
CHAPTER 4 

GAS SENSOR AND E NOSE APPLICATIONS 

Currently, gas sensing devices are needed to improve the environmental and 

safety control of toxic gases. There is a requirement these kinds of sensor for 

optimizing combustion reactions in the emerging transport industry, and domestic and 

industrial applications. There are three main groups of gas sensing devices, depending 

on the supporting technology: solid state, spectroscopic, and optic. The spectroscopic 

and optic systems are expensive for domestic use and difficult to implement in 

reduced spaces for example in car engines. Solid state gas sensors gain great 

advantage in this point as their size is reducible. They are portable, have low power 

consumption, and are inexpensive. Moreover, they can be used in complex device 

especially array sensor or e nose to improve the selectivity of the gas sensor. This 

chapter discusses firstly fabrication and characterization of gas sensors based on 

MoO3 and SnO2. Then discussion is focused on the sensor array.
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4.1 Gas sensors 

4.1.1 Introduction 

A gas sensor is a device to detect molecules or chemical compounds in gas or 

vapor. Metal oxide gas sensors typically consist of a metal oxide semiconducting 

film coated onto a ceramic substrate, for example alumina, silicon oxide, silicon 

nitride. Metal oxides used for gas sensors are SnO2, WO3, TiO2, ZnO, ZrO2, etc. Gas 

sensors based on SnO2 were the first commercial MOS which is known as Tagushi 

gas sensor or Figaro gas sensor, as shown in Fig. 4.1. These sensors are fabricated 

from SnO2 with different doping for various applications. Noble metal catalysts such 

as Pt, Pd, Au, or Cu, are usually used as dopant. These dopants improve the sensitivity 

and selectivity of MOS. Table 4.1 lists dopants in metal oxide and corresponding 

target gases.  Most often the device also contains a heating element because the 

operating temperature of MOS is in 200 500 C.

Figure 4.1 Tagushi gas sensors [74] 
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Table 4.1 Sensing materials and corresponding target gases [76] 

Target gas Additive/Metal oxide  

CO Ag/WO3, Fe2O3, Pd/SnO2, Pt/SnO2

CH4 Pt/SnO2, Pd/SnO2

H2 Pt/SnO2, Pd/SnO2, Pt/TiO2, Nb/TiO2

NH3 WO3, Ag/WO3, Pt/TiO3

O2 In2O3, Pd/SnO2, Nb/TiO2, TiO2

C2H5OH Pt/TiO2, Pd/SnO2, Nb/TiO2

NO2 WO3, In2O3, LaFeO3, Pd/SnO2, Pt/SnO2

4.1.2 Fabrication of gas sensor 

 The sensing layers were deposited on alumina substrates (2 mm x 7 mm or 4 

mm x 7 mm) using precipitation method for MoO3 and SnO2 thick film and 

carbothermal reduction method of SnO2 nanostructures as mentioned in section 3.1. 

For the precipitation method, MoO3 or SnO2 powder was ground to miniaturize the 

powder size and dispersed in distilled water by sonicating. Alumina substrates were 

placed at the bottom of a tube and then the suspension was poured into the tube. The 

light bulb, providing temperature of 70 80 C, was use to evaporate the distilled 

water. The particles in the suspension gradually precipitated to coat the alumina 

substrates. After the suspension dried, the substrates were removed from the tube and 

put into a furnace. The temperature in the furnace was adjusted gradually to increase 

to 150 C and kept at this temperature for two hours. The thickness of film can be 
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adjusted by varying the amount of the suspension. This work, MoO3 and SnO2 film 

with thickness of 50 µm and 10 µm, respectively, were fabricated. In addition, gold 

colloid with concentration of 60 ppm was used to functionalize the layer of SnO2

nanostructures by dropping technique. The heater for the sensors was made of NiCr 

wire with diameter of 20 m by tightly coiling on a 4 mm x 7 mm alumina substrate. 

The alumina substrate with heater was coupled with another 4 mm x 7 mm alumina 

substrate on the bottom side and wedged onto an 8 pin IC socket, as depicted in Fig. 

4.2. Two IC sockets were coupled together for strength. The ends of NiCr wire were 

soldered to socket pins below (4 and 5 in Fig. 4.2a). The alumina substrate with 

sensing element was bound above the heater substrate. Gold wires were glued to the 

electrodes by gold paste (Ted Pella, Inc., Redding, CA USA) and soldered to socket 

pins (1 and 8 in Fig. 4.2a). 

Figure 4.2 Typical developed gas sensor: (a) top view and (b) side view 
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4.1.3 Ethanol gas sensing properties 

The gas sensing properties of the fabricated gas sensors were examined using 

an ethanol breath simulator (GUTH laboratory Inc., Harrisburg USA) for 50  1000 

ppm of ethanol vapor concentration which corresponds to the range of alcohol in 

breath. Ethanol sensing performance was carried out through a gas confined chamber 

with inlet and outlet, as shown in Fig. 4.3a. Air flow of 1 ml/min was fed into the 

chamber as a reference gas through the inlet. The inlet was switched between air and 

air + ethanol vapor for turning on/off ethanol vapor gas. The gas sensors were 

exposed to ethanol vapor for 200 seconds over the operating temperature of 

200 380 C, measuring by thermocouple placed above the sensing layer. The 

responses of the fabricated gas sensors to ethanol vapor were measured by using a 

volt amperometric technique with 5 volts applied to the sensor, as depicted in Fig. 

4.3b.
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Figure 4.3 Schematic diagram of sensing characteristic measurement: (a) ethanol 

flowing system and (b) I V measurement. 

4.1.3.1 MoO3 thick film 

The response and recovery curves of sensor based on MoO3 thick film were 

shown in Fig. 4.4a for exposing to 200 ppm of ethanol at temperature of 220 340 C.

It can be seen the sensing characteristics depend on the operating temperature. The 

resistance of the sensor decreased as increasing of the operating temperature. 

Moreover, the response time, and recovery time of the sensor also decreased, in 

general, when the operating temperature increased. The sensor response gradually 

increased as increasing of the operating temperature to reach the maximal value of 
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11.5 at 260 C and gradually decreased with further increasing of the operating 

temperature, as seen in Fig 4.4b.  
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Figure 4.4 (a) Response and recovery curve of MoO3 thick film sensor and (b) sensor 

response as a function of temperature for 200 ppm of ethanol. 

4.1.3.2 SnO2 thick film 

The sensor based on SnO2 thick film was exposed to ethanol vapor with the 

concentrations of 50, 200, and 1000 ppm at the temperature of 200 350 C. The 

sensing characteristics of the sensor were similar to that of MoO3 thick film. The 

resistance in air decreased with increasing temperature. Fig. 4.5 shows the sensor 

response of the SnO2 thick film sensor as a function of the operating temperature. It 

was observed that the sensor response was highest at the operating temperature about 

250 C. The sensor response was 6.3, 9, and 16.3 for the ethanol concentration of 50, 

200, and 1000 ppm, respectively. 
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Figure 4.5 Sensor response of SnO2 thick film as a function of temperature. 

4.1.3.3 SnO2 nanowires beaded nanoparticles 

The sensor based on SnO2 nanowires beaded nanoparticles was exposed to 

ethanol vapor with concentrations of 50, 100, 200, 500, and 1000 ppm at 240 360 C. 

The resistance in air as a function of the temperature was similar to that of SnO2 thick 

film. The response and recovery curve and sensor response of the sensor for various 

ethanol concentrations were shown in Fig 4.6. It was observed that the response time 

decreased but the recovery time increased when the ethanol concentration increased. 

The sensor response of the sensor gradually increased as function of the operating 

temperature to reach the maximal value of 13.5, 27.8, 43.2, 81.2, and 104.3 for 

ethanol concentration of 50, 100, 200, 500, and 1000 ppm, respectively, at 340 C and 

then decreased. In comparison, the sensor response was about 2, 5, and 6 times higher 

than that of SnO2 thick film for 50, 200, and 1000 ppm, respectively.
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Figure 4.6 (a) Response and recovery curves of the sensor based on SnO2 nanowires 

beaded nanoparticles at 340 C and (b) sensor response of the sensor as a function of 

temperature for various ethanol concentrations. 

4.1.3.4 SnO2 nanowires mixed nanodendrites 

The sensor based on SnO2 nanowires mixed nanodendrites was exposed to 

ethanol vapor with concentrations of 50, 100, 200, 500, and 1000 ppm at 240 360 C. 

The sensing characteristics were, generally, the same as that of SnO2 nanowires 

beaded nanoparticles. However, the optimal temperature was shifted to higher 

temperature at 340 360 C. Furthermore, the sensor response was 22.0, 31.1, 52.8, 

83.3, and 120 for ethanol concentration of 50, 100, 200, 500, and 1000 ppm, 

respectively, slightly higher than that of the SnO2 nanowires beaded nanoparticles. 
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Figure 4.7 Sensor response as a function of temperature for SnO2 nanowires mixed 

nanodendrites.

4.1.3.5 Au impregnated SnO2 nanowires 

Three amounts of gold colloid, said 5, 10, and 15 µl, were used to 

functionalize the SnO2 nanowires.  Gold colloid of 5 µl was firstly dropped onto the 

SnO2 nanowires and the sample was then heated at 300 C for 2 hours to remove any 

substance coming with gold colloid. After the sensing characteristics of the 5 µl 

dropped sample were carried out, another 5 µl of gold colloid was dropped to the old 

sample to make 10 µl dropped sample. The same fashion was performed for 15 µl 

dropped sample. The attachment of Au particles on the nanowires was shown in Fig. 

4.8.
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Figure 4.8 TEM image of Au impregnated SnO2 nanowires for 15 µl gold colloid. 

The sensor based on Au impregnated SnO2 nanowires had the sensing 

characteristics differing from that of the pure one. Fig. 4.9 showed a typical resistance 

in air as a function of the temperature and response and recovery curve of the sensor. 

The resistance in air was about 29 M  at 240 C and increased continuously to about 

36 M  at 300 C. Then the resistance decreased rapidly when the temperature 

increased, as seen in Fig 4.9a. Over recovery occurred at low temperature, as shown 

in the curves of 240 C and 260 C in Fig. 4.9b. The over recovery was eliminated 

when the temperature became high. The sensor response as a function of amount of 

gold colloid, for 1000 ppm ethanol at the optimal temperature (320 C), was shown in 

Fig. 4.10a. The sensor response started at about 93 for pure SnO2 nanowires and 
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slightly decreased to 82 for 5 µl dropping. The sensor response enhanced to 138 when 

10 µl of gold colloid was applied. The further dropping of gold colloid caused the 

decreasing of the sensor response. The sensor response for 10 µl dropped sensor as a 

function of the operating temperature was shown in Fig. 4.10b. The sensor response 

gradually increased as increasing of the operating temperature from 240 280 C and 

then rapidly increased to highest at 320 C. After that, the sensor response decreased 

rapidly for further increasing of the operating temperature. At the optimal 

temperature, the sensor response was 16.2, 26.5, 53.2, 80.5, and 138.5 for ethanol 

concentration of 50, 100, 200, 500, and 1000 ppm, respectively. 
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Figure 4.9 (a) A typical resistance in air as a function of temperature and (b) response 

and recovery curve for the sensor based on Au impregnated SnO2 nanowires. 
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Figure 4.10 (a) Sensor response as a function of amount of gold colloid at 320 C at 

1000 ppm of ethanol and (b) sensor response as a function of temperature for 10 l

gold dropped sensor at ethanol concentration of 50, 100, 200, 500, and 1000 ppm. 

Furthermore, a sputtering technique was used to coat gold the SnO2

nanowires. The sensor based on 60 s Au coated SnO2 nanowires was exposed to 1000 

ppm of ethanol. For comparison, Fig. 4.11 shows the sensor response as a function of 

the operating temperature for pure, 5 µl gold dropping, 10 µl gold dropping, 15 µl 

gold dropping, and 60 s Au coated SnO2 nanowires. It can be seen that Au doping 

causes the optimal temperature shifted to lower temperature. 
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Figure 4.11 Comparison of the sensor response for pure and Au impregnated SnO2

nanowires to 1000 ppm of ethanol. 

4.1.4 Gas sensing mechanism 

The gas sensing mechanism of metal oxides has been clarified in previous 

works [77, 78]. At high temperature, the resistance of the sensing layer changes by 

adsorption and desorption of oxygen on the surface of the sensing layer. The carrier 

electrons are consumed by the formation of O  and/or O2  and this results in creation 

of the depletion layer leading to high barrier at inter grain. Hongsith et al. [78] have 

formulated a relation which explains the sensor response of metal oxide gas sensors in 

functions of gas concentration, catalytic effect, and nanostructure effect, which can be 

expressed as 
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where t  is a time constant, Tk Eth  is the reaction rate constant, 0 is  a number of 

oxygen ion per unit area,  is a ratio of surface area per volume of material ( mV ), sV

is the system volume, 0n is the electron carrier concentration of the sensor, D is

diameter of nanowire, dL is the Debye length indicating the depletion layer, Cis gas 

concentration, and bcan be referred to the adsorbed oxygen species on the metal 

oxide surface. The b value close to 1 (0.5), the surface dominates by O (O2 ).

The catalyst, such as Au, Pd, and Pt, has an effect on the sensor response 

through the reaction rate constant. The nanostructures can improve the sensor 

response in the terms of the surface to volume ratio, , involving to the density of 

adsorbed oxygen ion on the surface. In the case the size of nanoparticles or the 

diameter of nanowires is comparable to 2 dL , the depletion layer is formed inside the 

nanoparticles or nanowires mainly. Consequently, the conductance of sensing layer is 

governed by surface conductance more than bulk conductance. 

As seen in the results of ethanol sensing characterization, the sensor response 

of the sensor based on SnO2 nanostructures was many times higher than that of SnO2

thick film. The 2 dL of SnO2 is estimated about 40 nm at 320 C [79], whereas the 

diameter of the SnO2 nanowires was about 50 100 nm. This indicated that the sensor 

response was not governed by the depletion effect. Therefore, it could be explained in 

terms of the surface to volume ratio of the nanostructures. In addition to the effects of 

gold particles on the sensor response, the enhancement of the sensor response could 
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be contributed by the increase of chemical reaction rate due to the existence of gold 

particles on the surface of nanowires. In other words, the effect can explain through 

the chemical sensitization mechanism [42], in which gold particles activate the 

oxygen spill over on the SnO2 surface. Moreover, the gold particles also caused the 

dissociation of the oxygen molecule into ionic form and molecular ionic into atomic 

ionic at low temperature. This is clearly seen in Fig. 4.9a that the resistance increased 

as increasing of the temperature in 240 300 C.

Besides, the response and recovery time were affected by gold particles. 

Normally, oxygen diffusion in metal oxides plays a role in the response and recovery 

curve [80]. At low temperature, diffusion coefficient is low, leading to long response 

and recovery time. The over recovery effect, as seen in Fig. 4.9b, could be caused by 

the imbalance of oxygen adsorption and desorption rate. The existence of gold 

particles resulted in high rate of the oxygen adsorption, due to the spillover effect, at 

early moment after air was introduced. The resistance recovered when the rate of 

adsorption and desorption became balance. 

Furthermore, the b values of the sensors based on pure and Au impregnated 

SnO2 nanostructures at the optimal temperature were determined by plotting log 

)1Slog(  against )Clog(  and fitting with linear relation. The b values were in the 

middle between 0.5 and 1, as seen in Table 4.2. This suggested that both O and O2

associated on the surface of the sensors at their optimal temperature. 
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Table 4.2 The b value of the sensors. 

Sensing element b value

SnO2 nanowires mixed nandendrites 

SnO2 nanowires beaded nanoparticles 

5 µl gold dropping SnO2 nanowires 

10 µl gold dropping SnO2 nanowires 

15 µl gold dropping SnO2 nanowires 

0.60

0.66

0.80

0.70

0.65

4.2 Array sensors 

4.2.1 Fabrication of array sensors 

Two array sensors were fabricated, based on commercial sensors [75] and 

developed sensors [81], respectively, for study in e nose application. Some studies 

were carried out by using commercial e noses (E nose Pty Ltd., Australia [82]) for 

use in chemometric study. The first array sensor was composed of four Tagushi gas 

sensors, listed in Table 4.3. The array sensor was put in a box with holes and a fan 

allowing gas flowed through the sensors, as shown in Fig. 4.12. The electronic lines 

were used for power supply and signal outputs. The signals were amplified or 

attenuated before inputting to analog digital converter (ADC 11, Pico tech. UK) 

which connects to computer for data recording. The array sensor was separated from 

electronic module for ease of use. Second array sensor was composed of four 

developed sensor based on MoO3 thick film, SnO2 nanostructures, Au impregnated 
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SnO2 nanostructures, and Pd impregnated SnO2 nanostructures, as shown in Fig 4.13. 

This array sensor was tested similarly for ethanol sensing characterization. 

Table 4.3 Tagushi gas sensors. 

Sensor Target gas 

TGS 2100 

TGS 2602 

TGS 2611 

TGS 2620 

Air contaminants 

Air contaminants 

Methane

Alcohol, organic solvent vapor 

Figure 4.12 Box of the array sensor based on commercial sensors with a fan and 

holes.
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Figure 4.13 The developed array sensor. 

4.2.2 Discrimination of vapors using array sensor 

The signals from the array sensor are usually written as a matrix which 

number of column and row depends on the number of sensor and the taken sample, 

respectively. More than one point in the time profile of the signals can be taken into 

the matrix. The data from some sensors can be removed if it does not assist the 

e nose performance. Therefore, two processes will be used to manage the signals and 

to obtain the classification or differentiation of samples. 

Feature extraction: This process is used to extract useful information from the 

signals of the sensors or to remove the signal of some sensor which is not useful for 

classification in a specific task. There are many methods used for this purpose, 

depending on the criteria used, such as step wise  discriminant analysis (Step LDA) 

which use the separation between groups as a criterion [83]. Other criteria can be 

used, for example prediction error, distance measure, or information content. 
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Pattern recognition (PR) methods: The most popular methods of PR data 

analysis are principal component analysis (PCA) [84], linear discriminant analysis 

(LDA), and artificial neuron networks (ANN) which will be briefly introduced in this 

section. The principal characteristics of these methods are summarized in Table 4.4. 

The basic calculation of PCA and LDA can be seen in Appendix B and C. The 

supervised method needs to know the class of the input data to generate a model for 

classification. Then an unknown data is used as a test data for the model. The 

non supervised method does not need to know the class of the input data but learns 

the difference of classes automatically from the response vectors. A parametric 

technique is based on the assumption that the senor data can be explained by a 

probability density (PDF) like normal distribution, while a non parametric technique 

is applied in general. PCA is, a non supervised linear technique, used to reveal 

groupings among sets of classes. PCA reduces the complexity of the data set, from the 

initial n dimensional space to a few dimensions, (significant principal components, 

PCs) which is used to display the graphical separation among classes. LDA is a 

supervised method which calculates the discriminant functions used for classification. 

Similar to PCA, LDA can also generate the graphical separation among classes using 

two or three first dimensions. ANN can be both supervised and non supervised 

method for analyzing in complex and non linear systems. 
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Table 4.4 Summary of the principal characteristics of pattern recognition methods 

[76].

Method Learning Linear Parametric Applications  

PCA Non supervised Yes No Feature extraction and 
classification 

LDA Supervised Yes Yes Classification 

ANN Supervised/ 
non supervised 

No No Classification and 
quantitative mixture analysis 

4.2.2.1 Classification among ethanol, hydrogen, and acetone by 

Bayesian analysis 

Beside the methods mentioned above, Bayesian analysis [85] is a supervised 

and parametric method which can be used for classification or quantitative mixture 

analysis. To perform Bayesian analysis, the data of an analyzed gas for a sensor is, 

therefore, assumed to have a specific normal distribution. The normal distribution of 

the data of each analyzed gas is created by using mean and standard deviation. So the 

number of the normal distributions is equal to the number of analyzed gas times the 

number of sensors used. 

In this work, a commercial e nose of four sensors, S1, S2, S3, and S4, was used 

to measure the responses of ethanol, hydrogen, and acetone for chemometric study. 

The responses of 35 samplings for each gas were transferred to a spread sheet in 
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ExcelTM. The responses of S1, S2, and S4, were divided by that of S3 to eliminate the 

concentration dependence of the response. Hence, the responses of S1, S2, and S4,

were likely to exhibit as normal distribution. Mean and standard deviation of data for 

each gas and each sensor were calculated. These two values were used in normal 

distribution function, NORMDIST(x, mean, standard_dev, cumulative), in ExcelTM.

The actual distribution and the representative distribution of data for each sensor were 

shown as histogram and normal distribution in Fig. 4.14. These normal distributions 

acted as database for classification of unknown samples. To classify an unknown 

sample to be ethanol, hydrogen, or acetone, the likelihood of the unknown sample was 

calculated by following steps. Supposed that the response matrix of the unknown after 

divided by that of S3 is [x1, x2, x4] and the likelihood of the unknown to be ethanol, 

hydrogen, acetone, and none of them, are represented by Pri(xi|E), Pri(xi|H), Pri(xi|A), 

and Pri(xi|N), respectively, for Si.

Pri(xi|C)=NORMDIST(xi, mean_xi(C), standard_dev_xi(C), cumulative) (4.2) 

Pri(xi|N)=0.9(maxi mini)       (4.3) 

where, i=1, 2, and 4, mean_xi(C) is the mean of data in class C for Si,

standard_dev_xi(E) is the standard deviation of data in class C for Si, maxi is the 

maximum value of Si, and mini is the minimum value of Si. Vice versa, the likelihood 

of ethanol to be the unknown is represented by Pr(E|X). 

)N(P)N|XPr()A(P)A|XPr()H(P)H|XPr()E(P)E|XPr(
)E(P)E|XPr()X|EPr(

          (4.4) 
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Where, Pr(X|E), Pr(X|H), Pr(X|A), and Pr(X|N) are the likelihood of the unknown to 

be ethanol, hydrogen, acetone, and none of them, respectively. P() is the prior 

likelihood of each class. The numbers of step to calculate the likelihood of a class for 

a given unknown depend on the number of the sensor used. At first step of 

calculation, P() of all classes are equal. At second step, the likelihood of the class 

resulting from first step is used as P() of that class.  The same fashion will be used 

until the final step. The unknown, X, will be assigned to the class that has maximum 

likelihood. Table 4.5 shows the final result of calculation. The result showed that the 

unknown could be assigned to be hydrogen with 78.1% of likelihood. However, it 

also had a chance to be acetone with 21.9% of likelihood. As seen in Fig 4.14, data of 

gases overlapped to each other, leading to only 82.5% of classification correction. 
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Table 4.5 Spread sheet of the calculation result. 

Ethanol 
S1/S3 S2/S3 S4/S3

mean 9.83 2.65 8.22 
sd 0.78 0.16 0.58 

Hydrogen 
S1/S3 S2/S3 S4/S3

mean 12.41 2.33 10.20 
sd 1.44 0.26 1.18 

Acetone 
S1/S3 S2/S3 S4/S3

mean 11.69 3.02 9.48 
sd 1.44 0.23 1.05 

Sensor MAX MIN Pr(data|none)  within training data 
S1 16.46 8.60 0.10 0.01 
S2 3.61 1.66 0.54 0.05 
S4 13.70 7.32 0.12 0.02 

Sample Ethanol Hydrogen Acetone None Classify
E 4.80% 59.82% 35.37% 0.01% H 
E 74.48% 16.53% 8.99% 0.01% E 
E 85.91% 8.34% 5.74% 0.00% E 
E 94.60% 3.38% 2.01% 0.00% E 
H 0.00% 97.45% 0.00% 2.55% H 
H 0.00% 99.86% 0.00% 0.14% H 
H 0.00% 99.91% 0.00% 0.09% H 
H 0.00% 99.84% 0.00% 0.16% H 
A 0.00% 22.72% 77.27% 0.01% A 
A 0.00% 11.20% 88.78% 0.02% A 
A 49.41% 13.95% 36.63% 0.01% E 
A 0.00% 7.84% 92.14% 0.01% A 

Prediction 
S1 S2 S3 S4

unknown 0.20 0.04 0.02 0.18 

Pr(data|E) Pr(data|H) Pr(data|A) Pr(data|none) Sum 
S1/S3 13.18 0.00 0.24 0.16 0.01 0.41 
S2/S3 2.71 2.33 0.53 0.67 0.05 3.58 
S4/S3 11.51 0.00 0.18 0.06 0.02 0.26 

Pr(E|data) Pr(H|data) Pr(A|data) Pr(none|data) SumProd 
Prior 0.25 0.25 0.25 0.25 0.10 
S1 0.00 0.58 0.39 0.03 0.57 
S2 0.00 0.54 0.46 0.00 0.13 

Result S4 0.00% 78.09% 21.88% 0.03% 
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Figure 4.14 Histograms and distributions of data for (a) ethanol, (b) hydrogen, and (c) 

acetone. 
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4.2.2.2 Discrimination among gases with PCA assisted by row wise

standardization technique 

This task was carried out by using a commercial e nose of five sensors to 

analyze three concentrations of acetone, ethanol, iso propanol, methanol, and toluene. 

The row wise standardization, which is used to eliminate the concentration 

dependence of the response, will be effective if the responses of sensors have a linear 

relationship to each other for a gas, see more details in Appendix A. Therefore, the 

response of each sensor for ethanol was plotted against that of the S1, corresponding 

to before and after base line subtraction as shown in Fig. 4.15a and b. The results 

showed that it was worth to apply the row wise standardization to this data. Fig. 

4.15c shows the row wise standardized data for all gases, where a unique response 

pattern of each gas can be seen. The row wise standardized data was analyzed with 

PCA by using PLS toolbox performed in Matlab©. Row wise standardization 

technique remarkably improved the graphical separation of the classes of samples due 

to a unique linear relationship between sensors for a gas. Fig. 4.16 compares the PCA 

score plot on the original data and the row wise standardized data. With original data, 

PCA could ambiguously separate the gases and samples of the same gas, especially 

ethanol, were spread widely and separated because of concentration dependence of 

data. The best separation view is shown in Fig. 4.16a. By applying the row wise

standardization technique to make concentration independence data, PCA could group 

samples of each gas together, leading to definite separation among the gases as shown 

in Fig. 4.16b. 
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Figure 4.15 Plot of the responses of sensors against that of S1; (a) before and (b) after 

baseline subtraction.  (c) Row wise standardized data showing a unique response 

pattern for each gas. 
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Figure 4.16 PCA score plot on (a) original data and (b) row wise standardized data 

of the first three components with 99.5% and 99.8% of total variance, respectively. 

4.2.2.3 Classification of gasoline and ethanol blended gasoline 

Nowadays, Thai government allows gasoline blended with 10, 20, and 85 

percent of ethanol (E10, E20, and E85, respectively) in commercial use. These 

blended gasolines are called “gasohol” and their price is cheaper than the normal 

gasoline. Some trader can defraud by switching the gasohol to be the gasoline for 

higher price. Moreover, the gasoline can be adulterated with small amount of 

industrial solvents such as kerosene or used lubricants.    The adulterated gasoline 

would cause the engine knock for long term use.  It is worthwhile to establish a 

system to monitor the quality of fuel. To study the possibility of using an array sensor 

in such purpose, the developed array sensor, based on commercial sensors, was used 

to classify among gasoline 91 (B91) and gasohol (E10, E20, and E85) from PTT 

Public Company Limited. Ten samplings of each vapor were recorded. A typical 
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response of the array sensor was in Fig. 4.17a. Points at saturation period in the 

response were averaged and used to analyze with LDA, performed in Matlab©. The 

response patterns of all gases were shown in Fig. 4.17b. LDA result showed that 

samples were separated definitely into three groups. Samples of E10 and E20 were 

grouped together at the middle between E85 and B91 samples, as seen in Fig. 4.17c. 

The arrow in Fig. 4.17c shows the trend of ethanol content in gasoline. 
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Figure 4.17 (a) A typical response of array sensor to gasoline 91 (B91), (b) average 

response pattern of B91, E10, E20, and E85, (c) LDA score plot of two first 

components with 98.0% of total variance.  
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4.2.2.4 Classification ability of the array sensor based on developed 

sensors

The array sensor based on developed sensors was exposed to ethanol and 

acetone with concentrations of 50, 100, and 200 ppm at the operating temperature of 

320 C. Each concentration was sampled twice. To see the response pattern of the 

array sensor, the typical sensor responses of the array sensor were plotted against the 

concentration of ethanol and acetone, as shown in Fig. 4.18a and b. It can be seen the 

different pattern of the responses between ethanol and acetone in each concentration 

but not obviously. However, PCA score plot showed that the data points separated 

into two groups obviously, as shown in Fig. 4.18c. The arrows in Fig. 4.18c showed 

the trend of the concentration of each substance in the space of the reduced 

dimension. In addition, the relationship or redundancy among sensors was shown in 

PCA loading plot, Fig. 4.18d. The points in the plot were separated to each other, 

which meant that each sensor gave a specific response for the analyzed gases. This 

suggested that the array sensor based on MoO3 thick film, SnO2 nanostructures, 

Au impregnated SnO2 nanostructures, and Pd impregnated SnO2 nanostructures, 

could be developed as a device for e nose application.
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Figure 4.18 Typical sensor response of the array sensor as a function of 

concentration: (a) ethanol and (b) acetone. S1, S2, S3, and S4 refer to MoO3 thick film, 

SnO2 nanostructures, Au impregnated SnO2 nanostructures, and Pd impregnated

SnO2 nanostructures, respectively. (c) PCA score plot and (d) PCA loading plot of 

data with two first components holding 98.4% of total variance. 


