TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
ABBREVIATIONS AND SYMBOLS	xiv
CHAPTER I INTRODUCTION	1
1.1 Development of High Performance Thin	Layer 3
Chromatographic Method for the Determ	nination of
Ketoconazole	
1.1.1 Principles of High Performance Th	nin Layer 3
Chromatography	
1.2 Development of Ion Pair Liquid Chroma	tographic Method 12
for the Determination of Ketoconazole	
1.2.1 Principles of Ion Pair Liquid Chron	matography 12
1.2.2 Literature Reviews	18
1.3 The Aim of Research	22
CHAPTER II EXPERIMENTAL	23
2.1 Development of High Performance Thin	Layer 23
Chromatographic Method for the Determ	nination of
Ketoconazole	
2.1.1 Reagents and Chemicals	23-1511
2.1.2 Apparatus and Instruments	24
2.1.3 Procedure	
2.1.4 Method Validation	27

2.1.5 Application	29	
2.2 Development of an Ion Pair I	Liquid Chromatographic 30	
Method for the Determination	n of Ketoconazole	
2.2.1 Reagents and Chemical	s 30	
2.2.2 Apparatus and Instrume	ents 31	
2.2.3 Procedure	31	
2.2.4 Method Validation	34	
2.2.5 Application	35	
CHAPTER III RESULTS AND DISCUSSION	N 36	
3.1 Development of High Perform	nance Thin Layer 36	
Chromatographic Method for	the Determination of	
Ketoconazole		
3.1.1 Optimization of the Ex	perimental Conditions 36	
3.1.2 Summary of the Optim	um HPTLC Condition 37	
3.1.3 Method Validation	38	
3.1.4 Application	43	
3.2 Development of IPLC Metho	d for the Determination of 46	
Ketoconazole		
3.2.1 Optimization of the Ex	perimental Parameters 46	
3.2.2 Summary of the Optim	um IPLC Conditions 53	
3.2.3 Validation of the Meth	od 54	
3.2.4 Application	57	
CHAPTER IV CONCLUSION	59	
4.1 High Performance Thin Laye	r Chromatographic Method 59	
4.1.1 Optimum Conditions for	or Determining of 59	
Ketoconazole		
4.1.2 Validation of the Meth	od 60	
4.1.3 Application	61	

4.2	Ion Pair Liquid Chromatographic Method	62
	4.2.1 Optimum Conditions for Determining of	62
	Ketoconazole	
	4.3.2 Validation of the Method	62
	4.3.3 Application	63
REFERENCES		64
CURRICULUM VI	ITAE	68

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

х

LIST OF TABLES

Table		Page
1.1	PMD Program Parameters	11
3.1	The R_f Values of Ketoconazole on Silica Gel 60 F_{254} Plate in Various	37
	Mobile Phases	
3.2	Robustness of the Method	40
3.3	Precision Study for Ketoconazole	41
3.4	Recovery Studies on Ketoconazole	42
3.5	Comparison of HPTLC and Spectrophotometric Methods for the	44
	Determination of Ketoconazole in Shampoo and Pharmaceutical	
	Formulations	
3.6	Comparison of IPLC Analytical Column	52
3.7	Optimized Isocratic IPLC Condition for Analysis of Ketoconazole	53
3.8	Precision Study for Ketoconazole	56
3.9	Recovery Studies on Ketoconazole (Nizoral Sample)	57
3.10	Comparison of the proposed IPLC and the HPTLC Methods for the	58
	Determination of Ketoconazole in Shampoo and Pharmaceutical	
	Formulations	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1.1	Structure of ketoconazole	1
1.2	CAMAG U-Kammer apparatus for radial high performance thin	4
	layer chromatography. CAMAG Inc., New Berlin, Wis.)	
1.3	Cross-sectional diagram of CAMAG UKammer. The HPTLC plate	4
	(1), measuring 50×50 mm, rests with its layer facing downward on	
	the U-chamber body. (2) Elution solvent is fed to the center of the	
	plate via a platinum-iridium capillary (3) of 0.2 mm internal	
	diameter. Vapor phase, made up externally, may be passed through	
	the chamber, in through the circular channel (4) and out through the	
	center bore (5) before, during, and after chromatographic	
	development. The direction of gas flow may also be reversed.	
1.4	Schematic diagram of PMD developer. The thin layer plate is	5
	approximately 5 in. distant from and centered with respect to the	
	radiator.	
1.5	Programmer and developer for programmed multiple development	5
	(PMD).	
1.6	Centered PMD. Selective evaporation along the chromatogram	9
	(vertical) center line, accomplished by heat or a nitrogen stream,	
	induces horizontal solvent flow toward the center of the bed. This	
	flow concentrates spots and counters horizontal spreading.	
1.7	Influence of initial spot width (W _o) on spot behavior in programmed	10
	multiple development (PMD); resolution (R_s) between two spots of	
	R = 0.20 and 0.21 as a function of the number of developments (n).	
	The development program follows the pattern of IMD. Heavy	
	emphasis on PMD solvent removal (dotted line) and light emphasis	
	on PMD solvent removal (solid lines) are assumed.	

1.8	Cation ion pairing interactions	14
1.9	Effects of ion pair reagent hydrophobicity and solvent concentration	14
3.1	Calibration graph for ketoconazole obtained by the HPTLC method	39
	(concentration range 3-20 mg L^{-1} of ketoconazole)	
3.2	Densitogram of ketoconazole on silica gel 60 F_{254} in the solvent	43
	system, ethanol-acetone-1.0 mol L^{-1} H ₂ SO ₄ (80:10:10) with the R _f	
	of 0.70.	
3.3	Densitograms of ketoconazole samples on silica gel 60 F_{254} in the	45
	solvent system, ethanol-acetone-1.0 mol L^{-1} H ₂ SO ₄ (80:10:10).	
3.4	The effect of SDS concentrations in the range 1-10 mM	47
3.5	The pH effect of mobile phase in the range 4.5-7.5	48
3.6	The effect of mobile phase composition	49
3.7	The effect of mobile phase flow rate; (a) = 0.5 mL min ⁻¹ , (b) = 0.8	51
	mL min ⁻¹ , (c) = 1.0 mL min^{-1} and (d) = 2.0 mL min^{-1}	
3.8	The comparison of the analytical columns using three analytical	52
	columns.	
3.9	Chromatogram of ketoconazole standard (a) and Linear calibration	55
	curve of ketoconazole in the concentration range of 5-500 mg L^{-1}	
	(b)	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

AU	absorbance unit
cm	centimeter
°C	degree celsius
DI	deionize water
g	gram
h	hour
IPLC	ion pair liquid chromatography
i.d.	internal diameter
k	capacity or retention factor
kg	kilogram
L	liter
LOD	limit of detection
LOQ	limit of quantitation
М	molar (mol L^{-1})
mg	milligram
min	minute
mL	milliliter
mm	millimeter
nL	nanoliter
nm	nanometer
No.	number
PMD	programmed multiple development
R.S.D	relative standard deviation
S.D	standard deviation
SDS	sodium dodecyl sulfate
HPTLC	high performance thin layer chromatography
UV	ultraviolet

oil in water o/w v/v volume by volume w/o water in oil weight by volume w/v microliter μL micrometer μm percentage % standard deviation σ

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved