TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
CHAPTER 1 INTRODUCTION	1
1.1 Research objective and scope	2
1.2 Literature review	2
1.3 Data set	4
1.3.1 Wat Pan Sao data set	5
1.3.2 Wiang Kum Kam data set	7
CHAPTER 2 THEORY	10
2.1 EM wave propagation	10
2.2 GPR field survey	17
CHAPTER 3 GPR DATA PROCESSING	21
3.1 Data preparation	- 23
3.2 Dewow	24
3.3 Background removal	25
3.4 Frequency filtering	26
3.5 Automatic gain control	27

3.6 Deconvolution	28
3.7 Migration	29
3.8 GPR processing of Wat Pan Sao Data Set	30
3.8.1 Data preparation	30
3.8.2 Dewow	31
3.8.3 Background removal	32
3.8.4 Frequency filtering	32
3.8.5 Automatic gain control	36
3.8.6 Deconvolution	36
3.8.7 Migration	38
3.9 GPR processing of Wiang Kum Kam data set	41
3.9.1 Data preparation	41
3.9.2 Dewow	42
3.9.3 Background removal	43
3.9.4 Frequency filtering	45
3.9.5 Automatic gain control	47
3.9.6 Deconvolution	47
3.9.7 Migration	48
CHAPTER 4 GPR ATTRIBUTE ANALYSIS	51
4.1 Energy	51
4.2 Similarity	52
4.3 Coherency (Max Similarity)	53
4.4 Steepness event	54
4.5 Instantaneous amplitude	54

ix

	4.6 Iso-surface	55
	4.7 Time slice	56
	4.8 Attribute analysis of Wat Pan Sao data set	56
	4.8.1 Energy attribute	57
	4.8.2 Instantaneous amplitude attribute	57
	4.8.3 Steepness event attribute	58
	4.8.4 Similarity attribute	65
	4.8.5 Max similarity attribute	65
	4.8.6 Comparison of attribute results of Wat Pan Sao data set	70
	4.8.7 Wat Pan Sao Iso-surface visualization	76
	4.8.8 Wat Pan Sao GPR data interpretation	82
	4.9 Attribute analysis of Wiang Kum Kam data set	85
	4.9.1 Energy attribute	85
	4.9.2 Instantanouse amplitude attribute	86
	4.9.3 Steepness event attribute	86
	4.9.4 Similarity attribute	89
	4.9.5 Max similarity attribute	89
	4.9.6 Comparison of attribute results of Wiang Kum Kam	
	data set	93
	4.9.7 Wiang Kum Kam iso-surface visualization	96
	4.9.8 Wiang Kum Kam GPR data interpretation	99
C	HAPTER 5 DISCUSSION AND CONCLUSIONS	103
R	EFERENCES	105
C	URRICULUM VITAE	110

х

LIST OF TABLES

Table

Page

14

2.1 Typical dielectric constant of common material (Modified from Davis and Annan, 1989).

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1.1	(a) GSSI SIR-20 GPR system with (b) 200 MHz antenna.	5
1.2	Survey area at Wat Pan Sao. (From Google Inc, 2012).	6
1.3	Excavated area near the study survey area at Wat Pan Sao. (From	
	Department of Fine Arts, 2010).	6
5 21.4	Wat Pan Sao GPR survey line orientation.	72
1.5	Survey area at Wiang Kum Kam. (From Google Inc, 2012).	8
1.6	Survey area on the eastern side of old brick wall in Wiang Kum	
	Kam site.	9
1.7	Wiang Kum Kam GPR survey line orientation.	9
2.1	Electromagnetic wave propagation which electrical and magnetic	
	fields are perpendicular to each other. (From Microscopy Resource	
	Center, 2012).	10
2.2	Electromagnetic wave spectrums. Wavelength, frequency and	
	energy per photon are represented in top, middle and bottom scales	
	respectively. (From MicroWorlds, 2012).	11
2.3	Variation in (a) velocity and (b) attenuation in a simple medium	
	with non-dispersive physical properties. (From Harry, 2009).	16

- 2.4 Signal paths between a transmitter and a receiver treated as rays following the paths. A is the direct airwave, G is the direct ground wave, R is the reflected wave, and C is the critically refracted wave. (From Harry, 2009).
- 2.5 A ground penetrating radar (GPR) system emits and detects radio wave signals. There are many possible signals and paths and the objective is to maximize the target response and minimize others. (From Harry, 2009).
- 2.6 Frequency distribution of the electromagnetic pulse with central frequency of 200 MHz emitted from GPR transmitter. (a) The ideal emitted EM pulse and (b) real emitted EM pulse. (Modified from Conyers, 2004).
- 3.1 The GPR data processing steps and descriptions.
- 3.2 Example zero time variation. (From Harry, 2009).
- 3.3 GPR signal before applying dewow filter (top) and after applying a dewow filter (below). (From Harry, 2009).
- 3.4 Simple band-pass filters in the frequency domain. (From Harry, 2009).
 3.5 Concept of time-varying gain where signal amplification varies with time to compensate for attenuation. (a) a radar trace with four signals of decreasing amplitude with time, (b) shows a time gain function, (c) shows the result of multiplying (a) by (b). All four events are clearly visible in (c). (From Harry, 2009).

18

20

22

24

25

27

3.6	Principle of migration attempt to (top) collapse diffraction to the	
	point source and (bottom) move reflected signal back to the right	
	position. (From Harry, 2009).	29
3.7	Geometry of the GPR data from Wat Pan Sao.	30
3.8	Average amplitude traces of Wat Pan Sao all GPR data traces with	
	the amplitude at zero time of 32800.	31
3.9	Wat Pan Sao GPR traces (a) before and (b) after DC removal.	31
3.10	Wat Pan Sao GPR profile at crossline number 200, (a) before and	
	(b) after justified background removal.	33
3.11	Selected f-k filter zone (shade area) of Wat Pan Sao GPR data and	
	frequency spectrum (F-SUM).	34
3.12	Wat Pan Sao GPR profile at crossline number 200 with DC	
	removal and background removal, (a) before and (b) after f-k and	
	band-pass filters.	35
3.13	Wat Pan Sao GPR profile at crossline number 200, (a) before and	
	(b) after performing automatic gain control.	37
3.14	Average of all Pan Sao Temple traces autocorrelation with the 2 nd	
	zero-crossing of 4.55 ns.	38
3.15	Wat Pan Sao GPR profile at crossline number 200, (a) with and (b)	
	without predictive deconvolution.	39
3.16	Wat Pan Sao GPR profile at crossline number 200, (a) before and	
	(b) after applying Kirchhoff post-stack time migration.	40

3.17	Geometry of the GPR data from Wiang Kum Kam.	41
3.18	Average amplitude trace of Wiang Kum Kam all GPR data	
	traces with the amplitude at zero time of 32771.	42
3.19	Wiang Kum Kam GPR traces (a) before and (b) after DC removal.	42
3.20	Wiang Kum Kam profile at inline number 651, (a) before and (b)	
	after background removal.	44
3.21	Selected f-k filter zone (shade area) of Wiang Kum Kam GPR data	
	and frequency spectrum (F-SUM).	45
3.22	Wiang Kum Kam GPR profile at inline number 651 with DC	
	removal and background removal, (a) before and (b) after f-k and	
	band-pass filters.	46
3.23	Average of all Wiang Kum Kam traces autocorrelation that have	
	2 nd zero-crossing of 4.92 ns.	47
3.24	Wiang Kum Kam GPR profile at inline number 651, (a) with and	
	without (b) predictive deconvolution.	49
3.25	Wiang Kum Kam GPR profile at inline number 651 (a) before and	
	(b) after applying Kirchhoff post-stack time migration.	50
4.1	Sketch illustrating a neighborhood of nine individual traces	
	selected from a 3D GPR data. (Modified from Böniger and	
	Tronicke, 2010a).	53
4.2	Slope of tangent at a zero crossing.	54
4.3	Complex traces attribute. (From Taner et al., 1979).	55

xv

- 4.4 Wat Pan Sao energy time slices of the inline GPR data set at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.
- 4.5 Wat Pan Sao energy time slices of the crossline GPR data set at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.
- 4.6 Wat Pan Sao instantaneous amplitude time slices of the inline GPR dataset at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.
- 4.7 Wat Pan Sao instantaneous amplitude time slices of the crossline GPR data set at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.

xvi

60

61

- 4.8 Wat Pan Sao steepness event time slices of the inline GPR data at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.
- 4.9 Wat Pan Sao steepness event time slices of the crossline GPR data at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns,
 (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.
- 4.10 Wat Pan Sao similarity time slices of the inline GPR data set at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.
- 4.11 Wat Pan Sao similarity time slices of the crossline GPR data set at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.

n.

64

66

xviii

- 4.12 Wat Pan Sao coherency time slices of the inline GPR data set at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.
- 4.13 Wat Pan Sao coherency time slices of the crossline GPR data set at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-18, 18-36, 36-54, 54-72, 72-90, 90-108, 108-126 and 126-144 cm, respectively.
- 4.14 Wat Pan Sao time slices of the inline data set at 4-8 ns (~18-36 cm) of (a) amplitude, (b) energy attribute, (c) instantaneous amplitude attribute, (d) steepness event attribute, (e) similarity attribute, and (f) coherency attribute. The depth is estimated using a velocity of 9 cm/ns.
- 4.15 Wat Pan Sao time slices of the inline data set at 8-12 ns (~36-54 cm) of (a) amplitude, (b) energy attribute, (c) instantaneous amplitude attribute, (d) steepness event attribute, (e) similarity attribute, and (f) coherency attribute. The depth is estimated using a velocity of 9 cm/ns.

68

69

4.16 Wat Pan Sao time slices of the crossline data set at 4-8 ns (~18-36 cm) of (a) amplitude, (b) energy attribute, (c) instantaneous amplitude attribute, (d) steepness event attribute, (e) similarity attribute, and (f) coherency attribute. The depth is estimated using a velocity of 9 cm/ns.

74

75

77

77

- 4.17 Wat Pan Sao time slices of the crossline data set at 8-12 ns (~36-54 cm) of (a) amplitude, (b) energy attribute, (c) instantaneous amplitude attribute, (d) steepness event attribute, (e) similarity attribute, and (f) coherency attribute. The depth is estimated using a velocity of 9 cm/ns.
- 4.18 Wat Pan Sao energy attribute iso-surface of the inline data set using15% of the maximum amplitude.
- 4.19 Wat Pan Sao instantaneous amplitude attribute iso-surface of the inline data set using 38% of the maximum amplitude.
- 4.20 Wat Pan Sao steepness event attribute iso-surface of the inline data set using 33% of the maximum amplitude.
- 4.21 Wat Pan Sao similarity attribute iso-surface of the inline data set using 85% of the maximum amplitude.
- 4.22 Wat Pan Sao coherency attribute iso-surface of the inline data set using 92% of the maximum amplitude.
- 4.23 Wat Pan Sao energy attribute iso-surface of the crossline data set using 16% of the maximum amplitude.

4.24	Wat Pan Sao instantaneous amplitude attribute iso-surface of the	
	crossline data set using 42% of the maximum amplitude.	80
4.25	Wat Pan Sao steepness event attribute iso-surface of the crossline	
	data set using 45% of the maximum amplitude.	80
4.26	Wat Pan Sao similarity attribute iso-surface of the crossline data set	
	using 85% of the maximum amplitude.	81
4.27	Wat Pan Sao coherency attribute iso-surface of the crossline data	
	set using 65% of the maximum amplitude.	81
4.28	Wat Pan Sao steepness event attribute profile at inline number 700	
	and time slice at 5 ns of the inline data sets. Top of the brick floor	
	of the Buddha hall and pipe line on the northern part are presented.	83
4.29	Wat Pan Sao steepness event attribute profile at crossline number	
	650 and time slice at 5 ns of the crossline data sets. Top of the brick	
	floor of the Buddha hall on the northern part are presented.	83
4.30	Brick floor at the excavation point east of the survey area. Top of	
	floor is at ~ 20 cm below the ground surface.	84
4.31	Interpreted steepness event slice showing brick floor and the pipe line	
	locations consistent with the excavated brick floor at ~20 cm depth.	84
4.32	Wiang Kum Kam energy time slices at time intervals of (a) 0-4 ns, (b)	
	4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28	
	ns and (h) 28-32 ns corresponding to depths of 0-20, 20-40, 40-60, 60-	
	80, 80-100, 100-120, 120-140 and 140-160 cm, respectively.	87

- 4.33 Wiang Kum Kam instantaneous amplitude time slices at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-20, 20-40, 40-60, 60-80, 80-100, 100-120, 120-140 and 140-160 cm, respectively.
- 4.34 Wiang Kum Kam steepness event time slices at time intervals of (a)
 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24
 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-20,
 20-40, 40-60, 60-80, 80-100, 100-120, 120-140 and 140-160 cm,
 respectively.
- 4.35 Wiang Kum Kam similarity time slices at time intervals of (a) 0-4 ns,
 (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-20, 20-40, 40-60, 60-80, 80-100, 100-120, 120-140 and 140-160 cm, respectively.
- 4.36 Wiang Kum Kam coherency time slices at time intervals of (a) 0-4 ns, (b) 4-8 ns, (c) 8-12 ns, (d) 12-16 ns, (e) 16-20 ns, (f) 20-24 ns, (g) 24-28 ns and (h) 28-32 ns corresponding to depths of 0-20, 20-40, 40-60, 60-80, 80-100, 100-120, 120-140 and 140-160 cm, respectively.
 4.37 Wiang Kum Kam time slices at 4-8 ns (~ 20-40 cm) of (a) amplitude, (b) energy attribute, (c) instantaneous amplitude attribute, (d) steepness event attribute, (e) similarity attribute, and (f) coherency

attribute.

90

91

XX11	

4.38	Wiang Kum Kam time slices at 8-12 ns (~ 40-60 cm) of (a)		
	amplitude, (b) energy attribute, (c) instantaneous amplitude		
	attribute, (d) steepness event attribute, (e) similarity attribute, and		
	(f) coherency attribute.	95	
4.39	Wiang Kum Kam energy attribute iso-surface using 13% of the		
	maximum amplitude.	97	
4.40	Wiang Kum Kam instantaneous amplitude attribute iso-surface		
	using 42% of the maximum amplitude.	97	
4.41	Wiang Kum Kam steepness event attribute iso-surface using 40%		
	of the maximum amplitude.	98	
4.42	Wiang Kum Kam similarity attribute iso-surface using 86% of the		
	maximum amplitude.	98	
4.43	Wiang Kum Kam coherency attribute iso-surface using 90% of the		
	maximum amplitude.	99	
4.44	The old brick wall and remnant brick form reconstruction in Wiang		
	Kum Kam area. The wall may extend to the non-excavated area.	100	
4.45	Wiang Kum Kam steepness event attribute vertical slices. Squares		
	and ellipses represent suspected top and base of the wall,		
	respectively.	101	
4.46	Wiang Kum Kam steepness event attribute profiles at line number		
	201 and 451 and time slice at 27 ns showing location of the		
	suspected brick wall.	102	