CHAPTER 4

GAS SENSOR AND E-NOSE APPLICATIONS

Currently, gas sensing devices are needed to improve the environmental and
safety control of toxic gases. There is a requirement these kinds of sensor for
optimizing combustion reactions in the emerging transport industry, and domestic and
industrial applications. There are three main groups of gas sensing devices, depending
on the supporting technology: solid state, spectroscopic, and optic. The spectroscopic
and optic systems are expensive for domestic use and difficult to implement in
reduced spaces for example in car engines. Solid state gas sensors gain great
advantage in this point as their size is reducible. They are portable, have low power
consumption, and are inexpensive. Moreover, they can be used in complex device
especially array sensor or e—nose to improve the selectivity of the gas sensor. This
chapter discusses firstly fabrication and characterization of gas sensors based on

MoOj; and SnO,. Then discussion is focused on the sensor array.
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4.1 Gas sensors

4.1.1 Introduction

A gas sensor is a device to detect molecules or chemical compounds in gas or
vapor. Metal oxide gas sensors typically consist of a metal-oxide semiconducting
film coated onto a ceramic substrate, for example alumina, silicon oxide, silicon
nitride. Metal oxides used for gas sensors are SnO,, WO3, TiO,, ZnO, ZrO,, etc. Gas
sensors based on SnO, were the first commercial MOS which is known as Tagushi
gas sensor or Figaro gas sensor, as shown in Fig. 4.1. These sensors are fabricated
from SnO, with different doping for various applications. Noble metal catalysts such
as Pt, Pd, Au, or Cu, are usually used as dopant. These dopants improve the sensitivity
and selectivity of MOS. Table 4.1 lists dopants in metal oxide and corresponding
target gases. Most often the device also contains a heating element because the

operating temperature of MOS is in 200-500°C.

a1 K

TGS 2612 TGS 821 TGS 2180 TGS 2442

Figure 4.1 Tagushi gas sensors [74]
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Table 4.1 Sensing materials and corresponding target gases [76]

Target gas Additive/Metal oxide
CO Ag/WOs, Fe,03, Pd/SnO,, Pt/SnO,
CH4 Pt/SnO,, Pd/SnO,
H, Pt/SnO,, Pd/SnO,, Pt/Ti0,, Nb/TiO,
NH; WO;, Ag/WO;3, Pt/TiO;
0> In,03, Pd/SnO,, Nb/TiO,, TiO,
C,HsOH Pt/Ti0,, Pd/SnO,, Nb/TiO,
NO, WOs, In,03, LaFeOs, Pd/SnO,, Pt/SnO,

4.1.2 Fabrication of gas sensor

The sensing layers were deposited on alumina substrates (2 mm x 7 mm or 4
mm x 7 mm) using precipitation method for MoOs; and SnO, thick film and
carbothermal reduction method of SnO, nanostructures as mentioned in section 3.1.
For the precipitation method, MoOj3; or SnO, powder was ground to miniaturize the
powder size and dispersed in distilled water by sonicating. Alumina substrates were
placed at the bottom of a tube and then the suspension was poured into the tube. The
light bulb, providing temperature of 70—80°C, was use to evaporate the distilled
water. The particles in the suspension gradually precipitated to coat the alumina
substrates. After the suspension dried, the substrates were removed from the tube and
put into a furnace. The temperature in the furnace was adjusted gradually to increase

to 150°C and kept at this temperature for two hours. The thickness of film can be
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adjusted by varying the amount of the suspension. This work, MoO; and SnO; film
with thickness of 50 pm and 10 um, respectively, were fabricated. In addition, gold
colloid with concentration of 60 ppm was used to functionalize the layer of SnO,
nanostructures by dropping technique. The heater for the sensors was made of NiCr
wire with diameter of 20 um by tightly coiling on a 4 mm x 7 mm alumina substrate.
The alumina substrate with heater was coupled with another 4 mm x 7 mm alumina
substrate on the bottom side and wedged onto an 8—pin IC socket, as depicted in Fig.
4.2. Two IC sockets were coupled together for strength. The ends of NiCr wire were
soldered to socket pins below (4 and 5 in Fig. 4.2a). The alumina substrate with
sensing element was bound above the heater substrate. Gold wires were glued to the
electrodes by gold paste (Ted Pella, Inc., Redding, CA USA) and soldered to socket

pins (1 and 8 in Fig. 4.2a).

(a)

Top view ' Side view

Alumina

Figure 4.2 Typical developed gas sensor: (a) top view and (b) side view
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4.1.3 Ethanol gas sensing properties

The gas sensing properties of the fabricated gas sensors were examined using
an ethanol breath simulator (GUTH laboratory Inc., Harrisburg USA) for 50 — 1000
ppm of ethanol vapor concentration which corresponds to the range of alcohol in
breath. Ethanol sensing performance was carried out through a gas—confined chamber
with inlet and outlet, as shown in Fig. 4.3a. Air flow of 1 ml/min was fed into the
chamber as a reference gas through the inlet. The inlet was switched between air and
air + ethanol vapor for turning on/off ethanol vapor gas. The gas sensors were
exposed to ethanol vapor for 200 seconds over the operating temperature of
200-380°C, measuring by thermocouple placed above the sensing layer. The
responses of the fabricated gas sensors to ethanol vapor were measured by using a
volt—amperometric technique with 5 volts applied to the sensor, as depicted in Fig.

4.3b.
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(a) Test chamber

Sensor .
Ethanol simulator

Ailr flow
[ ml/min
-

Direction controller

(b)

Figure 4.3 Schematic diagram of sensing characteristic measurement: (a) ethanol

flowing system and (b) I-V measurement.

4.1.3.1 MoO;s thick film

The response and recovery curves of sensor based on MoOs thick film were
shown in Fig. 4.4a for exposing to 200 ppm of ethanol at temperature of 220-340°C.
It can be seen the sensing characteristics depend on the operating temperature. The
resistance of the sensor decreased as increasing of the operating temperature.
Moreover, the response time, and recovery time of the sensor also decreased, in
general, when the operating temperature increased. The sensor response gradually

increased as increasing of the operating temperature to reach the maximal value of
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11.5 at 260°C and gradually decreased with further increasing of the operating

temperature, as seen in Fig 4.4b.
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Figure 4.4 (a) Response and recovery curve of MoOs thick film sensor and (b) sensor

response as a function of temperature for 200 ppm of ethanol.

4.1.3.2 SnO; thick film

The sensor based on SnO, thick film was exposed to ethanol vapor with the
concentrations of 50, 200, and 1000 ppm at the temperature of 200-350°C. The
sensing characteristics of the sensor were similar to that of MoOs thick film. The
resistance in air decreased with increasing temperature. Fig. 4.5 shows the sensor
response of the SnO, thick film sensor as a function of the operating temperature. It
was observed that the sensor response was highest at the operating temperature about
250°C. The sensor response was 6.3, 9, and 16.3 for the ethanol concentration of 50,

200, and 1000 ppm, respectively.
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Figure 4.5 Sensor response of SnO; thick film as a function of temperature.

4.1.3.3 SnO; nanowires beaded nanoparticles

The sensor based on SnO, nanowires beaded nanoparticles was exposed to
ethanol vapor with concentrations of 50, 100, 200, 500, and 1000 ppm at 240—-360°C.
The resistance in air as a function of the temperature was similar to that of SnO,; thick
film. The response and recovery curve and sensor response of the sensor for various
ethanol concentrations were shown in Fig 4.6. It was observed that the response time
decreased but the recovery time increased when the ethanol concentration increased.
The sensor response of the sensor gradually increased as function of the operating
temperature to reach the maximal value of 13.5, 27.8, 43.2, 81.2, and 104.3 for
ethanol concentration of 50, 100, 200, 500, and 1000 ppm, respectively, at 340°C and
then decreased. In comparison, the sensor response was about 2, 5, and 6 times higher

than that of SnO, thick film for 50, 200, and 1000 ppm, respectively.
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Figure 4.6 (a) Response and recovery curves of the sensor based on SnO, nanowires
beaded nanoparticles at 340°C and (b) sensor response of the sensor as a function of

temperature for various ethanol concentrations.

4.1.3.4 SnO; nanowires mixed nanodendrites

The sensor based on SnO, nanowires mixed nanodendrites was exposed to
ethanol vapor with concentrations of 50, 100, 200, 500, and 1000 ppm at 240—-360°C.
The sensing characteristics were, generally, the same as that of SnO, nanowires
beaded nanoparticles. However, the optimal temperature was shifted to higher
temperature at 340-360°C. Furthermore, the sensor response was 22.0, 31.1, 52.8,
83.3, and 120 for ethanol concentration of 50, 100, 200, 500, and 1000 ppm,

respectively, slightly higher than that of the SnO, nanowires beaded nanoparticles.
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Figure 4.7 Sensor response as a function of temperature for SnO; nanowires mixed

nanodendrites.

4.1.3.5 Au—impregnated SnO, nanowires

Three amounts of gold colloid, said 5, 10, and 15 pl, were used to
functionalize the SnO; nanowires. Gold colloid of 5 ul was firstly dropped onto the
SnO; nanowires and the sample was then heated at 300°C for 2 hours to remove any
substance coming with gold colloid. After the sensing characteristics of the 5 pl
dropped sample were carried out, another 5 pl of gold colloid was dropped to the old
sample to make 10 pl dropped sample. The same fashion was performed for 15 pl

dropped sample. The attachment of Au particles on the nanowires was shown in Fig.

4.8.
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Figure 4.8 TEM image of Au—impregnated SnO, nanowires for 15 ul gold colloid.

The sensor based on Au—impregnated SnO, nanowires had the sensing
characteristics differing from that of the pure one. Fig. 4.9 showed a typical resistance
in air as a function of the temperature and response and recovery curve of the sensor.
The resistance in air was about 29 MQ at 240°C and increased continuously to about
36 MQ at 300°C. Then the resistance decreased rapidly when the temperature
increased, as seen in Fig 4.9a. Over recovery occurred at low temperature, as shown
in the curves of 240°C and 260°C in Fig. 4.9b. The over recovery was eliminated
when the temperature became high. The sensor response as a function of amount of
gold colloid, for 1000 ppm ethanol at the optimal temperature (320°C), was shown in

Fig. 4.10a. The sensor response started at about 93 for pure SnO, nanowires and
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slightly decreased to 82 for 5 ul dropping. The sensor response enhanced to 138 when
10 ul of gold colloid was applied. The further dropping of gold colloid caused the
decreasing of the sensor response. The sensor response for 10 pl dropped sensor as a
function of the operating temperature was shown in Fig. 4.10b. The sensor response
gradually increased as increasing of the operating temperature from 240-280°C and
then rapidly increased to highest at 320°C. After that, the sensor response decreased
rapidly for further increasing of the operating temperature. At the optimal
temperature, the sensor response was 16.2, 26.5, 53.2, 80.5, and 138.5 for ethanol

concentration of 50, 100, 200, 500, and 1000 ppm, respectively.
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Figure 4.9 (a) A typical resistance in air as a function of temperature and (b) response

and recovery curve for the sensor based on Au—impregnated SnO, nanowires.
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Figure 4.10 (a) Sensor response as a function of amount of gold colloid at 320°C at

1000 ppm of ethanol and (b) sensor response as a function of temperature for 10 ul
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gold dropped sensor at ethanol concentration of 50, 100, 200, 500, and 1000 ppm.

nanowires. The sensor based on 60 s Au—coated SnO, nanowires was exposed to 1000
ppm of ethanol. For comparison, Fig. 4.11 shows the sensor response as a function of
the operating temperature for pure, 5 ul gold dropping, 10 ul gold dropping, 15 ul

gold dropping, and 60 s Au—coated SnO, nanowires. It can be seen that Au doping

Furthermore, a sputtering technique was used to coat gold the SnO,

causes the optimal temperature shifted to lower temperature.
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Figure 4.11 Comparison of the sensor response for pure and Au—impregnated SnO,

nanowires to 1000 ppm of ethanol.

4.1.4 Gas sensing mechanism

The gas sensing mechanism of metal oxides has been clarified in previous
works [77, 78]. At high temperature, the resistance of the sensing layer changes by
adsorption and desorption of oxygen on the surface of the sensing layer. The carrier
electrons are consumed by the formation of O~ and/or O*™ and this results in creation
of the depletion layer leading to high barrier at inter—grain. Hongsith et al. [78] have
formulated a relation which explains the sensor response of metal oxide gas sensors in
functions of gas concentration, catalytic effect, and nanostructure effect, which can be

expressed as
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b 2
S— (FtkEth (Yo, @(V,,/ V, )) ] D Cb+1 (4.1)

n, (D-2L,)

where I is a time constant, kg, (T) is the reaction rate constant, G,is a number of

oxygen ion per unit area, @ is a ratio of surface area per volume of material (Vv _ ), V,
is the system volume, n,is the electron carrier concentration of the sensor, Dis
diameter of nanowire, L,is the Debye length indicating the depletion layer, Cis gas

concentration, and bcan be referred to the adsorbed oxygen species on the metal

oxide surface. The b—value close to 1 (0.5), the surface dominates by O™ (0%).

The catalyst, such as Au, Pd, and Pt, has an effect on the sensor response
through the reaction rate constant. The nanostructures can improve the sensor
response in the terms of the surface to volume ratio,®, involving to the density of

adsorbed oxygen ion on the surface. In the case the size of nanoparticles or the

diameter of nanowires is comparable to 2L, the depletion layer is formed inside the

nanoparticles or nanowires mainly. Consequently, the conductance of sensing layer is

governed by surface conductance more than bulk conductance.

As seen in the results of ethanol sensing characterization, the sensor response

of the sensor based on SnO; nanostructures was many times higher than that of SnO,

thick film. The 2L, of SnO, is estimated about 40 nm at 320°C [79], whereas the

diameter of the SnO, nanowires was about 50—100 nm. This indicated that the sensor
response was not governed by the depletion effect. Therefore, it could be explained in
terms of the surface to volume ratio of the nanostructures. In addition to the effects of

gold particles on the sensor response, the enhancement of the sensor response could
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be contributed by the increase of chemical reaction rate due to the existence of gold
particles on the surface of nanowires. In other words, the effect can explain through
the chemical sensitization mechanism [42], in which gold particles activate the
oxygen spill over on the SnO, surface. Moreover, the gold particles also caused the
dissociation of the oxygen molecule into ionic form and molecular ionic into atomic
ionic at low temperature. This is clearly seen in Fig. 4.9a that the resistance increased

as increasing of the temperature in 240-300°C.

Besides, the response and recovery time were affected by gold particles.
Normally, oxygen diffusion in metal oxides plays a role in the response and recovery
curve [80]. At low temperature, diffusion coefficient is low, leading to long response
and recovery time. The over recovery effect, as seen in Fig. 4.9b, could be caused by
the imbalance of oxygen adsorption and desorption rate. The existence of gold
particles resulted in high rate of the oxygen adsorption, due to the spillover effect, at
early moment after air was introduced. The resistance recovered when the rate of

adsorption and desorption became balance.

Furthermore, the b—values of the sensors based on pure and Au—impregnated
SnO, nanostructures at the optimal temperature were determined by plotting log
log(S —1) against log(C) and fitting with linear relation. The b—values were in the
middle between 0.5 and 1, as seen in Table 4.2. This suggested that both O~ and O*~

associated on the surface of the sensors at their optimal temperature.
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Table 4.2 The b—value of the sensors.

Sensing element b—value
SnO, nanowires mixed nandendrites 0.60
SnO, nanowires beaded nanoparticles 0.66
5 ul gold dropping SnO; nanowires 0.80
10 pl gold dropping SnO, nanowires 0.70
15 pl gold dropping SnO; nanowires 0.65

4.2 Array sensors

4.2.1 Fabrication of array sensors

Two array sensors were fabricated, based on commercial sensors [75] and
developed sensors [81], respectively, for study in e—nose application. Some studies
were carried out by using commercial e—noses (E—nose Pty Ltd., Australia [82]) for
use in chemometric study. The first array sensor was composed of four Tagushi gas
sensors, listed in Table 4.3. The array sensor was put in a box with holes and a fan
allowing gas flowed through the sensors, as shown in Fig. 4.12. The electronic lines
were used for power supply and signal outputs. The signals were amplified or
attenuated before inputting to analog—digital converter (ADC-11, Pico tech. UK)
which connects to computer for data recording. The array sensor was separated from
electronic module for ease of use. Second array sensor was composed of four

developed sensor based on MoOs thick film, SnO, nanostructures, Au—impregnated
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SnO; nanostructures, and Pd—impregnated SnO; nanostructures, as shown in Fig 4.13.

This array sensor was tested similarly for ethanol sensing characterization.

Table 4.3 Tagushi gas sensors.

Sensor Target gas
TGS 2100 Air contaminants
TGS 2602 Air contaminants
TGS 2611 Methane
TGS 2620 Alcohol, organic solvent vapor

Figure 4.12 Box of the array sensor based on commercial sensors with a fan and

holes.
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Figure 4.13 The developed array sensor.

4.2.2 Discrimination of vapors using array sensor

The signals from the array sensor are usually written as a matrix which
number of column and row depends on the number of sensor and the taken sample,
respectively. More than one point in the time profile of the signals can be taken into
the matrix. The data from some sensors can be removed if it does not assist the
e—nose performance. Therefore, two processes will be used to manage the signals and

to obtain the classification or differentiation of samples.

Feature extraction: This process is used to extract useful information from the
signals of the sensors or to remove the signal of some sensor which is not useful for
classification in a specific task. There are many methods used for this purpose,
depending on the criteria used, such as step wise — discriminant analysis (Step—LDA)
which use the separation between groups as a criterion [83]. Other criteria can be

used, for example prediction error, distance measure, or information content.
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Pattern recognition (PR) methods: The most popular methods of PR data
analysis are principal component analysis (PCA) [84], linear discriminant analysis
(LDA), and artificial neuron networks (ANN) which will be briefly introduced in this
section. The principal characteristics of these methods are summarized in Table 4.4.
The basic calculation of PCA and LDA can be seen in Appendix B and C. The
supervised method needs to know the class of the input data to generate a model for
classification. Then an unknown data is used as a test data for the model. The
non—supervised method does not need to know the class of the input data but learns
the difference of classes automatically from the response vectors. A parametric
technique is based on the assumption that the senor data can be explained by a
probability density (PDF) like normal distribution, while a non—parametric technique
is applied in general. PCA is, a non—supervised linear technique, used to reveal
groupings among sets of classes. PCA reduces the complexity of the data set, from the
initial n—dimensional space to a few dimensions, (significant principal components,
PCs) which is used to display the graphical separation among classes. LDA is a
supervised method which calculates the discriminant functions used for classification.
Similar to PCA, LDA can also generate the graphical separation among classes using
two or three first dimensions. ANN can be both supervised and non—supervised

method for analyzing in complex and non—linear systems.
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Table 4.4 Summary of the principal characteristics of pattern recognition methods

[76].
Method | Learning Linear | Parametric | Applications
PCA Non-supervised | Yes No Feature extraction and
classification
LDA Supervised Yes Yes Classification
ANN Supervised/ No No Classification and
non—supervised quantitative mixture analysis

4.2.2.1 Classification among ethanol, hydrogen, and acetone by

Bayesian analysis

Beside the methods mentioned above, Bayesian analysis [85] is a supervised
and parametric method which can be used for classification or quantitative mixture
analysis. To perform Bayesian analysis, the data of an analyzed gas for a sensor is,
therefore, assumed to have a specific normal distribution. The normal distribution of
the data of each analyzed gas is created by using mean and standard deviation. So the
number of the normal distributions is equal to the number of analyzed gas times the

number of sensors used.

In this work, a commercial e—nose of four sensors, Si, S,, S3, and S4, was used
to measure the responses of ethanol, hydrogen, and acetone for chemometric study.

The responses of 35 samplings for each gas were transferred to a spread sheet in
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Excel™. The responses of S;, S,, and S4, were divided by that of S; to eliminate the
concentration dependence of the response. Hence, the responses of S, S,, and Sa,
were likely to exhibit as normal distribution. Mean and standard deviation of data for
each gas and each sensor were calculated. These two values were used in normal
distribution function, NORMDIST(x, mean, standard dev, cumulative), in Excel™.
The actual distribution and the representative distribution of data for each sensor were
shown as histogram and normal distribution in Fig. 4.14. These normal distributions
acted as database for classification of unknown samples. To classify an unknown
sample to be ethanol, hydrogen, or acetone, the likelihood of the unknown sample was
calculated by following steps. Supposed that the response matrix of the unknown after
divided by that of Ss is [x;, X2, X4] and the likelihood of the unknown to be ethanol,
hydrogen, acetone, and none of them, are represented by Pri(xi|E), Pri(xi|H), Pri(xi|A),

and Pri(x;|N), respectively, for S;.
Pri(x;/C)=NORMDIST(x;, mean_x;(C), standard dev_x;(C), cumulative) (4.2)
Pri(xi|N)=0.9(max;—min;) (4.3)

where, i=1, 2, and 4, mean x;(C) is the mean of data in class C for S,
standard _dev x;(E) is the standard deviation of data in class C for S;, max; is the
maximum value of S;, and min; is the minimum value of S;. Vice versa, the likelihood
of ethanol to be the unknown is represented by Pr(E|X).

~ Pr(X | E)P(E)
 Pr(X|E)P(E) + Pr(X | H)P(H) + Pr(X | A)P(A) + Pr(X | N)P(N)

Pr(E|X)

(4.4)
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Where, Pr(X|E), Pr(X|H), Pr(X|A), and Pr(X|N) are the likelihood of the unknown to
be ethanol, hydrogen, acetone, and none of them, respectively. P() is the prior
likelihood of each class. The numbers of step to calculate the likelihood of a class for
a given unknown depend on the number of the sensor used. At first step of
calculation, P() of all classes are equal. At second step, the likelihood of the class
resulting from first step is used as P() of that class. The same fashion will be used
until the final step. The unknown, X, will be assigned to the class that has maximum
likelihood. Table 4.5 shows the final result of calculation. The result showed that the
unknown could be assigned to be hydrogen with 78.1% of likelihood. However, it
also had a chance to be acetone with 21.9% of likelihood. As seen in Fig 4.14, data of

gases overlapped to each other, leading to only 82.5% of classification correction.



Table 4.5 Spread sheet of the calculation result.

mean
sd
mean
sd
Acetone
S1/S3 S2/S3 S4/S3
mean 11.69 3.02 9.48
sd 1.44 0.23 1.05
Sensor  MAX  MIN  Pr(datajone) withintrainingdata
S1 16.46 8.60 0.10 0.01
S2 3.61 1.66 0.54 0.05
S4 13.70 7.32 0.12 0.02

E 35.37% 0.01% H
E 8.99% 0.01% E
E 5.74% 0.00% E
E 2.01% 0.00% E
H 0.00% 2.55% H
H 0.00% 0.14% H
H 0.00% 0.09% H
H 0.00% 0.16% H
A 77.27% 0.01% A
A 88.78% 0.02% A
A 36.63% 0.01% E
A 92.14% 0.01% A

Pr(datalA) Pr(data|none) Sum

S1/83 13.18 0.16 0.01 0.41
S2/S3 2.7 0.67 0.05 3.58
S4/S3 11.51 0.06 0.02 0.26

Pr(Al|data) Pr(none|data) SumProd
0.25 0.25 0.10
0.39 0.03 0.57
0.46 0.00 0.13

21.88%

Prior
S1



Count

Count

74

1.0
9] I Hydrogen — = — Hydrogen
g]=—— I Acetone ~« Acetone . [08
. I Ethanol —4— Ethanol
-0.6
-0.4
II . :h‘:L.,-l a1 00
14 16 18
Response of S1
3.0
81 B Hydrogen o, —=— Hydrogen 2.5
-— [ Acetone / x e Acetone —»
6 I Ethanol \ —a— Ethanol L2.0
1SN 1S
4
-1.0
o L0.5
04 0.0
1.5 2.0 2.5 3.0 3.5 4.0

Response of S2

Normal distribution

Normal distribution

64 I Hydrogen — = — Hydrogen

-~— [ Acetone -~ * Acctone ~ | g o
I Fthanol —a— Ethanol T2
=
=
0.6 <
g Z
o L0.4 O
a E
) - 0.2 o
111

&1 '!!‘Il-l. 0.0

12 13 14
Response of S4

Figure 4.14 Histograms and distributions of data for (a) ethanol, (b) hydrogen, and (c)

acetone.
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4.2.2.2 Discrimination among gases with PCA assisted by row—wise

standardization technique

This task was carried out by using a commercial e—nose of five sensors to
analyze three concentrations of acetone, ethanol, iso—propanol, methanol, and toluene.
The row—wise standardization, which is used to eliminate the concentration
dependence of the response, will be effective if the responses of sensors have a linear
relationship to each other for a gas, see more details in Appendix A. Therefore, the
response of each sensor for ethanol was plotted against that of the S;, corresponding
to before and after base—line subtraction as shown in Fig. 4.15a and b. The results
showed that it was worth to apply the row—wise standardization to this data. Fig.
4.15c shows the row—wise standardized data for all gases, where a unique response
pattern of each gas can be seen. The row—wise standardized data was analyzed with
PCA by using PLS toolbox performed in Matlab®. Row—wise standardization
technique remarkably improved the graphical separation of the classes of samples due
to a unique linear relationship between sensors for a gas. Fig. 4.16 compares the PCA
score plot on the original data and the row—wise standardized data. With original data,
PCA could ambiguously separate the gases and samples of the same gas, especially
ethanol, were spread widely and separated because of concentration dependence of
data. The best separation view is shown in Fig. 4.16a. By applying the row—wise
standardization technique to make concentration independence data, PCA could group

samples of each gas together, leading to definite separation among the gases as shown

in Fig. 4.16b.
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Figure 4.15 Plot of the responses of sensors against that of S;; (a) before and (b) after
baseline subtraction. (c) Row—wise standardized data showing a unique response

pattern for each gas.
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Figure 4.16 PCA score plot on (a) original data and (b) row—wise standardized data

of the first three components with 99.5% and 99.8% of total variance, respectively.

4.2.2.3 Classification of gasoline and ethanol blended gasoline

Nowadays, Thai government allows gasoline blended with 10, 20, and 85
percent of ethanol (E10, E20, and E85, respectively) in commercial use. These
blended gasolines are called “gasohol” and their price is cheaper than the normal
gasoline. Some trader can defraud by switching the gasohol to be the gasoline for
higher price. Moreover, the gasoline can be adulterated with small amount of
industrial solvents such as kerosene or used lubricants.  The adulterated gasoline
would cause the engine knock for long term use. It is worthwhile to establish a
system to monitor the quality of fuel. To study the possibility of using an array sensor
in such purpose, the developed array sensor, based on commercial sensors, was used
to classify among gasoline 91 (B91) and gasohol (E10, E20, and E85) from PTT

Public Company Limited. Ten samplings of each vapor were recorded. A typical
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response of the array sensor was in Fig. 4.17a. Points at saturation period in the
response were averaged and used to analyze with LDA, performed in Matlab®. The
response patterns of all gases were shown in Fig. 4.17b. LDA result showed that
samples were separated definitely into three groups. Samples of E10 and E20 were
grouped together at the middle between E85 and B91 samples, as seen in Fig. 4.17c.

The arrow in Fig. 4.17¢ shows the trend of ethanol content in gasoline.
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Figure 4.17 (a) A typical response of array sensor to gasoline 91 (B91), (b) average
response pattern of B91, E10, E20, and E85, (c) LDA score plot of two first

components with 98.0% of total variance.
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4.2.2.4 Classification ability of the array sensor based on developed

sensors

The array sensor based on developed sensors was exposed to ethanol and
acetone with concentrations of 50, 100, and 200 ppm at the operating temperature of
320°C. Each concentration was sampled twice. To see the response pattern of the
array sensor, the typical sensor responses of the array sensor were plotted against the
concentration of ethanol and acetone, as shown in Fig. 4.18a and b. It can be seen the
different pattern of the responses between ethanol and acetone in each concentration
but not obviously. However, PCA score plot showed that the data points separated
into two groups obviously, as shown in Fig. 4.18c. The arrows in Fig. 4.18c showed
the trend of the concentration of each substance in the space of the reduced
dimension. In addition, the relationship or redundancy among sensors was shown in
PCA loading plot, Fig. 4.18d. The points in the plot were separated to each other,
which meant that each sensor gave a specific response for the analyzed gases. This
suggested that the array sensor based on MoO; thick film, SnO;, nanostructures,

Au—impregnated SnO, nanostructures, and Pd—impregnated SnO, nanostructures,

could be developed as a device for e—nose application.
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Figure 4.18 Typical sensor response of the array sensor as a function of

concentration: (a) ethanol and (b) acetone. Sy, S, S3, and S4 refer to MoOj thick film,

SnO, nanostructures, Au—impregnated SnO, nanostructures, and Pd—impregnated

SnO, nanostructures, respectively. (c) PCA score plot and (d) PCA loading plot of

data with two first components holding 98.4% of total variance.



