
CHAPTER 2

PRELIMINARIES

In this chapter, we give some basic definitions, notations, lemmas and

results which will be used in the later chapters.

Notations: The following notations will be used in this thesis:

Rn is the n dimensional Euclidean space,

I is the integer number set,

Rodd = {b ∈ R|b = 2m+1
2n+1

, m, n ∈ I},

Reven = {a ∈ R|a = 2m
2n+1

, m, n ∈ I},

‖x‖ is the Euclidean norm of vector x,

‖x‖4,p is the homogeneous p− norm of vector x,

C1 is the set of continuously differentiable function.

Definition 2.1 (Positive Definite Function) A function f(x) ∈ R is called positive

definite if f(0) = 0 and f(x) > 0 for all x ∈ Rn \ {0}. It is called positive semi-

definite if f(x) ≥ 0 for all x ∈ Rn.

Definition 2.2 (Negative Definite Function) A function f(x) ∈ R is called negative

definite if f(0) = 0 and f(x) < 0 for all x ∈ Rn \ {0}. It is called negative semi-

definite if f(x) ≤ 0 for all x ∈ Rn.

Stability and Lyapunov Theory of Autonomous Systems: [16]

Consider the autonomous system

ẋ = f(x) (2.1)

where f : D → Rn is a locally lipschitz mapping from a domain D ⊂ Rn into Rn

and f(0) = 0,∀x ∈ D
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Definition 2.3 The equilibrium point x = 0 of (2.1) is

• Stable if, for each ε > 0, there exists δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0

• Unstable if not stable

• Asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

‖x(t)‖ = 0

Theorem 2.1 (Lyapunov theory) Let x = 0 be an equilibrium point for (2.1). Let

V : Rn → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0, ∀x 6= 0

‖x‖ → ∞⇒ V (x) →∞
V̇ (x) < 0, ∀x 6= 0

then x = 0 is globally asymptotically stable.

Consider a nonautonomous system

ẋ = f(t, x), t ∈ R, x ∈ Rn (2.2)

with f : R×Rn → Rn being a continuous function of (t, x) and f(t, 0) = 0, ∀t ∈ R.

Notice that the system (2.2) might not have a uniquen solution from any initial

condition.

Definition 2.4 [17, 18] The trivial solution x = 0 of (2.2) is said to be globally

strongly stable (GSS) if there are two functions B : (0,∞) → (0,∞) and T :

(0,∞)×(0,∞) → (0,∞) with B being an increasing function and lims→0B(s) = 0,

such that ∀α > 0 and ∀ε > 0, for every solution x(t) of (??) defined on [0, t), 0 ≤
t < ∞ with ‖x(0)‖ ≤ α, there is a solution z(t) of (2.2) defined on [0,∞) satisfying

• z(t) = x(t), ∀t ∈ [0, t1)

• ‖z(t)‖ ≤ B(α), ∀t ≥ 0
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• ‖z(t)‖ < ε, ∀t ≥ T (α, ε).

Theorem 2.2 (Kurzweil, [18, p. 23]) Suppose there exist a C1 function V : R ×
Rn → R, a continuous function Ui : Rn → R, i = 1, 2, 3, which are positive

definite, such that

U1(x) ≤ V (t, x) ≤ U2(x),

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −U3(x). (2.3)

Then, the trivial solution x = 0 of the system (2.2) is globally strongly stable.

State Feedback Stabilization Problems:

The global state feedback stabilization problem for the system

ẋ = f(x, u)

is the problem of designing a feedback control law

u = γ(x)

such that the origin x = 0 is a global asymptotically stable equilibrium point of

the closed-loop system

ẋ = f(x, γ(x))

The feedback control law u = γ(x) is usually called ”static feedback” because it is

a memory less function of x.

Output Feedback Stabilization Problems:

The global output feedback stabilization problem for the system

ẋ = f(x, u)

y = h(x, u)

is the problem of designing a static output feedback control law

u = γ(y)

or a dynamic output feedback control law

u = γ(y, z)

ż = g(y, z)
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such that the origin of the closed loop system is global asymptotically stable.

Weighted Homogeneity: (refer to [2], [11], [13], [14], [15] for details) For fixed

coordinates (x1, · · · , xn)T ∈ Rn and real numbers ri > 0, for i = 1, · · · , n,

• the dilation 4ε(x) is defined by 4ε(x) = (εr1x1, · · · , εrnxn), ∀ε > 0, with ri

being called as the weights of the coordinates ( For simplicity of notation,

we define dilation weight 4 = (r1, · · · , rn)).

• a function V ∈ C(Rn,R) is said to be homogeneous of degree τ if there

is a real number τ ∈ R such that ∀x ∈ Rn \ {0}, ε > 0, V (4ε(x)) =

ετV (x1, · · · , xn).

• a vector field f ∈ C(Rn,Rn) is said to be homogeneous of degree τ if there

is a real number τ ∈ R such that for i = 1, · · · , n ∀x ∈ Rn \ {0}, ε >

0, fi(4ε(x)) = ετ+rifi(x1, · · · , xn).

• a homogeneous p − norm is defined as ‖x‖4,p = (
∑n

i=1 |xi|
p
ri )1/p, ∀x ∈ Rn,

for a constant p ≥ 1. For the simplicity, in this thesis, we choose p = 2 and

write ‖x‖4 for ‖x‖4,2.

Lemma 2.1: Given a dilation weight 4 = (r1, · · · , rn), suppose V1 and V2 are

homogenous functions of degree τ1 and τ2, respectively. Then V1 · V2 is also homo-

geneous with respect to the same dilation weight 4. Thus, the new homogeneous

degree of V1 · V2 is τ1 + τ2.

Lemma 2.2: Suppose V : Rn → R is a homogenous function of degree τ with

respect to the dilation weight 4. Then the followings hold:

(1) ∂V/∂xi is still homogeneous of degree τ − ri with ri being the homogeneous

weights of xi.

(2) There is a constant c such that

V (x) ≤ c‖x‖τ
4.

Moreover, if V (x) is positive definite, c
¯
‖x‖τ

4 ≤ V (x), for some a positive constant

c > 0.
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Useful Inequalities

The next 3 lemmas are used as the implicit tools for adding a power integrator [9],

[10], and proved therein.

Lemma 2.3: For x, y ∈ R, p ≥ 1 is a constant, the following inequalities hold:

|x + y|p ≤ 2p−1|xp + yp|, (2.4)

(|x|+ |y|) 1
p ≤ |x| 1p + |y| 1p ≤ 21− 1

p (|x|+ |y|) 1
p . (2.5)

If p ∈ Rodd, p ≥ 1 then

|x− y|p ≤ 2p−1|xp − yp|,
|x 1

p − y
1
p | ≤ 21− 1

p |x− y| 1p . (2.6)

Lemma 2.4: Let c, d be positive constants. Given any positive number γ > 0, the

following inequality holds:

|x|c|y|d ≤ c

c + d
γ|x|c+d +

d

c + d
γ
−c
d |y|c+d. (2.7)

Lemma 2.5: Let p ∈ Rodd, p ≥ 1 and x, y be real-valued functions. Then, for

some constant c > 0

|xp − yp| ≤ p|x− y|(xp−1 + yp−1) (2.8)

≤ c|x− y||(x− y)p−1 + yp−1| (2.9)


