ACN	Acetonitrile
BHA	Butylated hydroxyanisole
ВНТ	Butylated hydroxytoluene
°C	Degree Celsius
CC	Column chromatography
CHCl ₃	Chloroform
cm	Centimeter
CS	Chitosan
DI water	Deionized distilled water
DMSO	Dimethylsulfoxide
d.nm	Diameter in nanometer
DS	Degrees of substitution
DSC	Differential Scanning Calorimeter
% EE	Percentage of entrapment efficiency
EC	Equivalent concentration
EtOAc	Ethyl acetate
EtOH	Ethanol
FRAP	Ferric reducing antioxidant power
FT-IR	Fourier transform infrared spectroscopy
Ugind Unit Jir	Gram
GA in the Chi	Gallic acid
hy cill	Hour
¹ H-NMR 1 2 h t S	Proton nuclear magnetic resonance
HCI	Hydrochloric acid
НРН	High pressure homogenization
HPLC	High performance liquid chromatography
Hz	Hertz

IC ₅₀	50% Inhibition concentration
KBr	Potassium bromide
KCl	Potassium chloride
kDa 9191	Kilodalton
kg	Kilogram
KH ₂ PO ₄	Dibasic potassium phosphate
КОН	Potassium hydroxide
kV	Kilovolt
	Liter
LC/API-MS	Liquid Chromatography Coupled with
	Atmospheric Pressure Ionization Mass
	Spectrometry
L.O.D.	Limit of detection
L.O.Q.	Limit of quantitation
Μ	Molar
mg	Milligram
MIC	Minimum inhibition concentration
min	Minute
ml	Milliliter
mm	Millimeter
mM	Millimolar
mmol	Millimole
mpin Eurosna	Melting point
MS	Mass spectrum
	Millivolt
MW	Molecular weight
n rights	Normal e s e r v e o
NaOH	Sodium hydroxide
NaCl	Sodium chloride
NaHCO ₃	Sodium bicarbonate
Na ₂ CO ₃	Sodium carbonate

xvii

NaH ₂ PO ₄	Dibasic sodium phosphate
Na ₂ HPO ₄	Monobasic sodium phosphate
NLC	Nanostructured lipid carrier
nm	Nanometer
PCL	Poly(<i>ɛ</i> -caprolactone)
PCS	Photon Correlation Spectroscopy
PDI	Polydispersity index
PEG	Polyethylene glycol
PEMA	Poly(ethylene- <i>alt</i> -maleic acid)
PGA	Poly (glycolic acid)
pH	Potential (or power) of hydrogen
PLA	Poly(D,L-lactic acid)
PLGA	Poly(DL-lactic-coglycolic acid)/
	poly(lactide- <i>co</i> -glycolide)
ppm	Part per million
PVA	Polyvinyl alcohol
QCT	Quercetin
ROS	Reactive oxygen species
rpm	Revolution per minute
s	Second
SCMC	Sodium carboxymethylcellulose
SLN	Solid lipid nanoparticles
ТВНО	tert-butyl hydroquinone
TEAC	Trolox equivalent antioxidant capacity
TEM	Transmission Electron Microscopy
TLC	Thin layer chromatography
A UA right	Uranyl acetate
US FDA	United State of America Federal Drug
	Administration
UV	Ultraviolet
μg	Microgram

xviii

ລິບສິກສົ້ນหາວົກຍາລັຍເຮີຍວໃหม Copyright[©] by Chiang Mai University All rights reserved

xix