CHAPTER 2 PRELIMINARIES

In this chapter, we give some basic definitions, notations, lemmas and results which will be used in the later chapters.

Notations: The following notations will be used in this thesis:

 \mathbb{R}^n is the n dimensional Euclidean space,

 $\mathbb I$ is the integer number set,

$$\mathbb{R}_{odd} = \{ b \in \mathbb{R} | b = \frac{2m+1}{2n+1}, \ m, \ n \in \mathbb{I} \},\$$

$$\mathbb{R}_{even} = \{ a \in \mathbb{R} | a = \frac{2m}{2n+1}, \ m, \ n \in \mathbb{I} \}$$

||x|| is the Euclidean norm of vector x,

 $||x||_{\Delta,p}$ is the homogeneous p - norm of vector x,

 \mathbb{C}^1 is the set of continuously differentiable function.

Definition 2.1 (Positive Definite Function) A function $f(x) \in \mathbb{R}$ is called positive definite if f(0) = 0 and f(x) > 0 for all $x \in \mathbb{R}^n \setminus \{0\}$. It is called positive semidefinite if $f(x) \ge 0$ for all $x \in \mathbb{R}^n$.

Definition 2.2 (Negative Definite Function) A function $f(x) \in \mathbb{R}$ is called negative definite if f(0) = 0 and f(x) < 0 for all $x \in \mathbb{R}^n \setminus \{0\}$. It is called negative semidefinite if $f(x) \leq 0$ for all $x \in \mathbb{R}^n$.

Stability and Lyapunov Theory of Autonomous Systems: [16] Consider the autonomous system

where $f: D \to \mathbb{R}^n$ is a locally lipschitz mapping from a domain $D \subset \mathbb{R}^n$ into \mathbb{R}^n and $f(0) = 0, \forall x \in D$

(2.1)

 $\dot{x} = f(x)$

Definition 2.3 The equilibrium point x = 0 of (2.1) is

• Stable if, for each $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge 0$$

- **Unstable** if not stable
- Asymptotically stable if it is stable and δ can be chosen such that

$$||x(0)|| < \delta \Rightarrow \lim_{t \to \infty} ||x(t)|| = 0$$

Theorem 2.1 (Lyapunov theory) Let x = 0 be an equilibrium point for (2.1). Let $V : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function such that

$$V(0) = 0 \text{ and } V(x) > 0, \ \forall x \neq 0$$
$$\|x\| \to \infty \Rightarrow V(x) \to \infty$$
$$\dot{V}(x) < 0, \ \forall x \neq 0$$

then x = 0 is globally asymptotically stable.

Consider a nonautonomous system

$$\dot{x} = f(t, x), \qquad t \in \mathbb{R}, \ x \in \mathbb{R}^n$$
(2.2)

with $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ being a continuous function of (t, x) and f(t, 0) = 0, $\forall t \in \mathbb{R}$. Notice that the system (2.2) might not have a unique solution from any initial condition.

Definition 2.4 [17, 18] The trivial solution x = 0 of (2.2) is said to be globally strongly stable (GSS) if there are two functions $B : (0, \infty) \to (0, \infty)$ and T : $(0, \infty) \times (0, \infty) \to (0, \infty)$ with B being an increasing function and $\lim_{s\to 0} B(s) = 0$, such that $\forall \alpha > 0$ and $\forall \epsilon > 0$, for every solution x(t) of (??) defined on $[0, t), 0 \le t < \infty$ with $||x(0)|| \le \alpha$, there is a solution z(t) of (2.2) defined on $[0, \infty)$ satisfying

- $z(t) = x(t), \quad \forall t \in [0, t_1)$
- $||z(t)|| \le B(\alpha), \quad \forall t \ge 0$

• $||z(t)|| < \epsilon$, $\forall t \ge T(\alpha, \epsilon)$.

Theorem 2.2 (Kurzweil, [18, p. 23]) Suppose there exist a C^1 function $V : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$, a continuous function $U_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, 2, 3, which are positive definite, such that

$$U_1(x) \le V(t, x) \le U_2(x),$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -U_3(x).$$
(2.3)

Then, the trivial solution x = 0 of the system (2.2) is globally strongly stable.

State Feedback Stabilization Problems:

The global state feedback stabilization problem for the system

```
\dot{x} = f(x, u)
```

is the problem of designing a feedback control law

$$u = \gamma(x)$$

such that the origin x = 0 is a global asymptotically stable equilibrium point of the closed-loop system

$$\dot{x} = f(x, \gamma(x))$$

The feedback control law $u = \gamma(x)$ is usually called "static feedback" because it is a memory less function of x.

Output Feedback Stabilization Problems:

The global output feedback stabilization problem for the system

$$\dot{x} = f(x, u)$$

 $y = h(x, u)$

is the problem of designing a static output feedback control law

$$u = \gamma(y)$$

or a dynamic output feedback control law

$$u = \gamma(y, z)$$
$$\dot{z} = g(y, z)$$

such that the origin of the closed loop system is global asymptotically stable. Weighted Homogeneity: (refer to [2], [11], [13], [14], [15] for details) For fixed coordinates $(x_1, \dots, x_n)^T \in \mathbb{R}^n$ and real numbers $r_i > 0$, for $i = 1, \dots, n$,

- the dilation $\Delta_{\varepsilon}(x)$ is defined by $\Delta_{\varepsilon}(x) = (\varepsilon^{r_1} x_1, \cdots, \varepsilon^{r_n} x_n), \ \forall \varepsilon > 0$, with r_i being called as the weights of the coordinates (For simplicity of notation, we define dilation weight $\Delta = (r_1, \cdots, r_n)$).
- a function $V \in C(\mathbb{R}^n, \mathbb{R})$ is said to be homogeneous of degree τ if there is a real number $\tau \in \mathbb{R}$ such that $\forall x \in \mathbb{R}^n \setminus \{0\}, \varepsilon > 0, V(\Delta_{\varepsilon}(x)) = \varepsilon^{\tau} V(x_1, \cdots, x_n).$
- a vector field $f \in C(\mathbb{R}^n, \mathbb{R}^n)$ is said to be homogeneous of degree τ if there is a real number $\tau \in \mathbb{R}$ such that for $i = 1, \dots, n \, \forall x \in \mathbb{R}^n \setminus \{0\}, \varepsilon >$ $0, f_i(\Delta_{\varepsilon}(x)) = \varepsilon^{\tau+r_i} f_i(x_1, \dots, x_n).$
- a homogeneous p norm is defined as $||x||_{\Delta,p} = (\sum_{i=1}^{n} |x_i|^{\frac{p}{r_i}})^{1/p}, \forall x \in \mathbb{R}^n$, for a constant $p \ge 1$. For the simplicity, in this thesis, we choose p = 2 and write $||x||_{\Delta}$ for $||x||_{\Delta,2}$.

Lemma 2.1: Given a dilation weight $\Delta = (r_1, \dots, r_n)$, suppose V_1 and V_2 are homogenous functions of degree τ_1 and τ_2 , respectively. Then $V_1 \cdot V_2$ is also homogeneous with respect to the same dilation weight Δ . Thus, the new homogeneous degree of $V_1 \cdot V_2$ is $\tau_1 + \tau_2$.

Lemma 2.2: Suppose $V : \mathbb{R}^n \to \mathbb{R}$ is a homogenous function of degree τ with respect to the dilation weight Δ . Then the followings hold:

- (1) $\partial V/\partial x_i$ is still homogeneous of degree τr_i with r_i being the homogeneous weights of x_i .
- (2) There is a constant c such that $V(x) \le c \|x\|_{\Delta}^{\tau}$.

Moreover, if V(x) is positive definite, $\underline{c} ||x||_{\Delta}^{\tau} \leq V(x)$, for some a positive constant $\underline{c} > 0$.

Useful Inequalities

The next 3 lemmas are used as the implicit tools for adding a power integrator [9], [10], and proved therein.

Lemma 2.3: For $x, y \in \mathbb{R}, p \ge 1$ is a constant, the following inequalities hold:

$$|x+y|^p \leq 2^{p-1}|x^p+y^p|, \qquad (2.4)$$

$$(|x|+|y|)^{\frac{1}{p}} \leq |x|^{\frac{1}{p}} + |y|^{\frac{1}{p}} \leq 2^{1-\frac{1}{p}} (|x|+|y|)^{\frac{1}{p}}.$$
(2.5)

If $p \in \mathbb{R}_{odd}$, $p \ge 1$ then

$$|x - y|^{p} \leq 2^{p-1} |x^{p} - y^{p}|,$$

$$|x^{\frac{1}{p}} - y^{\frac{1}{p}}| \leq 2^{1-\frac{1}{p}} |x - y|^{\frac{1}{p}}.$$
 (2.6)

Lemma 2.4: Let c, d be positive constants. Given any positive number $\gamma > 0$, the following inequality holds:

$$|x|^{c}|y|^{d} \le \frac{c}{c+d}\gamma|x|^{c+d} + \frac{d}{c+d}\gamma^{\frac{-c}{d}}|y|^{c+d}.$$
(2.7)

Lemma 2.5: Let $p \in \mathbb{R}_{odd}$, $p \ge 1$ and x, y be real-valued functions. Then, for some constant c > 0

$$|x^{p} - y^{p}| \leq p|x - y|(x^{p-1} + y^{p-1})$$

$$\leq c|x - y||(x - y)^{p-1} + y^{p-1}|$$
(2.8)
(2.9)

$$\leq c|x-y||(x-y)^{p-1}+y^{p-1}|$$
(2.9)