

TABLE OF CONTENTS

	Page
Acknowledgements	iii
English Abstract	v
Thai Abstract	viii
List of Tables	xiii
List of Figures	xiv
Abbreviations and symbols	xix
Chapter 1 Introduction	1
1.1 Principles and rationales	1
1.2 Basic properties of MoO_3 and SnO_2	8
1.3 Objectives and usefulness	16
Chapter 2 Fabrication and characterization of MoO_3 nanostructures	17
2.1 Vapor transport method to fabricate MoO_3 nanoplates	18
2.2 Ion implantation technique	26
2.3 Growth mechanism of MoO_3 nanostructures	35
Chapter 3 Fabrication and characterization of SnO_2 nanostructures	39
3.1 Fabrication of SnO_2 nanostructures	41
3.2 Characterization of SnO_2 nanostructures	42
3.3 Growth mechanism of SnO_2 nanostructures	47

Chapter 4 Gas sensor and e-nose applications	50
4.1 Gas sensors	51
4.2 Array sensors	66
Chapter 5 Conclusion and future work	81
References	85
Appendices	92
Appendix A	93
Appendix B	96
Appendix C	99
Appendix D	102
Curriculum vitae	131

LIST OF TABLES

Table	Page
1.1 Physical properties of α -MoO ₃	8
1.2 Physical properties of SnO ₂	12
2.1 Raman selection rules for backscattering corresponding to all possible cases	25
4.1 Sensing materials and corresponding target gases	52
4.2 The b -value of the sensors	66
4.3 Tagushi gas sensors	67
4.4 Summary of the principal characteristics of pattern recognition methods	70
4.5 Spread sheet of the calculation result	73
5.1 Summary of the optimal temperature and the sensor response for various sensing materials	83

LIST OF FIGURES

Figure	Page
1.1 Applications of the electronic nose	2
1.2 Commercial electronic nose (a) desk-top and (b) mobile	5
1.3 The α -MoO ₃ crystal structure: (a) layer structure, (b) oxygen position, and (c) bond length	10
1.4 Primitive tetragonal unit cell of the SnO ₂ . The lattice parameter are $\mathbf{a} = 4.7374 \text{ \AA}$, $\mathbf{c} = 3.1864 \text{ \AA}$, and $\mathbf{u} = 0.306$	14
1.5 Schematic representation of atomic displacements for the Raman and IR-active modes of SnO ₂	15
2.1 (a) Tubular furnace showing MoO ₃ vapor source and Si substrate position. (b) Temperature inside the furnace as a function of position	19
2.2 SEM images of MoO ₃ nanoplates grown on silicon substrates: (a)-(b) at 680°C and (c)-(d) at 600°C	20
2.3 Raman spectra of MoO ₃ whiskers taken from six cases of crystal orientation and polarization, (a) in the range of 50-700 cm ⁻¹ and (b) in the range of 650-1100 cm ⁻¹ with the intensity eight times stronger than that in (a)	22
2.4 SEM images of the surface (a) and (b) on the N ⁺ implanted whiskers (c) and (d) on the C ⁺ implanted whiskers	28

2.5	(a) Representative TEM image and (b) higher magnification TEM	29
	micrograph of nanobelts. The inset in (a) shows the corresponding SAD	
	pattern taken with the incident beam in the <010> direction	
2.6	Raman spectra of implanted and unimplanted MoO_3 whiskers in the	32
	case of the wave propagation parallel to the a axis and polarization	
	parallel to the c axis (a) in the range of $60\text{-}1100\text{ cm}^{-1}$ and the inset of	
	(a) expand the range of $230\text{-}350\text{ cm}^{-1}$ to show implantation effect on	
	the intensity ratio of I_{283}/I_{290} . (b) The intensity ratio I/I_{816} of the	
	implanted whiskers in comparison to the unimplanted whiskers, where	
	the peaks 1-17 are Raman peaks at $82, 98, 115, \dots$, and 992 cm^{-1} ,	
	respectively where each peak is the summation of the ratio from all six	
	cases	
2.7	Electrical conductivity as a function of temperature for the implanted	34
	MoO_3 whiskers	
2.8	Phase diagram of MoO_3	37
2.9	The purposed growth process of MoO_3 nanobelts: (a) starting crack due	38
	to high vapor pressure and (b) formation of the MoO_3 vapor on the	
	surface	
3.1	Crucible with $\text{SnO}_2\text{:C}$ and gold-coated substrates	41
3.2	SEM images of the as-synthesized SnO_2 nanostructures four repeats:	43
	(a) nanowires decorated with nanodendrites, (b)-(c) nanowires beaded	
	with particles (d) nanowires with exiguous particles	
3.3	SEM images of cactus-like crystals: (a) trunk and (b) spines	43

3.4	XRD profile of the SnO ₂ nanostructures	44
3.5	TEM image and SAED of SnO ₂ nanowires	46
3.6	TEM images and SAED of SnO ₂ nanodendrites (a) linkage of nanodendrite and nanowire (b) a nanodendrite departed from nanowire	46
3.7	A typical TEM image of a leaf on cactus-like crystals	47
4.1	Tagushi gas sensors	51
4.2	Typical developed gas sensor: (a) top view and (b) side view	53
4.3	Schematic diagram of sensing characteristic measurement: (a) ethanol flowing system and (b) I-V measurement	55
4.4	(a) Response and recovery curve of MoO ₃ thick film sensor and (b) sensor response as a function of temperature for 200 ppm of ethanol	56
4.5	Sensor response of SnO ₂ thick film as a function of temperature	57
4.6	(a) Response and recovery curve of the sensor based on SnO ₂ nanowires beaded nanoparticles at 340°C and (b) sensor response of the sensor as a function of temperature for various ethanol concentrations	58
4.7	Sensor response as a function of temperature for SnO ₂ nanowires mixed nanodendrites	59
4.8	TEM image of Au-impregnated SnO ₂ nanowires for 15 µl gold colloid.	60
4.9	(a) A typical resistance in air as a function of temperature and (b) response and recovery curve for the sensor based on Au-impregnated SnO ₂ nanowires	61

4.10 (a) Sensor reponse as a function of amount of gold colloid at 320°C at 1000 ppm of ethanol and (b) sensor response as a function of temperature for 10 μ l gold dropped sensor at ethanol concentration of 50, 100, 200, 500, and 1000 ppm	62
4.11 Comparison of the sensor response for pure and Au-impregnated SnO ₂ nanowires to 1000 ppm of ethanol	63
4.12 Box of the array sensor based on commercial sensors with a fan and holes	67
4.13 The developed array sensor	68
4.14 Histograms and Distributions of data for (a) ethanol, (b) hydrogen, and (c) acetone	74
4.15 Plot of the responses of sensors against that of S ₁ ; (a) before and (b) after baseline subtraction. (c) Row-wise standardized data showing a unique response pattern for each gas	76
4.16 PCA score plot on (a) original data and (b) row-wise standardized data of the first three components with 99.5% and 99.8% of total variance, respectively	77
4.17 (a) A typical response of array sensor to gasoline 91 (B91), (b) average response pattern of B91, E10, E20, and E85, (c) LDA score plot of two first components with 98.0% of total variance	78

4.18	Typical sensor response of the array sensor as a function of concentration: (a) ethanol and (b) acetone. S_1 , S_2 , S_3 , and S_4 refer to MoO_3 thick film, SnO_2 nanostructures, Au-impregnated SnO_2 nanostructures, and Pd-impregnated SnO_2 nanostructures, respectively.	80
(c)	PCA score plot and (d) PCA loading plot of data with two first components holding 98.4% of total variance	
B.1	Illustration of the output of applying PCA to data matrix	96
B.2	Calculation of PCA	97
B.3	The evolution of plot of data in PCA	98
C.1	Calculation of LDA	100
C.2	Selection of variables by step-LDA method	101

ABBREVIATIONS AND SYMBOLS

PCA	Principal component analysis
LDA	Linear discriminant analysis
ANN	Artificial neural network
ρ	Density
ΔH_f	Standard enthalpy of formation
S°	Standard molar entropy
ε_r	Static dielectric constant
σ	Conductivity
E_a	Activation energy
k	Boltzmann constant
P_N	Nucleation probability
α	Supersaturation ratio
Φ	Surface to volume ratio
L_d	Debye length
$Pr(x y)$	Likelihood of x for a given y
P_0	Prior likelihood