TABLE OF CONTENTS

TABLE OF CONTENTS	
	Pag
A CUNOWI EDEMENT	3
ACKNOWLEDEMENT	
THALABSTRACT	IV Vi
LIST OF TABLES	viji
LIST OF FIGURES	
ABBREVIATIONS AND SYMBOLS	xix
CHAPTER 1 GENERAL INTRODUCTION	
1.1 Statement and significance of the problem	1
1.2 Aim of study	3
CHAPTER 2 LITERATURE REVIEWS	4
2.1 Inflammation	4
2.1.1 Inflammatory mediators	4
2.1.1.1 Vasoactive amines	5
2.1.1.2 Vasoactive peptides	6
2.1.1.3 Fragments of complement components	6
2.1.1.4 Lipid mediators	6
2.1.1.5 Cytokines and chemokines	7
2.1.1.6 Chemokines	8
2.1.1.7 Proteolytic enzymes	8
2.1.1.8 Nitric oxide	CI 5 ⁸
2.1.1.9 Oxygen-derived free radicals	
2.1.1.10 Lysosomal constitutes of leukocytes	8
2.2 Anti-inflammation assay	10
2.3 Tabeanermontana divaricata (Linn.) R. Br.	10
2.4 Solid lipid nanoparticles (SLN)	13
2.5 Cream	14

CHAPTER 3 MATERIALS AND METHOD	15
3.1 Chemicals and Instruments	15
3.2 Plant material	16
3.3 Extract preparation	16
3.4 <i>In vitro</i> anti-inflammatory procedures	17
3.5 Study of physicochemical properties of the extract	20
3.5.1 Appearance of the extract	20
3.5.2 Solubility of the extract	20
3.5.3 Determination of physicochemical properties of	20
the extract using DSC and PXRD	
3.5.4 Study of factors influencing characteristic of	21
the extract	
3.5.5 Primary active compounds screening test of	21
the extract	
3.5.5.1 Alkaloid testing	21
3.5.5.2 Glycoside testing	22
3.5.5.3 Phenolic and Tannin testing	24
3.5.6 Study of finger print of the extract using HPLC	24
3.6 Development of nanocream formulations	25
3.6.1 Nanocream base development using high pressure	25
homogenizer	
3.6.2 Development of the extract loaded solid lipid	-26
nanoparticles (SLN)	
3.6.2.1 Effect of surfactant and number of	26
homogenization cycles	
3.6.2.2 Effect of lipid	26
3.6.2.3 Effect of extract	27
3.6.3 Preparation of the extract loaded SLN nanocream	27

Page	
------	--

3.7 Characterization of the formulations	27
3.7.1 Organoleptic parameters	27
3.7.2 Shape of nanoparticles	27
3.7.3 Particle size diameter, polydispersity index and zeta	27
potential	
3.7.4 Rheological property	28
3.7.5 Percentage of entrapment efficiency (% EE)	28
3.7.6 Analysis of the extract in SLN nanocream	28
3.8 In vivo anti-inflammation assay	28
3.8.1 Experimental animals	28
3.8.2 Ethylphenyl propiolate (EPP)-induced	29
mouse ear edema	
3.9 Release profile experimental	33
3.10 Stability study	33
3.11 Skin irritation study	34
3.11.1 Experimental animals	34
3.11.2 Skin irritation test	34
3.12 Statistical analysis	35
CHAPTER 4 RESULTS	37
4.1 TD extracts preparation	37
4.2 <i>In vitro</i> anti-inflammatory activity of TD extracts	37
4.3 Physicochemical properties of TDE	-38
4.3.1 Appearance of TDE	38
4.3.2 Solubility of TDE	39
4.3.3 Thermal behavior of TDE	40
4.3.4 Crystalline characteristic of TDE	40
4.3.5 Study of the factors influencing the characteristic of	40
TDE solution	

Page

		Page
126	Study of primary active compounds corponing of TDE	41
4.3.0	Study of finance grint of TDE using high performance	41
4.3.7	Study of finger print of TDE using high performance	41
1.2.5	Inquid chromatography (HPLC)	41
4.3.7	2.1 HPLC inger print of TDE	41
4.3.7	.2 Standard curve of TDE	41
4.4 Dev	velopment of nanocream base	53
4.4.1	Effect of surfactant and homogenization cycle on	53
	the particle size, size distribution and zeta potential	
4.4.2	Effect of surfactant and homogenization cycle on	53
	the viscosity and rheological behavior	
4.5 Dev	velopment of TDE loaded solid lipid nanoparticles (SLN)	67
4.5.1	Effect of surfactant and the numbers of homogenization	67
	cycles	
4.5.2	Effect of solid lipid	69
4.5.3	Effect of TDE and solid lipid	71
4.5.4	Entrapment efficiency of TDE in SLN formulation	71
4.6 Dev	velopment of TDE loaded SLN in nanocream	73
4.7 Stu	dy of TDE and TDE loaded SLN nanocream on	76
EPH	P-induced mouse ear edema model	
4.8 Cha	aracteristics of SLN nanocream formulation	79
4.8.1	Particle size, size distribution and zeta potential	79
4.8.2	Viscosity and rheological behavior	79
4.8.3	Determination of the amount of TDE in SLN	94
	formulation and entrapment efficiency (EE)	
	using a HPLC after stored for 90 days	
4.9 Stu	dy of releasing of TDE loaded SLNs nanocream	97
4.10 St	udy of skin irritation	97

	Page
CHAPTER 5 DISCUSSION AND CONCLUSIONS	100
REFERENCES	105
APPENDICES	115
APPENDIX A Primary active compounds screening of TDE	116
APPENDIX B Preparation of phosphate buffer solution	118
pH 7.4	
APPENDIX C Anti-inflammation on EPP-induced ear edema	119
VITA	120

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table Page 9 Chemical mediators on the inflammation response 1 2 Classification of the indole alkaloids occurring in *T. divaricata* 11 20 3 DSC and PXRD conditions for physicochemical properties study of the extract HPLC conditions for physicochemical properties study of the extract 25 4 5 Compositions of ingredients in nanocream base fomulations 31 Compositions of ingredients in the extract loaded SLN formulations 32 6 7 35 Draize scoring system 8 Evaluation of primary skin irritation index 35 9 Yield of the extracts 37 10 Solubility of TDE at 27 °C 39 pH value and appearances of TDE solution stored at 27 °C in various 11 44 conditions 12 pH value and appearances of TDE solution stored at 45 °C in various 46 conditions pH value and appearances of TDE solution stored at 4 °C in various 48 13 conditions 14 Alkaloids screening results 50 15 Glycosides screening results 51 16 Particle size, polydispersity index and zeta potential of formulation 1A 54 after 90 days of storage at 27 °C Particle size, polydispersity index and zeta potential of formulation 1A 17 55 after 90 days of storage at 4 °C 18 Particle size, polydispersity index and zeta potential of formulation 1A 55 after 90 days of storage at 45 °C

xiii

LIST OF TABLES (continued)

Table		Page
19	Particle size, polydispersity index and zeta potential of formulation 2A	56
	after 90 days of storage at 27 °C	
20	Particle size, polydispersity index and zeta potential of formulation 2A	56
	after 90 days of storage at 4 °C	
21	Particle size, polydispersity index and zeta potential of formulation 2A	57
	after 90 days of storage at 45 °C	
22	Viscosity and rheological behavior of formulation 1AC0	57
	after 90 days of storage at 4, 27 and 45 °C	
23	Viscosity and rheological behavior of formulation 1AC3	58
	after 90 days of storage at 4, 27 and 45 °C	
24	Viscosity and rheological behavior of formulation 1AC6	58
	after 90 days of storage at 4, 27 and 45 °C	
25	Viscosity and rheological behavior of formulation 2AC0	59
	after 90 days of storage at 4, 27 and 45 °C	
26	Viscosity and rheological behavior of formulation 2AC3	59
	after 90 days of storage at 4, 27 and 45 °C	
27	Viscosity and rheological behavior of formulation 2AC6	60
	after 90 days of storage at 4, 27 and 45 °C	
28	Effect of surfactant on particle size, polydispersity index	68
	and zeta potential of SLN prepared at 3 and 6 cycles	
29	Effect of solid lipid on particle size, polydispersity index	70
	and zeta potential of SLN prepared at 3 and 6 cycles	
30	Effect of the amounts of TDE and solid lipid on percentage of	72
	entrapment efficiency of 3 homogenization cycles	
31	Appearance of SLN nanocream formulations	75
32	Effects of TDE solution and TDE loaded SLN nanocream on	77
	EPP-induced mouse ear edema	

LIST OF TABLES (continued)

Table		Page
33	Particle size, polydispersity index and zeta potential of SLN nanocream at heating-cooling conditions for 6 cycles	80
34.	Particle size, polydispersity index and zeta potential of SLN nanocream at 27 °C	81
35	Particle size, polydispersity index and zeta potential of SLN nanocream at 4 $^{\rm o}{\rm C}$	82
36	Particle size, polydispersity index and zeta potential of SLN nanocream at 45 $^{\rm o}{\rm C}$	83
37	Viscosity and rheological property of SLN nanocream at heating-cooling condition for 6 cycles	84
38	Viscosity and rheological property of SLN nanocream at 27 °C	85
39	Viscosity and rheological property of SLN nanocream at 4 °C	86
40	Viscosity and rheological property of SLN nanocream at 45 °C	87
41	In vivo skin irritation results	98

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure

LIST OF FIGURES		
igur		Page
1	Comparing of vascular change in acute inflamed and normal tissue	5
2	Synthesis pathway of arachidonic acid metabolite	7
3	T. divaricata Tree (A) and the stem used (yellow arrow) (B)	11
4	Diagram illustration the procedure for preparing the background well (A), 19
	COX-2 100% initial activity well (B) and COX-2 inhibitor well (C)	
5	Percentage of inhibition of TD extracts against COX-2	38
6	Appearance of TDE	38
7	DSC thermogram of TDE	42
8	X-ray diffraction pattern of TDE	42
9	Appearances of TDE solution in various conditions at 27 (A), 45 (B)	43
	and 4 °C (C)	
10	Chromatogram of vobasine (A) and 19, 20 dehydroervatamine (B)	52
11	Standard curves of vobasine (■) and 19, 20 dehydroervatamine (♦)	52
12	Rheogram of formulation 1AC0 after 90 days of storage	61
	at 4, 27 and 45 °C	
13	Rheogram of formulation 1AC3 after 90 days of storage	62
	at 4, 27 and 45 °C	
14	Rheogram of formulation 1AC6 after 90 days of storage	63
	at 4, 27 and 45 °C	
15	Rheogram of formulation 2AC0 after 90 days of storage	-64
	at 4, 27 and 45 °C	
16	Rheogram of formulation 2AC3 after 90 days of storage	65
	at 4, 27 and 45 °C	
17	Rheogram of formulation 2AC6 after 90 days of storage	66
. /	at 4 27 and 45 °C	' V e

xvii

LIST OF FIGURES (continued)

Figure	Figure		
18	Effect of surfactant and numbers of homogenization cycles on	67	
	the particle size		
19	Effect of solid lipid on the particle size of SLN prepared	69	
	at 3 and 6 homogenization cycles		
20	Appearance of SLN nanocream base (A), 0.25% TDE loaded SLN	73	
	nanocream (B), 0.50% TDE loaded SLN nanocream (C) and		
	1.25% TDE loaded SLN nanocream (D)		
2 21	SEM micrographs of TDE loaded SLN incorporated in nanocream	5 74	
	at 0.25% (A), 0.50% (B) and 1.25% w/w (C)		
22	Percentage of ear edema inhibition (EDI) of TDE solution (A) and	78	
	TDE loaded SLN nanocream (B)		
23	Rheogram of SLN nanocream base after 6 cycles	88	
	of storage at heating-cooling condition		
24	Rheogram of 0.25% TDE loaded SLN nanocream	89	
	after 6 cycles of storage at heating-cooling condition		
25	Rheogram of 0.50% TDE loaded SLN nanocream	90	
	after 6 cycles of storage at heating-cooling condition		
26	Rheogram of SLN nanocream base after 90 days of storage	91	
	at 4, 27 and 45 °C		
27	Rheogram of 0.25% SLN nanocream after 90 days of storage	92	
	at 4, 27 and 45 °C		
28	Rheogram of 0.5% SLN nanocream after 90 days of storage	93	
	at 4, 27 and 45 °C		
29	Degradation of TDE intact after 90 days of storage	94	
	at 4, 27 and 45 °C		
30	Degradation of TDE in 0.25% (A) and 0.50% (B) TDE loaded	95	
	SLN nanocream after storage at 4, 27 and 45 °C for either 30, 90 days		

xviii

LIST OF FIGURES (continued)

Figure		Page
31	Percentage of EE of TDE loaded SLN nanocream after storage	96
	at heating-cooling for 6 cycles (A) and 4, 27 and 45 °C (B)	
32	The percentage of cumulative release of TDE from TDE solution	97
	and TDE loaded SLN nanocream tested in 50% v/v ethanolic	
	aqueous solution at 37 °C	
33	Skin irritation of TDE solution and TDE loaded SLN nanocream	99
	at 1 h (A), 24 h (B), 48 h (C) and 72 h (D)	
34	Alkaloids screening test (primary test)	116
35	Alkaloids screening test (confirm test)	116
36	Sterol / Triterpene glycosides screening test	117
37	Cardiac glycosides screening test	117
38	Swelling of rat ears after received the topical EPP application	119

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved