Table of Contents

page

Acknowledgement	iii
Abstract in English	v
Abstract in Thai	vii
List of Tables	xii
List of Figures	xiii
Chapter 1 Introduction and Background	1
1.1 Proton Exchange Membrane Fuel Cell and Its Water Problem	1
1.2 Review of Methods for Water Dynamics Observations	3
1.2.1 Visible Imaging	3
1.2.2 Terahertz Imaging	4
1.3 Proton Exchange Membrane Fuel Cell Design	6
1.4 Scope of Thesis	8
Chapter 2 Theoretical Framework for Terahertz Measurement	9
2.1 Interactions of Electromagnetic Wave with Materials	9
A 2.1.1 Absorption hts reserved	9
2.1.2 Reflection	10
2.1.3 Refraction	11
2.2 Matrix of Light Transport	11
2.2.1 Propagation Matrix	12
2.2.2 Transfer Matrix	13
2.3 Terahertz Response of Proton Exchange Membrane Fuel Cell	
Structures	15

2.4 Frequency Selection by Filter	20
Chapter 3 Visible Imaging Measurement	23
3.1 Visible Imaging System	23
3.2 Performance of Proton Exchange Membrane Fuel Cell	25
3.3 Water Distribution Response to Changes in Current Density	27
3.3.1 Transient Response	27
3.3.2 Steady State Response	30
3.4 Characteristics of Droplet Formation and Water Removal at	
Fixed Current Density	31
3.4.1 Droplet Formation Process	31
3.4.2 Water Removal Process	33
3.5 Summary	35
Chapter 4 Terahertz Imaging Measurement	37
4.1 Terahertz Generation and Detection	37
4.1.1 Terahertz Generation from Short Electron Bunches	37
4.1.2 Terahertz Detection	38
4.2 Terahertz Imaging System	39
4.3 Reflective Terahertz Images	41
4.4 Quantitative Identification of Water Presence using a Line-Scan	
Coplotright [©] by Chiang Mai University	43
4.5 Improvement of Image Resolution	45
4.5.1 Using a Polarizer	45
4.5.2 Using a Metal Mesh Filter	50
4.6 Summary	55
Chapter 5 Conclusion and Future Work	56
5.1 Conclusion and Discussion	56
5.2 Future Work	58

Bibliography	59
Appendix Focused Beam Size	62
Curriculum Vitae	63

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

List of Tables

Table		page
1.1	Dimensions for the transparent PEM fuel cell	8
2.1	Reflective indices of materials in multilayer of PEM fuel cell	17
2.2	Geometry of copper meshes	22
4.1	Transmission wavenumber of THz radiation obtain from mesh filter	51
A.1	Focused beam diameter for different wavelength	62
	ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

xii

List of Figures

Figure		page
1.1	The diagram of PEM fuel cell structures	2
1.2	The THz spectrum	4
1.3	THz image of fresh and dry leaves	6
1.4	The PEM fuel cell components designed with machine-through flow	
	channel made of nickel-coated brass enclosed with THz window	7
2.1	Interactions of light with matter	10
2.2	Electric field propagated between two positions in space	13
2.3	Field across an interface	14
2.4	Schematic diagram of a cross section of PEM fuel cell structure at the	
	cathode	16
2.5	Forward and backward electric fields at multistructure of the fuel cell	16
2.6	Spectral reflectance of the PEM fuel cell structure with PMMA	
	windowลิทธิ์มหาวิทยาลัยเสียงใหม่	18
2.7	Spectral reflectance of the PEM fuel cell structure with Si window	18
2.8	Schematic diagram of a cross section of PEM fuel cell structure with	
	filled water and unfilled water	19
2.9	Spectral reflectance of the air PMMA air and air PMMA water	
	structures	19
2.10	Spectral reflectance of the air Si air and air Si water structures	20
2.11	Spectral reflectance of the air Si water and air PMMA water structures	20
2.12	Inductive mesh geometry and its equivalent circuit	21
2.13	Transmission spectra of THz radiation obtain from the equivalent	
	circuit method	22

xiii

3.1	Schematic diagram of our visible imaging system incorporated in the	
	fuel cell test station	24
3.2	The front view of the transparent fuel cell assembly	24
3.3	Generalized polarization curve for a PEM fuel cell	26
3.4	Polarization curve and power curve for a PEM fuel cell	26
3.5	Current density profile adopted for the experiment on the transient	
	response of the PEM fuel cell	27
3.6	Dynamic response of the cell voltage with respect to a step current	
	change	28
3.7	Image of water distribution in the flow channels with time after a step	
	increase in the current density	29
3.8	Photographs of water buildup at the cathode with different current	
	densities	30
3.9	Photographs of empty flow channel, and water-clogged flow channel	31
3.10	Droplet formation in the flow channel for transparent cell	32
3.11	Visualization of water removal process in the flow channel for	
	transparent cell	34
3.12	Photographs of water buildup in the flow channel at current density of	
	0.6 A/cm ²	35
4.1	Schematic diagram of the THz generation system via coherent	
	transition radiation by Chiang Mai University	38
4.2	A photograph of the reflective THz imaging setup	39
4.3	Preparation of a flow channel plate used in a model cell for THz	
	imaging	40
4.4	Photographs of a flow channel plate before and after covering with Si	
	window and THz image of it	41
4.5	THz image of machine-through-brass flow channel plate with PMMA	
	window	42
4.6	THz image of machine-through-brass flow channel plate with silicon	
	window	42

4.7	Gradient THz image with PMMA window includes the dashed line, and	
	THz-signal line-scan along the dashed line in gradient THz image with	
	PMMA window	43
4.8	Gradient THz image with silicon window includes the dashed line, and	
	THz-signal line-scan along the dashed line in gradient THz image with	
	Silicon window	44
4.9	Diagram of the flow channel plate with spot of THz radiation across an	
	arc of the flow channel, and using a line scan profile of region in left to	
	define a resolution of the image	44
4.10	The polarizer and Insertion of the polarizer to our reflective THz	
	imaging setup	45
4.11	P-polarization and S-polarization of THz radiation beam	46
4.12	Reflectance spectra of the air Si air structure at 30 degree incident angle	
	as a function of polarization	47
4.13	THz image using p-polarized THz radiation	47
4.14	THz image using s-polarized THz radiation	48
4.15	Line scans illustrate real profile of the flow channel groove at the arc of	
	the cell compared the THz signal by using p-polarized and	
	s-polarized THz radiation	49
4.16	Measurement of THz power spectrum after mesh filtering via	
	Michelson interferometer	50
4.17	Transmission spectra of THz radiation obtain from measurement	
	Michelson interferometer	51
4.18	Photo of copper mesh filter with opening size $180 \times 180 \text{ mm}2$ and	
	Reflective THz imaging system with inserting metal mesh	52
4.19	THz image of machine-through-brass flow channel plate without mesh	52
4.20	THz image of machine-through-brass flow channel plate with mesh-40	52
4.21	THz image of machine-through-brass flow channel plate with mesh-80	53
4.22	Line scans illustrate real profile of the flow channel groove at the arc of	
	the cell compared to THz signal with mesh and without mesh	54